
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

1. Introduction to COA
1.1. Types of computers
● Embedded computers
● Personal computers: desktop computers,

workstation computers, portable
computers etc.

● Servers & Enterprise systems
● Supercomputers

1.2. Components of Computer
1.2.1. CPU (Central Processing Unit)
1.2.1.1. ALU (Arithmetic Logical Unit)
ALU performs the required micro-operations
for executing the instructions.

1.2.1.2. Control Unit
The control unit supervises
the transfer of information among the
registers and instructs the ALU as to which
operation to
perform.

1.2.1.3. Registers
● Registers are small, high-speed storage

locations within the CPU used for
temporary storage, control, and data
manipulation during program execution.

● They hold binary information and are
crucial for efficient CPU operation.

1.2.1.3.1. Types of CPU Registers
01. PC
● The processor keeps track of the address

of the memory location containing the
next instruction to be fetched using the
program counter.

● After fetching an instruction, the contents
of the PC are updated to point to the next
instruction in the sequence.

02. IR (Instruction Register)
Decodes fetched instruction with predefined
format, which is:

1. Fetch the contents of the memory location
pointed to by the PC, and load into IR. i.e. IR ←
[(PC)]
2. Assuming that the memory is byte addressable
& one word is 32 bit (4B), increment the contents of
the PC by 4, so PC ← [PC] +4
3. Decode the instn to understand the
operation & generate the control signals
necessary to carry out the operation.

03. Accumulator
Temporary storage location for arithmetic &
logical operations

04. MAR
Works with the memory bus to fetch/store
data at a specific address.

05. MDR
a. Temporarily holds data being transferred
to/from memory. Contents of MBR are
directly connected to the data bus.
b. Acts as a buffer between CPU and
memory.

1.2.2. Memory
● Main/Primary Memory
● Secondary Memory

1.2.3. I/O
1.2.3.1. Input Unit

The process of receiving data from an
external source (like a user typing on a
keyboard or a sensor reading data) and
making it available to the computer's
internal components for processing.

1.2.3.2. Output Unit

The process of sending data from the
computer's internal components to an
external device or system (like displaying

COA
GATE फर्र े

Page No:-01

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

information on a monitor, printing to a
printer, or sending data over a network).

1.3. Big-endian & Little-endian
Assignments
● The name big-endian is used when lower

byte addresses are used for the more
significant bytes.

● The name little-endian is used for where
the lower byte addresses are used for the
less significant bytes of the word.

1.4. Memory Addressing
If the memory is byte addressable, then
byte locations have addresses 0, 1, 2... and
if the memory is word addressable and the
length of each word is 32 bits, then
successive words are located at addresses
0,4,8,12,...., with each word consisting of 2
bytes. (1B = 8 bits)

1.5. Instruction Cycle

1.5.1. Instruction Fetch (IF)
● PC → MAR: Program Counter (PC) holds

address of next instruction; transferred
to Memory Address Register (MAR).

● Read Memory: Control unit issues a read;
memory returns the instruction into
Memory Buffer Register (MBR).

● MBR → IR: Instruction Buffer Register (IR)
loads the instruction.

● PC ← PC + 1: PC is incremented to point
to the following instruction.

1.5.2. Instruction Decode (ID)
● IR → Control Unit: Opcode field is sent to

the control unit for interpretation.
● Operand Fetch: If needed, source

operand addresses are loaded into MAR;
memory or register file is accessed,
placing data into temporary registers.

● Register File Access: Control signals
select appropriate registers; operands
are read into internal CPU registers.

1.5.3. Execute (EX)
● ALU Operation: Arithmetic/logic unit

performs the operation specified (e.g.,
add, subtract, logical AND/OR, shift).

● Address Calculation: For memory‐

reference instructions, effective address
is computed here.

COA
GATE फर्र े

Page No:-02

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

1.5.4. Memory Access (MEM)
Data Read/Write:
● Load: If it’s a load instruction,

MAR→memory→MBR→destination register.
● Store: If it’s a store instruction, source

register→MBR→memory at MAR.

1.5.5. Write‐Ba ck (W B)

● Result → Register: ALU or MBR result is
written back into the register file or PC
(for branches/jumps).

● Flags Update: Condition codes (zero,
carry, overflow) are updated if needed.

Note:
● The fetch-execute cycle repeats to

execute next instructions until a halt
instruction is executed.

● Halt (HLT) instruction stops the execution
of further instructions until an interrupt
or reset signal is received.

● While halted, the CPU may perform
minimal operations like memory refresh
to maintain system integrity.

2. Machine Instructions & Addressing
Modes
2.1. Instructions Format
A computer will usually have a variety of
instruction code formats. It is the function of
the control unit within the CPU to interpret
each instruction code and provide the
necessary control functions needed to
process the instruction. The most common
fields found in instruction formats are:
1. An operation code field (opcode) that
specifies the operation to be performed.
2. An address field that designates a
memory address or a processor register.
3. A mode field that specifies the way the
operand or the effective address is
determined.

2.2. Types of Instructions
2.2.1. Three-Address Instructions

Each address field specifies either a register
or an operand. The advantage of the three-
address format is that it results in short
programs when evaluating arithmetic
expressions.

