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1. Counting
1.1 Basic Counting Principles

THE PRODUCT RULE Suppose that a procedure can
be broken down into a sequence of two tasks. If there
are n, ways to do the first task and for each of these
ways of doing the first task, there are n, ways to do
the second task, then there are n,n, ways to do the
procedure.

THE SUM RULE If a task can be done either in one of
n, ways or in one of n, ways, where none of the set of
n, ways is the same as any of the set of n, ways, then
there are n; + n, ways to do the task.

Principle of inclusion-exclusion

If a task can be done in either n; ways or n, ways, then
the number of ways to do the task is n; + n, minus
the number of ways to do the task that are common
to the two different ways.

Suppose that A1 and A2 are sets.
|41 U Az = |A1] + |A2] — |41 N A,

1.2 Pigeon Hole Principle

THE PIGEONHOLE PRINCIPLE If k is a positive
integer and k + 1 or more objects are placed into k
boxes, then there is at least one box containing two or
more of the objects.

THE GENERALIZED PIGEONHOLE PRINCIPLE If N
objects are placed into k boxes, then there is at least
one box containing at least [N /k] objects.

1.3 Permutation

A permutation is an arrangement in a definite order
of a number of objects taken some or all at a time.
The number of r-permutations of a set with n
elements is denoted by P(n, r).

If n and r are integers with 0 < r < n, then P(n,r) =
n!

(n-r)!"

1.4 Combinations

An r-combination of elements of a set is an unordered
selection of r elements from the set.

The number of r-combinations of a set with n
elements, where n is a nonnegative integer and r is an
integer with 0 < r < n, equals

C(nr) = —2

ri(n-r)!
1.5 Binomial Theorem

THE BINOMIAL THEOREM Let x and y be variables,
and let n be a nonnegative integer. Then

G+ 90" = Beo (5) " Iy7 = (" + (D ty +
()

Note:

1. Letn and r be nonnegative integers with r < n.
Then C(n,r) = C(n,n—r).

2. PASCAL'S IDENTITY Let n and k be positive
integers with n > k. Then

() = G2 + G

1.6 Generalized Permutations and Combinations
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Type Condition Formula Explanation
Selecting
and

Permutation Order P(n,r) arranging

(Without matters, no | _ n! r items

Repetition) repetition (n—-n)t from n
distinct
items
Selecting r

Permutation Smiadtferrs items from

(With ! n" n options,
. repetition
Repetition) each can
allowed
repeat
Selecting
items from
N Order .
Combination doesn't C(n,r) n distinct
(Without _ n! items,
- matter, no e
Repetition) i ri(n—r)! order
repetition ]
doesn't
matter
Selecting
Order c items from
Combination doesn't _(711 :)r n types,
(With matter, (;l Fr—1) repetitions
Repetition) repetition = m allowed,
allowed order
irrelevant
Note:

The number of ways to distribute n distinguishable
objects into k distinguishable boxes so that n; objects

are placed into box i,i = 1,2, ..., k, equals
n!

nq'nylng!

1.7 Distribution of r balls into n boxes

n distinguishable n indistinguishable
boxes boxes
empty no box | empty no box
box em box em
allo pty allo pty
wed wed
[ r T r T
dsing | (wf] [z () | [
balls
r indisting. (r tn-1 (r - 1) n | r
balls r n—1 L |l | |n|

. |:l| : Number of integer partitions of r into n

parts (used for indistinguishable balls & boxes).
e (}):Binomial coefficient.

o a0 ={} =13 COF OG-

2. Axioms of Probability

2.1 Sample Space and Events

Consider an experiment whose outcome will not be
known in advance, let us suppose that the set of all
possible outcomes is known. This set of all possible
outcomes of an experiment is known as the sample
space of the experiment and is denoted by S.

Any subset E of the sample space is known as an event

2.2 Probability
Probability refers to the extent of occurrence of
events.
P(E)
B Number of favorable outcomes
~ Total number of equally likely outcomes
_n(E)
G
Where:
e P(E): Probability of event E
e n(E): Number of favourable outcomes for event E
e n(S): Total number of outcomes in the sample
space

Note: Let A, E, F are the events associated with a
random experiment, then
(i) Probability of non occurrence of event A, i.e, P(A")
=1-P(A)
(ii)If E is a subset of F, then P(E) <= P(F)
(i) P(EUF) = P(E) + P(F) - P(ENF)
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The three axioms of probability

Axiom 1
0<PE)<1
Axiom 2
P(S) =1
Axiom 3

For any sequence of mutually exclusive events
E,, E,, ... (that is, events for which E;E; = @ when

L+j) . .
-5

i=
We refer to P(E) as the probability of the event E.

