

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

STAR MENTOR CS/DA

KHALEEL SIR
ALGORITHM & OS
29 YEARS OF TEACHING EXPERIENCE

SATISH SIR
DISCRETE MATHEMATICS
BE in IT from MUMBAI UNIVERSITY

VIJAY SIR
DBMS & COA
M. TECH FROM NIT
14+ YEARS EXPERIENCE

SAKSHI MA'AM
ENGINEERING MATHEMATICS
IIT ROORKEE ALUMNUS

AVINASH SIR
APTITUDE
10+ YEARS OF TEACHING EXPERIENCE

CHANDAN SIR
DIGITAL LOGIC
GATE AIR 23 & 26 / EX-ISRO

MALLESHAM SIR
M.TECH FROM IIT BOMBAY
AIR - 114, 119, 210 in GATE
(CRACKED GATE 8 TIMES)

14+ YEARS EXPERIENCE

PARTH SIR
DA
IIT BANGALORE ALUMNUS
FORMER ASSISTANT PROFESSOR

SHAILENDER SIR
C PROGRAMMING & DATA STRUCTURE
M.TECH in Computer Science
15+ YEARS EXPERIENCE

AJAY SIR

PH.D. IN COMPUTER SCIENCE
12+ YEARS EXPERIENCE

GATE B¢

1. Introduction to COA

1.1. Types of computers

e Embedded computers

e Personal computers: desktop computers,
workstation computers, portable
computers etc.
Servers & Enterprise systems

e Supercomputers

1.2. Components of Computer

1.2.1. CPU (Central Processing Unit)
1.2.1.1. ALU (Arithmetic Logical Unit)
ALU performs the required micro-operations
for executing the instructions.

1.2.1.2. Control Unit

The control unit supervises

the transfer of information among the
registers and instructs the ALU as to which
operation to

perform.

1.2.1.3. Registers

e Registers are small, high-speed storage
locations within the CPU used for
temporary storage, control, and data
manipulation during program execution.

e They hold binary information and are
crucial for efficient CPU operation.

1.2.1.3.1. Types of CPU Registers

01. PC

e The processor keeps track of the address
of the memory location containing the
next instruction to be fetched using the
program counter.

e After fetching an instruction, the contents
of the PC are updated to point to the next
instruction in the sequence.

02. IR (Instruction Register)
Decodes fetched instruction with predefined
format, which is:

1. Fetch the contents of the memory location
pointed to by the PC, and load into IR. i.e. IR «
[(PC)]

2. Assuming that the memory is byte addressable
& one word is 32 bit (4B), increment the contents of
the PC by 4, so PC « [PC] +4

3. Decode the inst" to understand the
operation & generate the control signals
necessary to carry out the operation.

03. Accumulator
Temporary storage location for arithmetic &
logical operations

04. MAR
Works with the memory bus to fetch/store
data at a specific address.

05. MDR

a. Temporarily holds data being transferred
to/from memory. Contents of MBR are
directly connected to the data bus.

b. Acts as a buffer between CPU and
memory.

1.2.2. Memory
e Main/Primary Memory
e Secondary Memory

1.2.3.I/0
1.2.3.1. Input Unit

The process of receiving data from an
external source (like a user typing on a
keyboard or a sensor reading data) and
making it available to the computer's
internal components for processing.

1.2.3.2. Output Unit
The process of sending data from the

computer's internal components to an
external device or system (like displaying

Page No:-01

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

information on a monitor, printing to a Fetch Cycle Execute Cycle Interrupt Cycle
printer, or sending data over a network). iterupts

START —ts Fetch Next | Execute Ci’i_'e‘l:-k;far Interrupt;
1.3. Big-endian & Little-endian Instruction e
Assignments "
e The name big-endian is used when lower C_Ham

byte addresses are used for the more
significant bytes.
e The name little-endian is used for where