2.2.2. Two-Address Instructions

Each address field can specify either a
register or a word. The program to evaluate
X = (A + B) * (C + D) is as follows

Note: The MOV instruction moves or
transfers the operands to and from memory
and processor registers.

2.2.3. One-Address Instructions

One-address instructions use an implied
accumulator (AC) register for all data
manipulation. The program to evaluate X =
(A + B) * (C + D) is

COA
GATE फर्र े

Page No:-03

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

2.2.4. Zero-Address Instructions

Used in stack organised computers with
PUSH & POP instructions. The following
program shows how
X = (A + B) * (C + D) will be written

Note: To evaluate arithmetic expressions in
a stack computer, it is necessary to convert
the expression into Reverse Polish notation.

2.2.5. RISC Instructions
It is restricted to LOAD & STORE instructions
when interacting between memory & CPU.
All other instructions like ADD, MUL are
executed within the registers of the CPU
without referring to memory. Following is a
program to evaluate X = (A + B) * (C + D)

2.3. Addressing Modes
The way the operands are chosen during
program execution is dependent on the
addressing mode of the instruction.

Its types are:
● Implied Mode
● Register Indirect Mode
● Immediate Mode
● Autoincrement or Autodecrement

Mode
● Direct Addressing Mode/Absolute

Addressing Mode
● Relative Address Mode
● Indirect Address Mode
● Indexed Addressing Mode
● Register Mode
● Base Register Addressing Mode

2.3.1. Implied Mode
In this mode the operands are specified
implicitly in the definition of the instruction.
a. All register reference instructions that use
an accumulator are implied-mode
instructions.
b. Zero-address instructions in a stack-
organized computer are implied-mode
instructions since the operands are implied
to be on top of the stack.

2.3.2. Immediate Mode

In this mode the operand is specified in the
instruction itself. An immediate-mode
instruction has an operand field rather than
an address field.

2.3.3 Direct Address Mode/Absolute
Address Mode

COA
GATE फर्र े

Page No:-04

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

In this mode the effective address is equal to
the address part of the instruction. The
operand resides in memory and its address
is given directly by the address field of the
instruction. In a branch-type instruction the
address field specifies the actual branch
address.

2.3.4. Indirect Address Mode

In this mode the address field of the
instruction gives the address where the
effective address is stored in memory.
Control fetches the instruction from memory
and uses its address part to access memory
again to read the effective address.

2.3.5. Register Mode

In this mode the operands are in registers
that reside within the CPU. The particular
register is selected from a register field in
the instruction. A k-bit field can specify any
one of 2k registers.

2.3.6. Register Indirect Mode

In this mode the instruction specifies a
register in the CPU whose contents give the
address of the operand in memory.
The advantage of a register indirect mode
instruction is that the address field of the
instruction uses fewer bits to select a
register than a memory address directly.

2.3.7. Autoincrement or Autodecrement
Mode

This is similar to the register indirect mode
except that the register is incremented or
decremented after its value is used to access
memory.

Note: The Effective Address (E.A.) is the
memory location calculated based on the
addressing mode specified in the instruction,
i.e.
E.A. = address part of instn + content of CPU
register

COA
GATE फर्र े

Page No:-05

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

2.3.8. Relative Address Mode

In this mode the content of the program
counter is added to the address part to
obtain E.A. The address part is a signed
number (2’s complement) which can be
either positive or negative.
EA = Address Part (off set) + PC value
It results in a shorter address field since the
relative address can be specified with a
smaller number of bits compared to the
entire memory address. It’s generally used
in Branch-Type instructions.

2.3.9. Indexed Addressing Mode

● In this mode the content of an index
register is added to the address part to
obtain E.A.

● The index register contains an index
value.

● The address field of the instruction
defines the beginning address of a data
array in memory.

EA = Address Part (base address of data
array) + Index register value (index value)

2.3.10. Base Register Addressing Mode

● In this mode the content of a base
register is added to the address part of
the instruction.

● The base register is assumed to hold the
base address.

● The address field gives the displacement
relative to this base address.

EA = Address Part (displacement/offset) +
Base register value (Base address)

2.4. CISC vs RISC
CISC (Complex Instruction Set
Computer)

● A large number of instructions-
typically from 100 to 250 instructions

● Some instructions that perform
specialized tasks and are used
infrequently

● A large variety of addressing modes-
typically from 5 to 20 different modes

● Variable-length instruction formats
● Instructions that manipulate operands

in memory

RISC (Reduced Instruction Set
Computer)

● Relatively few instructions
● Relatively few addressing modes
● Memory access limited to load and

store instructions
● All operations done within the

registers of the CPU
● Fixed-length, easily decoded

instruction format

COA
GATE फर्र े

Page No:-06

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

● Single-cycle instruction execution,
CPI=1

● Hardwired rather than
microprogrammed control

● A relatively large number of registers
in the processor unit

● Use of overlapped register windows to
speed-up procedure call and return.

● Efficient instruction pipeline, CPI=1
● Compiler support for efficient

translation of high-level language
programs into machine language
programs.

3. ALU, Data-Path and Control Unit
3.1. ALU
ALU is a digital circuit that provides
arithmetic and logic operations. It is the
fundamental building block of the CPU of a
computer.