2.3 Types of Events
1. Sure (Certain) Event:
An event that is guaranteed to happen.
Formula: P(E) = 1
2. Impossible Event:
An event that cannot occur under any
circumstances.
Formula: P(E) = 0
3. Simple (Elementary) Event:
An event that consists of only a single outcome.
4. Compound (Composite) Event:
An event that consists of two or more outcomes.
5. Mutually Exclusive Events:
Two events are mutually exclusive if they cannot
occur at the same time.
Formula: P(AUB) =P(A) + P(B)ifAnB =0
6. Exhaustive Events:
A set of events is exhaustive if at least one of
them must occur.
Formula: P(E;) + P(Ey) + -+ P(E,) =1
7. Independent Events:
Events are independent if the occurrence of one
does not affect the occurrence of the other.
Formula: P(ANB) = P(A) - P(B)
8. Dependent Events:
Events are dependent if the occurrence of one
affects the probability of the other.
Formula: P(AN B) = P(A) - P(B | A)
9. Complementary Events:
Two events are complementary if one occurs
exactly when the other does not.
Formula: P(E') =1 — P(E)

3. Conditional Probability & Baye’s Theorem

3.1 Conditional Probability

The conditional probability of an event A given that
another event B has occurred is the probability of A
occurring under the condition that B has already
occurred.

Formula

P(ANB) _
P(AIB) = , provided P(B) >0

P(B)
e P(A|B): Probability of A given B
e P(AnB): Probability that both A and B occur
e P(B) : Probability that B occurs

Multiplication Rule of Probability
P(ANB)=P(A|B)-P(B) =P(B|A)-P(A)

3.2 Law of Total Probability

If By, By, ..., B, are mutually exclusive and exhaustive
events (i.e, one of them must occur), and 4 is any
event, then:

P(4)= ) P(B)-P(A|B)
i=1

e Useful when the probability of A depends on
different cases By, By, ..., B,

e Requires: BiUB,U~-UB, =5 and B;NB; =0
fori #j

3.2 Baye’'s Theorem

P(B | A) : Probability of event B given A
occurred
P(B)-P(A|B)

P(B|A)= PCA)

3.4 Generalized Baye's theorem
Used to reverse conditional probabilities: Find
P(B; | A) when P(A | B;) is known.

P(B)-P(AIB;)

PB 1 A) = S o(e)p(ais)

e By, B,,..., B, : Partition of the sample space

e A:Observed evidence/event

e Denominator is from Law of Total Probability
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4. Key measures of central tendency and

dispersion
4.1 Mean
The average value of a data set.
Formula:
x.
Mean = x = 2 %
n

Where x; are the data values and n is the total
number of values.

4.2 Median
The middle value when the data is arranged in
ascending or descending order.

e If nis odd: median is the middle term

e If nis even: median is the average of the two
middle terms (No formula needed; depends on
sorting)

4.3 Mode
The value(s) that occur most frequently in the
dataset.

e A dataset may be unimodal, bimodal, or
multimodal

4.4 Variance

A measure of how much the data values deviate
from the mean.
Formula (Population):
2 Y (g —w?
o —_——
N
Formula (Sample):

&2 _2 O — %)?

n—1

4.5 Standard Deviation

The square root of the variance; gives spread in
the same units as the data.

Formula:
o =+Jo2ors=+/s2

5. Random Variable

5.1 Random Variable - Definition
A random variable is a function that assigns a
real number to each outcome of a random
experiment.