Instruction Cycle with Interrupts ‘

the lower byte addresses are used for the 1.5.1. Instruction Fetch (IF)
less significant bytes of the word. e PC — MAR: Program Counter (PC) holds
address of next instruction; transferred
Little-endian Big-endian to Memory Address Register (MAR).
32-bit integer 32-hit integer e Read Memory: Control unit issues a read;
0AOBOCOD _— m memory returns the instruction into
; i Memory Buffer Register (MBR).
L > ool o« |oA| =— e MBR — IR: Instruction Buffer Register (IR)
> |oc| a+1 (0B <—— loads the instruction.
L = oB| a2 |oc = e PC < PC+1:PCisincremented to point
> 0A| a3 oD == to the following instruction.
1.4. Memory Addressing 1.5.2. Instruction Decode (ID)
If the memory is byte addressable, then e IR — Control Unit: Opcode field is sent to
byte locations have addresses 0, 1, 2... and the control unit for interpretation.
if the memory is word addressable and the e Operand Fetch: If needed, source
length of each word is 32 bits, then operand addresses are loaded into MAR;
successive words are located at addresses memory or register file is accessed,
0,4,8,12,...., with each word consisting of 2 placing data into temporary registers.
bytes. (1B = 8 bits) e Register File Access: Control signals

select appropriate registers; operands

Byte Addressing & Word Transfers are read into internal CPU registers.

ITarchitecture hes word size = 32, If programmer wents array of

Memary is array of words bytes, amapping Is required

Physical 555 Piysical 5o 1-5-3- Execute (EX)
-— LOnts —» . ity —
Addiess Adcress H . H H H H
. o o To s e ALU Operation: Arlthmetlc/lgglc unit
1 Word 1 1 [als|a|7 performs the operation specified (e.g.,
2 | Woxa | 2 |8 g0 add, subtract, logical AND/OR, shift).
3 Word 3 | 3 I.‘EQ__‘.IBIflJijI.ﬁ . .
4 [Wodd | i [eh7irahe e Address Calculation: For memory-
5 Word5 | 5 [2021]22p3 reference instructions, effective address
Byte cperations — in porticuiar, writes — are expensive is com puted here.

(Figure 10.7 Comer)
Pafl 2012 oy BECHT24. Demente of 14
Cospohar Dystuna

1.5. Instruction Cycle

Page No:-02

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

1.5.4. Memory Access (MEM)

Data Read/Write:

e load: Ifit's a load instruction,
MAR—memory—MBR—destination register.

e Store: Ifit's a store instruction, source
register—-MBR—memory at MAR.

1.5.5. Write-Back (W B)

e Result — Register: ALU or MBR result is
written back into the register file or PC
(for branches/jumps).

e Flags Update: Condition codes (zero,
carry, overflow) are updated if needed.

Note:

e The fetch-execute cycle repeats to
execute next instructions until a halt
instruction is executed.

e Halt (HLT) instruction stops the execution
of further instructions until an interrupt
or reset signal is received.

e While halted, the CPU may perform
minimal operations like memory refresh
to maintain system integrity.

2. Machine Instructions & Addressing
Modes

2.1. Instructions Format

A computer will usually have a variety of
instruction code formats. It is the function of
the control unit within the CPU to interpret
each instruction code and provide the
necessary control functions needed to
process the instruction. The most common
fields found in instruction formats are:

1. An operation code field (opcode) that
specifies the operation to be performed.

2. An address field that designates a
memory address or a processor register.
3. A mode field that specifies the way the
operand or the effective address is
determined.

GATE B¢
2.2. Types of Instructions

2.2.1. Three-Address Instructions

Opcode Destination Source 1 Source 2

Each address field specifies either a register
or an operand. The advantage of the three-
address format is that it results in short
programs when evaluating arithmetic
expressions.

X=(A+B)*(C+D)
ADD R1, A, B Rl«M[A] + M[B)
ADD R2,C,D R2«M[C] + M[D]
MUL X, R, RC M[X]«<R1l=*R2

2.2.2. Two-Address Instructions

Opcode Destination / Source 1 Source 2

Each address field can specify either a
register or a word. The program to evaluate
X =(A+B)*(C+ D)is as follows

MOV RL, A Rl<M[A]

ADD R1, B R1«R1l+ M[B]
MOV R2,C R2«M[C]

ADD R2,D R2<«R2 + M[D]
MOL RL,R2 Rl <R1l*R2
MOV X, R} M[X] <Rl

Note: The MOV instruction moves or
transfers the operands to and from memory
and processor registers.