3.2. Datapath
CPU has 2 sections: Data Section(Data
Path)+ Control Section(Control Path)
Data Path = Registers + ALU +
Interconnecting bus

The data and address lines of the external
memory bus are shown above connected to
the internal processor bus via the memory
data register (MDR) and the memory
address register (MAR) respectively.

3.2.1. Types of Datapath
a. One bus datapath

● Structure: A single internal bus connects
all registers, ALU inputs, and memory
data lines.

● Operation:
○ Only one data transfer or ALU operation

can occur at any given clock cycle.
○ Uses multiplexers to select which register

drives the bus and where the bus feeds.

COA
GATE फर्र े

Page No:-07

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

● Advantages:
○ Minimal hardware (only one bus, fewer

multiplexers).
○ Low cost.
● Disadvantages:
○ Poor parallelism → low throughput.
○ Longer instruction execution time due to

sequential transfers.

b. Two bus datapath

● Structure:
○ Two internal buses (Bus A and Bus B)

available for data movement.
○ ALU takes inputs from both buses and

writes result back to one of them.
● Operation:
○ Can perform one register‑to‑ register

transfer and one ALU operation
concurrently in the same cycle.

○ E.g., load register R₁ → Bus A, register R₂ →
Bus B → ALU → result back to R₃ on Bus A.

● Advantages:
○ Better parallelism than single‑ bus → higher

instruction throughput.
○ Still relatively simple compared to

three‑bus.
● Disadvantages:
○ Increased hardware cost (double buses,

more multiplexers).
○ Still limited: only one ALU operation per

cycle.

c. Three bus datapath

● Structure:
○ Three distinct internal buses (Bus A, Bus

B, Bus C).
○ Two source operands and one destination

can be driven simultaneously.
● Operation:
○ Enables two reads and one write to

registers in a single cycle.
○ E.g., read R₁ → Bus A, R₂ → Bus B → ALU

→ write result to R₃ via Bus C.
● Advantages:
○ Maximum data transfer parallelism for

simple register‑to‑ register and ALU
ops.

○ Shortest instruction cycle times for
register‑based operations.

● Disadvantages:
○ Highest hardware overhead (three buses,

extensive multiplexing).
○ Greater control complexity and cost.

3.3. Control Unit
a. The control unit supervises the transfer of
information among the registers and
instructs the ALU as to which operation to
perform.
b. The function of the control unit in a digital
computer is to initiate sequences of micro-
operations.

COA
GATE फर्र े

Page No:-08

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Fig. Types of Control Unit

3.4.1. Microinstruction (Control Word)
Each word in control memory contains within
it a microinstruction. The microinstruction
specifies one or more microoperations for
the system.

3.4.2. Microprogram
A sequence of microinstructions.
An instruction can be executed by
performing one or more of the following
operations in some
specified sequence:
a. Transfer a word of data from one
processor register to another or to the ALU.
b. Perform an arithmetic or a logic operation
and store the result in a processor register.
c. Fetch the contents of a given memory
location and load them into a processor
register.
d. Store a word of data from a processor
register into a given memory location

3.4.3. Hardwired Control Unit

1. Implementation
a. Fixed combinational and sequential logic
(decoders, counters, gating circuits).
b. Control signals expressed as Boolean SOP
(Sum-of-Products) functions of:
➔ Control step counter outputs (T₁, T₂,…).
➔ Instruction register bits (opcode).
➔ Condition codes & external flags (e.g.

MFC, interrupt request).

2. Characteristics
➔ Speed: Very fast (single-cycle micro-

operations).
➔ Complexity: Logic grows exponentially

with ISA complexity.
➔ Flexibility: Difficult to modify or extend

once designed.
➔ Use Cases: Simple RISC processors with

limited instruction sets.

3.4.4. Microprogrammed Control Unit

1. Implementation
a. Control signals generated by
microinstructions stored in Control Memory
(CM).

COA
GATE फर्र े

Page No:-09

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

b. Each microinstruction (control word)
encodes one or more control signals.
c. Sequencing via a Micro-Program Counter
(µPC) & Address Sequencer.

2. Microinstruction Fields

F1, F2, F3 micro-operations fields, CD:
Condition for branching, BR: Branch Field,
AD: Address field.

3. Characteristics
➔ Speed: Slower than hardwired (multiple

memory accesses).
➔ Flexibility: Easy to modify control

sequences (update micro-program).
➔ Complexity Handling: Suited for

complex ISAs (CISC) with many
instructions.

➔ Storage: Requires ROM/RAM for control
memory (2 K–10 K microinstructions).

3.4.4.1. Horizontal Microprogramming
● Control Word: One bit per control signal →

maximal parallelism.
● Word Width: Very wide (one bit ×

number of signals).
● Decoder: None (signals directly driven).

3.4.4.2. Vertical Microprogramming
● Control Word: Encoded fields (k-bits select 2ᵏ

signals).
● Word Width: Narrower, but requires

decoders.
● Parallelism: Limited (typically one group

executed per cycle).