5.2 Types of Random Variables

e Discrete Random Variable:
Takes countable values (finite or countably
infinite)
Example: Number of heads in 3 coin tosses

e Continuous Random Variable:
Takes uncountably infinite values (within
intervals)
Example: Temperature in a day

5.3 Probability Distribution Function (PDF / PMF)
A. Discrete Random Variable (PMF - Probability
Mass Function)
For a discrete random variable X :

P(X = xi) = Pi

where

e x;:possible value that X can take

e p; =P(X =x;):probability that X takes the
value x;

Zpi:l and 0<p; <1
7

B. Continuous Random Variable (PDF - Probability
Density Function)

For a continuous random variable X :

e f(x): probability density function, such that

b
P(a<X<bh) =f f(x)dx
a
Conditions:

f(x) = 0 forall x, and foo f(x)dx =1

5.4 Cumulative Distribution Function (CDF)
Gives the probability that X takes a value less
than or equal to x :

e Fordiscrete:

F(x) = Z P(X = x;)

XiSX
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e For continuous: 5.9 Conditional Distribution

X . oge
(a) Discrete Case - Conditional PMF
F(x) = t)dt
@) f_oo 1o For discrete random variables X and Y, the
conditional probability mass function of X given

Relationship between PDF and CDF (Continuous Y=yis
Case) PX=xY=y) .
If F(x) is the Cumulative Distribution Function (CDF) Pry(1y) = P(Y =vy) ifP(Y =y)>0
of a continuous random variable X, then:
d (b) Continuous Case - Conditional PDF
fx) = aF(x) For continuous random variables X and Y, the
conditional probability density function of X
That is, the PDF is the derivative of the CDF. givenY =y is:
fxy (%)

5.5 Expected Value (Mean) fxry(x 1Y) 0) it fy(y) >

e For Discrete:
5.10 Conditional Expectation

E(X) = z x; « P(x; - . .
' &) i PGx) Conditional expectation gives the expected value
 For Continuous: of a random variable given that another variable

[oe]

EX) = f x - f(x)dx has a specific value.

. .. (a) Discrete Case
5.6 Variance and Standard Deviation If X and Y are discrete random variables, the

e Variance:

Var(X) = E(X?) — [E(X)]? conditional expectation of X givenY =y is:
ar = —

E[X|Y=y]=zx-P(X=x|Y=y)

e Standard Deviation: z

o = ,/Var(X)

5.7 Properties of Expectation
Let X and Y be random variables and a,b € R:

1. Linearity: EX1Y=y]= j x - friy(x | y)dx
E(aX +b) = aE(X) + b 0

(b) Continuous Case
If X and Y are continuous random variables, the
conditional expectation of X givenY =y is:

2. Sum Rule: Here, fxy(x | ¥) is the conditional PDF of X given

EX+Y)=EX)+E() Y=y
3. If Xis constantc: 5.11 Law of Total Expectation
E(c)=c (a) Discrete Case

4. If X andY are independent random variables,

E[X]= ) EX1Y=y]-P(Y =)
E(XY) = ECOE(Y) | ’

(b) Continuous Case

5.8 Properties of Variance E[X] = f E[X1Y =y]-fr(y)dy
1. Scaling and Shifting: -
Var(aX + b) = a? - Var(X)

2. If X andY are independent:
Var(X +Y) = Var(X) + Var(Y)
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6. Types of Random Variable

6.1 Discrete Distributions

1. Discrete Uniform Distribution

e Notation: X ~ U(a,b)

e Definition: Takes integer values from a to b with

equal probability.

1

e PMFPX=x)= forx € {a,a+1,...,b}

b—a+1'
e CDFF() =22 forxz>a
e Expectation: E[X] = %
(b—a+1)%-1

e Variance: Var(X) = >

e Standard Deviation: \/Var(X)

2. Bernoulli Distribution
¢ Notation: X ~ Bern(p)

¢ Definition: Random variable with two outcomes:
success (1) and failure (0).

e PMF. P(X =x)=p*(1—-p)*, for x € {0,1}

e CDF: Step function at 0 and 1

e Expectation: E[X] =p

e Variance: Var(X) = p(1 — p)

o Standard Deviation: \/p(1 — p)

3. Geometric Distribution

e Notation: X ~ Geo(p)

e Definition: Number of trials until first success.
e PMF.P(X=x)=(1-p)*Ip forx=123,..
e CDFF(x)=1-(1-p)*

e Expectation: E[X] = %

e Variance: Var(X) = 1;—21’

e Standard Deviation: 1p_—2p

4. Binomial Distribution
¢ Notation: X ~ Bin(n,p)

e Definition: Number of successes in n
independent Bernoulli trials.