3.5. Booth’s Algorithm
3.5.1. Goal: Efficiently multiply two signed
binary integers (two’s-complement) with

fewer add/subtract operations by encoding
runs of 1’s in the multiplier

3.5.2. Best Case and Worst Case
Occurrence:
Best case is when there is a large block of
consecutive 1's and 0's in the multipliers, so
that there is minimum number of logical
operations taking place, as in addition and
subtraction.
Worst case is when there are pairs of
alternate 0's and 1's, either 01 or 10 in the
multipliers, so that maximum number of
additions and subtractions are required.

3.5.3. Key Idea
➢ Examine pairs of bits of the multiplier

(current LSB and an extra “previous”
bit); decide whether to add, subtract, or
do nothing with the multiplicand.

➢ Shift right each cycle, accumulating the
partial product in a combined register.

COA
GATE फर्र े

Page No:-10

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

3.5.4. Registers & Initialization

Register Width Initial Content

A n-bit 0…0

Q n-bit Multiplier

M n-bit Multiplicand

Q-1 1 bit 0

n - Number of bits in
Q and M

ACC = [A (n bits) | Q (n bits) | Q-1(1 bit)]
starts as [0…0 | Qinitial | 0]

3.5.5. Step‑by ‑ S tep Algorithm
1. Initialize A = 0, Q = multiplier, Q₋₁ = 0 ,

count = n.
2. Repeat until count = 0:
a. Examine (Q₀, Q₋₁) and modify A per the

decision rule.
b. Right‑shift the triple [A | Q | Q₋ ₁] :

i. New Q₋₁ ← o ld Q ₀
ii. New Q ← old A₀ (least significant bit of A)

… old Q₁ … old Qₙ₋₁
iii. New A ← sign‑ extended shift of old A

3. Decrement count by 1.
4. Result is in [A | Q] (2n bits).

3.5.6. Example
Multiply M = +3 (0011₂) by Q = –4 (1100₂)
using 4‑bit registers:

∴ Final [A|Q] = 11110001₂ = –12₁₀ , which is
3 × (–4).

4. Cache Memory Organisation
4.1. Introduction

● A small, fast SRAM buffer placed between
the CPU and main memory.

● Holds copies of frequently accessed
memory blocks (cache lines), exploiting
temporal locality & spatial locality

● Goal: Reduce average memory access
time by satisfying most requests from the
cache rather than slower DRAM.

● CPU always generated MM address (even
to access cache too)

● The performance of cache can be
analysed with the following
characteristics.
○ Cache size (Small in KB’s)
○ Block or line size
○ No. of levels of cache
○ Cache mapping
○ Cache replacement policy
○ Cache updating scheme

4.2. Cache Organisation
➔ Cache Line (Block): Unit of transfer
➔ Fields in Address:

◆ Tag: Identifies which memory block is
cached.

◆ Index: Selects a cache set or line.
◆ Offset: Chooses the byte/word within

the cache line.
➔ Metadata:

◆ Valid Bit: Line contains valid data.
◆ Dirty Bit: Line has been written (for

write-back).

COA
GATE फर्र े

Page No:-11

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note:
1. CM block number = (MM block no.)

modulo (no. of blocks/lines in cache)
2. No. of blocks = Cache size/Block size

4.3. Cache Mapping

4.3.1. Direct Mapping
Main Memory(MM) Address is

● Index in direct mapping = cm block
number

● Tag in direct mapping = mm address -
log2(cache size)

● MM block no. = Tag + cm block no.

Note:
1. Tag directory size (all mappings) =

Number of blocks in cache * (tag + extra
bits)

2. For a given cache size, block size and
mm size: Tag is same (for byte and word
addressable memory both)

4.3.2. Set Associative Mapping

● Cm set number = (mm block no.) % no.
of sets in cache

● Index in set associative mapping = Set
offset

● Tag in K-way set associative mapping =
mm address − log2(cache size) + log2K

4.3.3. Fully Associative Mapping

● Index in fully associative mapping = 0-
bits

● Tag in fully associative = mm address −
log2(block size)

● In fully associative mapping,
tag = mm block no.

Note:
1. Size of tag is maximum in fully associative
& minimum in direct mapping.
2. Size of index is minimum in fully
associative & maximum in direct mapping.

4.4. Hardware Implementation
4.4.1. Direct Mapping
➢ Number of MUX for tag selection = Tag-

bits
➢ Size of MUX for tag selection = Number

of blocks : 1
➢ Number of comparators = 1
➢ Size of comparator = Tag-bits

4.4.2. K-way Set Associative Mapping
➢ Number of MUX for tag selection =
K * Tag-bits
➢ Size of MUX for tag selection= Number of set : 1
➢ Number of comparators = k
➢ Size of comparator = Tag-bits
➢ OR-gate = 1 (k-input OR gate)

4.4.3. Fully Associative Mapping
➢ Number of comparators = Number of blocks in
cache
➢ Size of comparator = Tag-bits
➢ OR-gate = 1 (number of blocks-input OR gate)

Note: Hit Latency Time
➢ Direct mapping = MUX delay + comparator delay
➢ Set associative mapping = MUX delay +
comparator delay + OR-gate delay
➢ Fully associative mapping = comparator delay +
OR-gate delay

COA
GATE फर्र े

Page No:-12

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4.5. Types of misses in cache
4.5.1. Compulsory/Cold Miss
The very first access to a block that can’t be
in the cache, so the block must
be brought into cache. These are also called
first reference misses.

4.5.2. Capacity Miss
If the cache cannot contain all the blocks
needed to during execution of a
program. Capacity misses will occur because
of blocks being discarded and later retrieved.

4.5.3. Conflict Miss
When multiple blocks compete for the same
cache line (or set) under the chosen
mapping, even though other lines are free.

Note:
1. To reduce conflict miss: increase

associativity
2. To reduce cold miss: increase block size
3. To reduce capacity miss: increase cache

size

4.6. Cache Replacement Policies
4.6.1. FIFO (First-In-First-Out)
It replaces the cache block having the
longest time stamp with a new block.

4.6.2. LRU (Least Recently Used)
It replaces the cache block which is having
less no. of references with the longest time
stamp with a new block.

4.7. Cache Write Policy
4.7.1. Write Through VS Write Back

Feature Write
Through

Write Back

On Write Hit Update both Update only

cache and
main memory
immediately.

cache;
mark line as
dirty.

On Eviction N/A (data
already in
memory)

If dirty,
write entire
block back
to memory.

Memory
Traffic

High (every
write
generates a
memory
write)

Lower
(writes only
on dirty-line
evictions)

Data
Consistency

Always
consistent
between
cache &
memory.

Memory
stale until
write-back
occurs.

Hardware
Needs

Simple; no
dirty bits
required.

Requires
dirty bit per
line and
write-back
logic.

Typical Use L1 caches for
simplicity &
predictability

L2/L3
caches to
reduce bus
traffic

4.7.2. Write Miss Handling
4.7.2.1. Write Allocate
On a write miss, fetch the block into cache,
then perform the write (marking it dirty
under write-back).

4.7.2.2. No-Write-Allocate
On a write miss, bypass cache and write
directly to main memory; cache remains
unchanged.

COA
GATE फर्र े

Page No:-13

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4.7.3. Write Buffering: Reduces CPU stalls
on write operations by enqueuing the write
in a write buffer.

4.7.4. Summary

Policy
Combinat
ion

Pros Cons

Write
Through
+ No
Allocate

Simple;
consistent
memory; no
block
pollution on
writes.

High memory
traffic; write
misses still go
to memory.

Write
Through
+ Write
Allocate

Subsequent
reads of the
block benefit
from caching.

Still high
memory traffic.

Write
Back +
Write
Allocate

Lowest
memory
traffic; good
for write-
heavy
workloads.

Complex; must
track dirty
lines; potential
data staleness.

Write
Back +
No
Allocate

Rarely used Not practical;
block writes
aren’t cached,
so dirty bits
unused.

5. Memory Organisation
5.1. Memory Hierarchy

5.2. Types of memory (Based on
methods of accessing)
5.2.1. Sequential Access Memory
● Data is accessed in a fixed linear order.
● Example: Magnetic tape.
● Use Case: Archival storage (low cost,

high capacity), not for random
reads/writes.

5.2.2. Direct Access Memory
● Allows access to a record by first moving

to a general area (track/sector), then
sequentially to the exact record.

● Example: Hard disks, optical disks
(CD/DVD).

● Use Case: File systems,
databases;moderate access time, large
capacity.

5.2.3. Random Access Memory (RAM)
● Uniform constant-time access to any

location
● Each address has a dedicated physical

path (wired) for immediate read/write.
● Examples:
○ DRAM (Dynamic RAM)
○ SRAM (Static RAM)
● Use Case: Primary/main memory, CPU

caches (fastest at their level).

5.2.4. Associative (Content-
Addressable) Memory
● Retrieves data by content rather than by

specific address
● All words are compared simultaneously;

matching word(s) are returned.
● Example: Translation Lookaside Buffer

(TLB) in virtual memory.
● Use Case: Fast lookups (e.g., cache tags,

TLB), where search key determines the
fetch.

COA
GATE फर्र े

Page No:-14

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note: Average Memory Access Time (AMAT)
= Hit Time+Miss Rate×Miss Penalty

5.3. Difference b/w SRAM & DRAM
SRAM

DRAM

Note: DRAM consists of rows of cells &
DRAM Refresh time = no. of rows of cells in
DRAM * 1 cell refresh time

5.4. Types of Memory Access
5.4.1. Simultaneous Access
CPU can access the data simultaneously
from all levels of memory

Consider n levels, then;
Tavg = H1*T1 + (1-H1)*H2*T2 +...+ (1-
H1)*(1-H2)...(1-Hn-1)*Hn*Tn

(where Hn is Hit Ratio, Tn be access time for
each level)

5.4.2. Hierarchical Access
Data comes from other levels to Level 1 then
CPU gets its access as shown in the figure
below.

Consider n levels, then;
Tavg=T1+(1-H1)T2+(1-H1)(1-H2)T3+...+(1-
H1)*(1-H2)...(1-Hn-1)*Tn

Note:
1. Memory Access Rate = 1/cycle time
2. Multiplication table for 2, n-bit unsigned

number = 22n * 2n bits
3. Addition table for 2, n-bit unsigned

number = 22n * (n + 1) bits

5.5. Locality Principles
5.5.1. Temporal Locality: Recently
accessed data likely to be reused soon.
5.5.2. Spatial Locality: Data near recently
accessed addresses likely to be accessed
soon.
Note: Caches exploit both to deliver high hit
rates.