e PMFPX=k) =()p*(A—p)"* fork =
0,1,..,n

e CDF:. Sum of PMFs up to k

e Expectation: E[X] =np

e Variance: Var(X) = np(1 —p)

o Standard Deviation: \/np(1 — p)

5. Poisson Distribution
Notation: X ~ Poisson( 1)

e Definition: Models number of events in a fixed

interval with average rate A.

k,—21
T fork=012,..

e CDF.Sumof PMFsupto k

e PMF.P(X=k)=

e Expectation: E[X] =1
e Variance: Var(X) = 1
e Standard Deviation V1

6.2 Continuous Distributions

1. Continuous Uniform Distribution
e Notation: X ~ U(a,b)

e Definition: Uniform density over interval [a, b]
« PDFf(x)=;—fora<x<b

. CDF:F(x)=g,foranSb

e Expectation: E[X] = aZLb
_ 2
e Variance: Var(X) = %

iogion. b-a
e Standard Dewatlon.\/E
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Exponential Distribution
Notation: X ~ Exp(1)

Definition: Time between events in a Poisson
process.

PDF: f(x) = Ae™**, forx > 0

CDF: F(x) =1—e™

Expectation: E[X] = %

Variance: Var(X) = ALZ

Standard Deviation: %

Normal Distribution
Notation: X ~ N(u,0?)

Definition: Bell-shaped symmetric distribution.

PDF:
) 1 o
X) = e 20
V2mo?

CDF: No closed form; denoted by ®(x)
Expectation: E[X] = u
Variance: Var(X) = o2

Standard Deviation: ¢

Standard Normal Distribution

Notation: Z ~ N(0,1)

Definition: Normal distribution with mean 0 and
variance 1.

PDF:

1 7
f(2) = Nz
CDF: Denoted by ®(z2)
Expectation: E[Z] = 0
Variance: Var(Z) = 1
Standard Deviation: 1

6.3 Moment Generating Function (MGF)
e The Moment Generating Function of a
random variable X is defined as:
My (t) = E[e*]
Where t is a real number such that the
expectation exists.

Why MGF?
e Helps in finding moments (mean, variance,
etc.) of a distribution.
¢ Uniquely determines the distribution (if it
exists in an open interval around 0).
e Simplifies calculations for the sum of
independent random variables.

How to find moments using MGF:
e The n-th moment about the origin is
obtained by differentiating the MGF n times:
, _d™Mx(t)
TTodth o

e Example:
e Mean: u = My (0)
e Variance: 62 = My (0) — (M4 (0))?

Discrete Distributions:
1. Uniform (Discrete) U(a, b)

b
My(t) = ———— D e
X b—a+1
xX=a
2. Bernoulli(p)
My (t) = (1 —p) + pe'
3. Geometric(p) (Number of trials until first
success, starting from 1)
pe’
1—-(1—-p)et’
4. Binomial(n,p)
My (t) = [(1 = p) + pe']"

My(t) = fort < —In(1 —p)

Negative Binomial(r, p) (Number of trials until r
successes)

pe' "
My (t) = <—1 ey p)et> ,t < —=In(1—-p)

5. Poisson (1)
My (t) = exp(A(et — 1))
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Continuous Distributions:

1. Uniform (Continuous) U(a, b)
tb __eta

MX(t) :m,t *0

2. Exponential (1)
A

My (t) —-}f:jz,t'< A

3. Normal(y, 0?)
1
My (t) = exp (ut + Eaztz)
4. Standard Normal ~(0,1)
1
My (t) = exp (E tz)

7. Joint Probabilty

7.1 Joint Probability Distributions

A Joint Probability Distribution describes the
probability behavior of two or more random variables
together.

There are two types:

Discrete Joint Distribution
e Defined for discrete random variables X and
Y.
e Represented using a Joint PMF (Probability
Mass Function):
Pxy(x,y) =P(X =xY =y)

Continuous Joint Distribution

e Defined for continuous random variables X
andY.

e Represented using a Joint PDF (Probability
Density Function):

fxy(x,y)
7.2 Joint PMF (Discrete Case)

e Let X and Y be discrete random variables.
e The Joint PMF:

pxy(x,y) =PX =xY =y)
e Must satisfy:

Z Z pxy(xy) =1
x ¥

e To Find Probabilities:

e For exact values:
P(X=a,Y =b) =pxy(a,Db)
e For events over sets:

PXEAYER) =) > pry(xy)

XEA yEB

7.3 Joint PDF (Continuous Case)
e For continuous variables X and Y, the Joint
PDF:
fxy(,y)

e Must satisfy:

f f for (6 y)doxdy = 1

To Find Probabilities:

e For exact values:

P(X =a,Y =b) =0 (always zero in continuous)
e Forintervals or regions:

xR ER = || fR fer (x,y)dxdy

7.4 Marginal Distributions

e Discrete:

px(®) = ) pry @B 0) = ) Py ()
y X

e Continuous:

=

A0 = [ fa@ndn o) = [ furtond

7.5 Conditional Distributions

e Discrete:
_bxy(xy)
pxiy(x 1 y) = 0 0) (ifpy(y) >0)
e Continuous:
fxy(x 1y) = % (if fr(¥) > 0)

7.6 Independence
e X andY are independent iff:
Pxy(x,y) = px(x) - py(y) (discrete)
fry(x,y) = fx(x) - fy(¥) (continuous)

7.7 Expectation and Variance
o E[X]=2xx px(x),E[Y] =%, y-pr(y) (or
integral form for continuous)
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e Var(X) = E[X?] — (E[X])?

7.8 Expectation of functions
o E[gX,V)]=2x Xy 9(x¥)  pxy(x,¥)
(discrete)
o ElgXV]=[, [0, 9 ) fuy(xy)dxdy
(continuous)

7.9 Conditional Expectation
o EXIY=y]=X,x pxy(x|y) (discrete)
o EX1Y=y]=[" xfar(x|ydx
(continuous)

7.10 Conditional Variance
e Var(X|Y=y)=E[X?|Y=y]—-(E[X|Y =
yD?

7.11 Properties of Conditional Expectation

Let X,Y,Z be random variables, a,b € R, and g: R —
R. Assuming all the following expectations exist, we
have

(i) E[alY] =a

(i) E[aX + bZ | Y] = aE[X | Y] + bE[Z | Y]
(i)E[X1Y]=0ifX>0.

(iv) E[X | Y] = E[X] if X and Y are independent.

(v) E[E[X1Y]] = E[X]

(VI)E[Xg(Y) | Y] = g(Y)E[X | Y]. In particular, E[g(Y) | Y] = g(Y).
(Vii) E[X 1Y, g(Y)] = E[X | Y] (viii) E[E[X | Y,Z] | Y] = E[X | Y]

7.12 Law of Total Expectation
E[X] = z E[X 1Y =y]-P(Y =) (discrete)
y

E[X] = f E[X|Y =y]- fy(y)dy (continuous)

7.13 Law of Total Variance
Var(X) = E[Var(X | Y)] + Var(E[X | Y])

8. Covariance & Correlation
8.1 Covariance
e Covariance measures the linear relationship
between two random variables X and Y.

Definition:

Cov(X,Y) = E[(X — E[X](Y — E[Y])]

Alternate Formula:

Note:

1. cov(X,Y) will be positive if large values of X tend

8.2 Properties of Covariance

(Properties of Covariance) Let X,Y,Z be random
variables, and let ¢ be a constant.

Then:

Cov(X,Y) = E[XY] — E[X]E[Y]

to occur with large values of Y, and small values
of X tend to occur with small values of Y.

For example, if X is height and Y is weight of a
randomly selected person, we would expect
cov(X,Y) to be positive.

cov(X,Y) will be negative if large values of X tend
to occur with small values of Y, and small values
of X tend to occur with large values of Y.

For example, if X is age of a randomly selected
person, and Y is heart rate, we would expect X
and Y to be negatively correlated (older people
have slower heart rates).

If X and Y are independent, then there is no
pattern between large values of X and large
values of Y so cov(X,Y)=0. However,
cov(X,Y) = 0 does NOT imply that X and Y are
independent, unless X and Y are Normally
distributed.