COA
GATE फर्र े

Page No:-15

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

5.6. Memory representation
Eg: 214 x 32 bits memory means,
214 addresses and 32 bits wide word

5.7. Interrupts
5.7.1. Introduction
An interrupt is a signal that causes the CPU
to temporarily halt the current execution and
jump to a specific service routine (ISR i.e.
Interrupt Service Routine) to handle an
event (e.g., I/O completion, error, etc.).

5.7.2. Types of Interrupts
5.7.2.1. Vectored Interrupts
A unique ISR address is supplied (either
directly or via vector table) to reduce the
time involved in the polling process.

5.7.2.2. Non-Vectored Interrupts
CPU jumps to a general or fixed location
(e.g., predefined interrupt handler), and
software determines the source.

5.7.2.3. Maskable Interrupts
● Interrupts that can be disabled or ignored

by the CPU using a special flag or
instruction.

● Used for lower-priority or non-critical
tasks.

● Eg. INTR in 8085, I/O completion.
● Controlled By: Interrupt Enable/Disable

instructions (EI, DI)

5.7.2.4. Non-Maskable Interrupts
● Cannot be disabled by the CPU; always

gets attention.
● Used for critical events (e.g., power

failure, hardware fault).
● Eg. TRAP in 8085.
● Priority: Highest as it overrides all other

interrupts.

Note: Difference b/w Interrupts and
Exceptions
● Exceptions are caused by software

executing instructions. Eg. a page fault,
or an attempted write to read only page.
An expected exception is ‘trap’,
unexpected is a “fault”.

● Interrupts are caused by hardware
devices. Eg. device finishes I/O, timer
fires.

6. Pipelining
6.1. What Is Pipelining?
● Pipelining is a technique of overlapping

the execution of multiple instructions by
dividing the processor’s datapath into
stages, each handling a part of the
instruction.

● It increases instruction throughput
without reducing the execution time of
individual instructions.

COA
GATE फर्र े

Page No:-16

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

6.2. Types of Pipelines
6.2.1. Linear Pipeline
Used for single specific function

6.2.2. Non-linear Pipeline
At a given stage, multiple parallel functional
units or paths exist
rather than a single straight chain.

6.2.3. Synchronous Pipeline
On a common clock, all registers transfer
data to next stages simultaneously.

6.2.4. Asynchronous Pipeline

6.3. Performance of Pipeline
6.3.1.

Suppose 5 instn, T₁ through T5, pass through
a pipeline of four stages.

● Cycle 1: Stage 1 processes T₁
● Cycle 2: Stage 2 works on T₁ while Stage

1 begins T₂
● Cycle 3: Stage 3 takes on T₁, Stage 2

handles T₂, and Stage 1 starts T₃
● Cycle 4: Stage 4 completes T₁;

meanwhile, earlier stages are busy with
T₂, T₃, and T₄

After these four cycles, the pipeline is “full,”
and thereafter it finishes one task per cycle.

More generally, for a pipeline with k stages
and clock period tₚ running n instructions:
● First instn takes k*tp to traverse all

stages.
● Remaining (n–1) instn each completes in

one additional tₚ
Total time: k*tp + (n−1)*tp = (k+n−1)*tp

Note:
1. To complete n tasks using a k-segment

pipeline requires k + (n - 1) clock cycles
2. Tp = max(all segment/stage delays) +

register delay

Note: Consider a nonpipeline unit that
performs the same operation and takes time
equal to tn to complete each task. The total
time required for n tasks is n*tn, where tn =
sum of all segment delays

6.3.2. Speedup (S)
6.3.2.1. The speedup of a pipeline
processing over an equivalent non-pipeline
processing is defined by the ratio, S =
�×��

(�+�−1)×��

6.3.2.2. In ideal conditions i.e. n>>>k, we
ignore (k-1), then S = ��

��

6.3.2.3. If we assume that the time it takes
to process a task is the same in the pipeline
and non-pipeline circuits, we will have tn =
k*tp, then S = k
In this scenario, maximum speedup is
achieved.

6.4. Latency & Throughput
6.4.1. Latency
After how much time i/p is given to the
system
● Pipeline Latency = tp (∵ after every cycle,

new i/p)

COA
GATE फर्र े

Page No:-17

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

● Non-Pipeline Latency = tn

6.4.2. Throughput
No. of tasks/instn per unit time
● Pipeline: In ideal case = 1/tp

6.5. Instruction Pipelining
It overlaps the fetch-decode-execute phases
of multiple instructions in a linear chain of
stages, so each clock cycle a different
instruction occupies each stage.

Eg. Consider a four stage pipeline as
follows:
1. FI is the segment that fetches an

instruction.
2. DA is the segment that decodes the

instruction and calculates the effective
address.

3. FO is the segment that fetches the
operand.

4. EX is the segment that executes the
instruction.

We assume the CPU has separate instruction
and data memories, so it can do an
instruction fetch (FI) and a data fetch (FO)
at the same time.
At cycle 4 in our 4-stage pipeline:
● Stage EX is finishing Instruction 1
● Stage FO is loading the operand for

Instruction 2
● Stage DA is decoding Instruction 3
● Stage FI is fetching Instruction 4

Now suppose Instruction 3 turns out to be a
branch. As soon as it’s decoded in DA (still in
cycle 4), we stop feeding any new instn from
FI into DA until we know where the branch
goes.

● If the branch is taken, we throw away
what was in FI/DA and fetch the correct
next instn in cycle 7.

● If the branch is not taken, we keep and
use the instn that FI already fetched in
cycle 4, and the pipeline keeps flowing as
normal.

6.6. Pipeline Hazards/Conflicts
6.6.1. Structural Hazard/Resource
Conflict
￼￼

Caused by access to memory by two
segments at the same time. Most of these
conflicts can be resolved by using separate
instruction & data memories.

Solution:
1. Incure stall cycles
2. Increase no. of resources

Stall cycles
Also called a pipeline bubble, a stall is a
clock cycle in which no new instruction
completes, inserted to resolve a hazard or
resource conflict.

COA
GATE फर्र े

Page No:-18

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Solution of above figure:
Introduce bubble/stall cycles which stalls the
pipeline as in figure besides.
At t4, I4 is not allowed to proceed, rather
delayed. It could have been allowed in t5,
but again a clash with I2 RW. For the same
reason, I4 is not allowed in t6 too. Finally, I4
could be allowed to proceed (stalled) in the
pipe only at t7.

Soln of Structural Hazard

Note:
● Stalls because of branch = i – 1 (if after

ith stage, the condition is evaluated)
● Even if branch is not taken, then too

stalls are there due to branch instructions
● Result of branch condition evaluation is

available after execution phase of branch
instruction

6.6.2. Data Hazard/Data dependency

Conflicts

A data dependency occurs when one
instruction needs data that is produced or
used by another instruction,creating a
potential conflict in a pipeline.
Eg.

In the above case, ADD instruction writes
the result into the register R3 in t5. If stalls
are not introduced to delay the next SUB

instruction, all three instructions would be
using the wrong data from R3, which is
earlier to ADD result. The program goes

wrong! The possible solutions are:

6.6.2.1. Hardware Interlocks
Hardware Interlocks are built-in pipeline
controls that detect hazards at runtime &
automatically stall the pipeline to prevent
incorrect execution.

6.6.2.2. Operand/Data Forwarding
Also called bypassing, is a hardware
technique that routes results directly from
one pipeline stage to an earlier stage that
needs them, avoiding a stall.

COA
GATE फर्र े

Page No:-19

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

6.6.2.3. Delayed load/No operation
Delayed Load is a compiler technique that
avoids a pipeline stall after a load instruction

 by reordering subsequent instructions or
inserting a “no-op” slot before using the
loaded data.

6.6.2.4. Data Hazard Classifications
Assume 2 instn i & j

➢ RAW (Read After Write)

i: R1 ← R2 + R3
j: R5 ← R1 + R4

If j reads a source before its written by i,
hence j gets incorrect value

➢ WAW (Write After Write)
i: R1 ← R2 + R3

j: R1 ← R4 * R5

If j writes a destination before its written by
i
➢ WAR (Write After Read)
i: R1 ← R2 + R3

j: R2 ← R9 + R7

If j writes a destination before its read by i,
hence i reads incorrect value

Note:
1. RAW is True Dependency while WAR &

WAW are False Dependencies as they can
be solved by register renaming.

2. WAR is known as Anti-dependency
3. WAW is known as Output Dependency
4. Operand forwarding and register

renaming can not solve the memory
access dependencies

6.6.3. Control hazard

6.6.3.1. Delayed Branch
A technique where the instruction
immediately following a branch, “delay slot”

is always executed, regardless of whether
the branch is taken. The compiler fills this
slot with a safe instruction (or a NOP) to
hide the branch-decision penalty and
improve pipeline throughput without extra
hardware.

6.6.3.2. Branch Prediction
It is hardware logic that guesses the
outcome of a conditional branch before it is
resolved, allowing the pipeline to continue
fetching along the predicted path and avoid
stalls when the guess is correct.

COA
GATE फर्र े

Page No:-20

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

7. Secondary Memory
7.1. Introduction
7.1.1. Platters & Surfaces
One or more circular platters coated with
magnetic material; each surface has its own
read/write head.

7.1.2. Track
A concentric circle on a platter surface. All
tracks on different platters at the same
radius form a cylinder i.e. No. of cylinders =
No. of tracks

7.1.3. Sector
● Smallest addressable unit on a track

(typically 512 B)
● Contains user data + control information

(format overhead)

7.1.4. Gaps
7.1.4.1. Inter-Sector Gap: Empty region
between adjacent sectors.
7.1.4.2. Inter-Track Gap: Empty region
between adjacent tracks.

Fig. Disk Structure

7.2. Types of Disk Constructions
7.2.1. Constant Track Capacity (CTC)

Variable recording density: Outer tracks hold
more sectors than inner tracks.
Maintains constant angular velocity.