1. Covariance-Variance Relationship: Var[X] =
Cov[X, X]
2. Pulling Out Constants:
Cov[cX,Y] = c - Cov[X,Y]
Cov[X,cY] = c - Cov[X,Y]
3. Distributive Property:
Cov[X +Y,Z] = Cov[X, Z] + Cov[Y, Z]
Cov[X,Y + Z] = Cov[X,Y] + Cov[X, Z]
4. Symmetry: Cov[X,Y] = Cov[Y, X]
5. Constants cannot covary: Cov[X,c] = 0.
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8.3 Correlation
e Correlation Coefficient (denoted p or
Corr(X,Y) ) measures the strength and
direction of a linear relationship between two

variables.
Formula:
_ Cov(X,Y)
Pxy = Oy Ty

Where:

e gy =,/ Var(X)

e oy =,/ Var(Y)

* pe[-11]

e p = 1:Perfect positive linear correlation

e p = —1: Perfect negative linear correlation

e p =0:No linear correlation

8.4 Properties of Correlation

1. -1< Pxy = 1

2. pxy = Prx

3. pxy = 0 implies no linear relationship

4. Correlation is scale-invariant:
Corr(aX + b,Y) = sign(a) - Corr(X,Y)

5. If X and Y are independent, then p = 0 (but
p = 0 does not imply independence)

9. Statistics
9.1 Markov's Inequality
For any non-negative random variable X and a > 0 :

P(X>a)<@
77T a

Useful when only the mean is known.

9.2 Chebyshev's Inequality
For any random variable X with finite mean p and
variance ¢2, and forany k > 0 :

1
P(IX —pl 2 ko) < -

Works for any distribution, not just normal.

9.3 Central Limit Theorem (CLT) for Sample Mean
The Central Limit Theorem, one of the cornerstone
results in probability and statistics, states that if
X1,X,,...,X, are independent and identically
distributed (i.i.d.) random variables, each with mean u

and variance a2, then as the sample size n becomes
large, the distribution of the sample mean X = %Z X;

tends toward a normal distribution, regardless of the
original distribution of X :

gon(nZ
w

This approximation improves with larger n; it is widely
used for constructing confidence intervals and
hypothesis testing, even when the data are not
normally distributed.

9.4 Central Limit Theorem for Sum

An extension of the CLT applies not just to the
sample mean but also to the sum of i.i.d. random
variables; that is, the sum S,, = X; + X, + -+ X, is
also approximately normally distributed when n is
large, with mean and variance scaled accordingly:

Sp ~ N(nu,no?)

9.5 Point Estimate

e Asingle value used to estimate a population
parameter.

e Computed from sample data.

e Common point estimates:

e X estimates u

e p= % estimates population proportion p

¢ No indication of uncertainty - only a single
guess.

9.6 Interval Estimate

e Provides a range of plausible values for a
population parameter.

e More informative than a point estimate.

e General form:

Point Estimate + Margin of Error

e Margin of error depends on confidence level

and sample variability.

9.7 Confidence Interval

A confidence interval is a type of interval estimate that
gives a range of values, computed from the sample
data, which is likely to contain the true population
parameter with a specified level of confidence

Page No:- 10

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#data-science-artificial-intelligence-da

SR

GATE CSE BATCH

KEY FHiIGHLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/.GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE RS
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#data-science-artificial-intelligence-da

PROBABILITY & STATISTICS

GATE B¢

(typically 90%, 95%, or 99%); for estimating a
population mean when the population standard
deviation ¢ is known and the sample size n is
sufficiently large, the confidence interval is given by:

_ o

X+ Za/2 " ﬁ
Here, z,,, is the critical value from the standard
normal distribution corresponding to the desired
confidence level; the interval is random because it is
derived from sample data, and over repeated samples,
a certain proportion (e.g., 95% ) of such intervals will
contain the true parameter.

9.8 Properties of Confidence Interval
Confidence intervals possess several important
properties:

1. A higher confidence level results in a wider
interval, reflecting greater certainty at the cost
of precision.

2. As the sample size increases, the interval
becomes narrower, indicating improved
estimate accuracy.

3. The width of the confidence interval depends
on the variability of the estimator and the
underlying distribution;

4. The confidence level refers to the long-run
success rate of the procedure: in repeated
sampling, the true parameter would fall within
the constructed interval the specified
proportion of the time.

9.9 T-Distribution
e Used when:
e Population standard deviation ¢ is unknown
e Sample size is small (typically n < 30)
e Definition:
X—pu
T = S/\/ﬁ ~th-1
where S is the sample standard deviation.
e Degrees of freedom=n—1
e Properties:
e Symmetric and bell-shaped like normal
e Heavier tails (more uncertainty due to
estimating o)
e As n — oo, t-distribution —» standard normal
N(0,1)

10. Hypothesis Testing: Z-Test
10.1 Introduction

e Z-test is a statistical method used to test
hypotheses about population means or
proportions when the population variance is
known and the sample size is large (typically
n>=>30).

e Test statistic follows Standard Normal
Distribution (Z-distribution).

10.2 One-Tailed Z-Test
e Used when alternative hypothesis (H,)
suggests a directional change.
Left-tailed test:
e Ho:p=1po
o Hsip <
e RejectHyifZ<—-Z «a
Right-tailed test
* Ho:p=pyp
® Hg:p>pg
e RejectHyifZ>7Z_«a

10.3 Two-Tailed Z-Test
e Used when H,: i # y, i.e., deviation in either
direction.
e Reject Hy if |Z] > Z_(a/2)

10.4 Z-Test for Proportion
e Testing population proportion:
e Let p =x/n (sample proportion), p
(population proportion)
e Test statistic:
p-p
r(1—p)

n
e Used for both one-tailed and two-tailed

depending on the alternative hypothesis.

7 =

10.5 Z-Test for Mean (Two Populations)
e Used when comparing means of two
independent populations.
e Let sample means be x;,%,, population
variances a; 2, o, 2 known; sample sizes ny, n,.
e Test statistic:
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X1 — X3
7 =

af o3

ng n

e One-tailed: py > uy or uy < py
e Two-tailed: uy # pu,

10.6 Z-Test for Proportion (Two Populations)

e Testing equality of proportions p, and p,.

e Combined proportion:

_mypptngp;
=———,q=1-p
n, +n,
e Test statistic:
7= P1 — D2

pa (5 +7)

11. Hypothesis Testing: T-Test

11.3 Two-Sample T-Test (Independent Samples)
e Used to compare the means of two
independent populations.
e Assumes equal variances (can be extended to
unequal variances too).
e Null Hypothesis (Hg ): puq = 1y
e Test Statistic:

X1 — X
’1 1
Sp n—1+n—2

* X, X,:sample means
e 1n4,n,:sample sizes
e s, :pooled standard deviation
e Pooled Variance (s?):
o S = 1) 53y — 1)
ny+n, —2
e df=n; +n, -2

t =

11.1 Introductiqn 11.4 Paired T-Test (Dependent Samples)
* AT-Testis used to test hypotheses when the e Used when the samples are paired or related

population standard deviation is unknown and (e.g., before-after, same subject in different
the sample size is small (typically n < 30). conditions).

eSSt o s SR e Focuses on the difference in paired
distribution with appropriate degrees of observations.
;res::;]‘ ’Ed?ésts e letd;=x;—y;,andd = %

ey = : | | :

e One-sample t-test e Null Hypothesis (Hp ): g_d = 0 (no

e Two-sample t-test (Independent samples) difference)

e Paired t-test e Test Statistic: .

d
t =
11.2 One-Sample T-Test . Sd/\/r_,l
e Used to compare the sample mean % to a e Standard deviation of differences:
known value u (population mean) n(di - 5)2

e Null Hypothesis (Ho): 1 = pq Sa = n—1

e Test Statistic: e df=n-1

t= .
s/Nn 12. Chi-Square Test

The Chi-Square (X?2) Test is a non-parametric
statistical test used to examine the association
between categorical variables or to test the
goodness of fit of observed data with expected
data.

X : sample mean

e s:sample standard deviation
n : sample size

o df=n-1

12.1 Types of Chi-Square Tests
1. Chi-Square Goodness of Fit Test
2. Chi-Square Test for Independence (Association)
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Assumptions of Chi-Square Test

Observations must be independent.
Categories must be mutually exclusive.

Data must be in frequency form (not
percentages).

Expected frequency in each cell should be > 5.

12.2 Chi-Square Goodness of Fit Test

Purpose: To test if the observed categorical
data match an expected distribution.
Hypotheses:

H, : The data follow the expected distribution.
H,; : The data do not follow the expected
distribution.

Test Statistic:

2 _ Z (0; - E)?
X E;

0, : Observed frequency for category i
E; : Expected frequency for category i

Degrees of Freedom:
df =k—1

where k is the number of categories.

e Decision Rule:

Reject Ho if YCiculated > Xaritical (from the x?
table at given a and df).

. . .2 2
Fail to reject Ho if Xcaiculated = Xeritical -
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