7.2.2. Variable Track Capacity (VTC)
Constant recording density: Same number of
sectors per track; disk spins slower at outer
tracks to equalize data rate.
Note: Each rotation of disk covers 1 track

7.3. Disk Performance

7.3.1. Seek Time (Ts)
Time to move the R/W head from its current
track to the target track.

7.3.2. Rotational Latency (Tr)
Time for the platter to spin so the desired
sector comes under the head.
Tr = (rotation time)/2

7.3.3. Transfer Time (Ttransfer)
Time to actually read/write the bits in the
sector once under the head.

7.3.4. Overhead Time (Toverhead)
Controller delays (e.g., command
processing).

7.3.5. Disk Capacity
Disk Capacity = 2 * no. of platters * tracks
per surface * sectors per track * sector
capacity

COA
GATE फर्र े

Page No:-21

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note:
1. Tavg = Ts+Tr+Ttransfer+Toverhead(if given)
2. Sequentially stored N sector transfer time

= Seek Time + Rotational Latency + N *
(1 sector Transfer Time)

3. Randomly stored N sector transfer time =
N * (Seek Time + Rotational Latency + 1
sector Transfer Time)

7.4. Disk Addressing
Disk addressing < c, h, s > , where c =
cylinder number, h = surface number, s =
sector number
● Sector number for given address =

c * sectors per cylinder + h * sectors per
track + s

● c = sector number / sectors per cylinder
● h = (sector number % sectors per

cylinder) / sectors per track
● s = (sector number % sectors per

cylinder) % sectors per track

8. I/O Interface
8.1. Introduction
Input-output interface provides a method for
transferring information between internal
storage and external I/O devices.
There are 3 ways that computer buses can
be used to communicate with memory and
I/O:
1. Use two separate buses, one for memory
and the other for I/O.
2. Use one common bus for both
memory and IO but have separate

control lines for each.
3. Use one common bus for memory and I/O
with common control lines.

8.2. I/O processor (IOP)
➔ Same memory bus for both CPU & IOP
➔ IOP communicates with I/O devices

through a separate I/O bus with its own
address, data and control lines.

8.3. Isolated I/O
Common address space and different control
lines

8.4. Memory mapped I/O
➔ take few addresses from memory address

space
➔ same address space for both memory

and I/O

Difference between Memory mapped I/O &
Isolated I/O

COA
GATE फर्र े

Page No:-22

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

8.5. I/O Interface
3.5.1. Programmed I/O
3.5.2. Interrupt driven I/O
3.5.3. Direct Memory Access (DMA)

8.5.1. Programmed I/O
With programmed I/O, data is exchanged
between the processor and the I/O module.
The processor executes a program that gives
it direct control of the I/O operation. If the
processor is faster than the I/O module, this
is wasteful of processor time.
Time in programmed IO = time to check
status + time to transfer data

8.5.2. Interrupt driven I/O
a. Interrupt I/O is a data transfer technique
where the CPU is interrupted by the I/O
device only when it is ready (e.g., after
completing a data transfer or requiring
service).
b. It eliminates constant polling of the
device, thus increases CPU efficiency.
Time in Interrupt IO = interrupt overhead +
time to service interrupt

8.5.2.1. Daisy– Chaining Priority
(Serial– Priority Interrupt)

The system consists of a serial connection of
all devices that request an interrupt. The
device with the highest priority is placed in
first position followed by lower–priority
devices.

8.5.3. Direct Memory Access
8.5.3.1. Definition & Purpose
➔ DMA is a mode of data transfer where a

dedicated DMA controller moves data
directly between I/O device and main
memory without CPU intervention for
each word.

➔ Frees the CPU from high-volume data
transfers, improving overall system
throughput.

8.5.3.2. DMA Controller
➔ Address Register: Holds the current

memory address for transfer.
➔ Count Register: Holds the number of

words/bytes left to transfer.
➔ Control Logic: Generates read/write and

bus-request signals.
➔ Bus Arbitration Interface: Requests and

releases the system bus from the CPU.

8.5.3.3. DMA Transfer Sequence
a. CPU Initialization:
● Loads DMA controller’s Address and

Count registers.
● Issues a “Start DMA” command.
b. Bus Request: DMA controller asserts Bus
Request (BR); CPU grants via Bus Grant
(BG).
c. Data Transfer:

COA
GATE फर्र े

Page No:-23

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

● DMA takes control of the bus, reads from
device → writes to memory (or vice versa)
automatically.

● Address register increments/decrements;
Count register decrements.

d. Completion: When Count = 0, DMA
releases bus and raises an Interrupt to CPU
indicating end of transfer.

8.5.3.4. DMA Modes

Mode Description CPU

Burst
Mode

DMA transfers the
entire block in one
bus-hold period.

CPU
paused
for the
burst

Cycle
Stealing

DMA takes the bus
for one transfer,
then releases; later
it will ‘steal’
memory cycle when
CPU is idle.

CPU
slowed
slightly

Interleavin
g Mode

DMA transfers only
when CPU is not
using the bus.

Minimal
interfere
nce

Note:
1. % of time CPU blocked (burst mode)

2. % of time CPU blocked (cycle stealing)

3. Max data transferred using DMA without
CPUs intervention =

2x − 1, x = bits in data count

COA
GATE फर्र े

Page No:-24

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