2.2.3. One-Address Instructions
| OPCODE [ADDRESS

One-address instructions use an implied
accumulator (AC) register for all data
manipulation. The program to evaluate X =
(A+B)*(C+D)is

Page No:-03

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

LOAD A AC<M[R]
ADD B AC «<AC + M[B]
STORE T M[T]«AC
LORD C AC<M[C]
ADD D RAC«AC+M[D]
MOL T AC«AC*M[T]
STORE X M[X]«AC

2.2.4. Zero-Address Instructions
OPCODE

Used in stack organised computers with
PUSH & POP instructions. The following
program shows how

X = (A + B) * (C + D) will be written

PUSH A TOS «A

PUSH B TOS «B

ADD TOS« (A +B)

PUSH C TOS «C

PUSH D TOS <D

ADD TOS«<(C +D)

MUL TOS«<(C+D)=*(A+ B)
POP X M[X] «<TOS

Note: To evaluate arithmetic expressions in
a stack computer, it is necessary to convert
the expression into Reverse Polish notation.

2.2.5. RISC Instructions

It is restricted to LOAD & STORE instructions
when interacting between memory & CPU.
All other instructions like ADD, MUL are
executed within the registers of the CPU
without referring to memory. Following is a
program to evaluate X = (A + B) * (C + D)

LOAD RL, A Rl «<M[A]
LOAD Re, B REe«<M[B]
LOAD R3, C R3 «~M[C]
LOAD R4, D R4 «—M[D]
RDD R1l, R1l, RC Rl <Rl + R2
RDD R3, R3, RE R3«R3 + R4
MOL R, R1l, R3 Rl «~RL*R3
STORE X, R} M[X] <Rl

GATE B¢
2.3. Addressing Modes

The way the operands are chosen during
program execution is dependent on the
addressing mode of the instruction.
Opcode Mode Address

Its types are:

e Implied Mode

e Register Indirect Mode

¢ Immediate Mode

e Autoincrement or Autodecrement
Mode
Direct Addressing Mode/Absolute
Addressing Mode
Relative Address Mode
Indirect Address Mode
Indexed Addressing Mode
Register Mode
Base Register Addressing Mode

2.3.1. Implied Mode

In this mode the operands are specified
implicitly in the definition of the instruction.
a. All register reference instructions that use
an accumulator are implied-mode
instructions.

b. Zero-address instructions in a stack-
organized computer are implied-mode
instructions since the operands are implied
to be on top of the stack.

2.3.2. Immediate Mode

In this mode the operand is specified in the
instruction itself. An immediate-mode
instruction has an operand field rather than
an address field.

2.3.3 Direct Address Mode/Absolute
Address Mode

Page No:-04

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Instruction
0| ADD A

s |
In this mode the effective address is equal to
the address part of the instruction. The
operand resides in memory and its address
is given directly by the address field of the
instruction. In a branch-type instruction the
address field specifies the actual branch
address.

2.3.4. Indirect Address Mode

=
™
o™

Memory

< 8 |

In this mode the address field of the
instruction gives the address where the
effective address is stored in memory.
Control fetches the instruction from memory
and uses its address part to access memory
again to read the effective address.

2.3.5. Register Mode

Register

Instruction

Opcode R —

— [opmna

In this mode the operands are in registers
that reside within the CPU. The particular
register is selected from a register field in
the instruction. A k-bit field can specify any
one of 2K registers.

2.3.6. Register Indirect Mode

Instruction

Opcode Register Number —L I’ Operand
Memory Address

Registers Memaory

Register Indirect Mode

In this mode the instruction specifies a
register in the CPU whose contents give the
address of the operand in memory.

The advantage of a register indirect mode
instruction is that the address field of the
instruction uses fewer bits to select a
register than a memory address directly.

2.3.7. Autoincrement or Autodecrement
Mode

Register Memory
Instruction

ADD R1=400

ot ||
e, R1=401 L

This is similar to the register indirect mode
except that the register is incremented or
decremented after its value is used to access
memory.

Note: The Effective Address (E.A.) is the
memory location calculated based on the
addressing mode specified in the instruction,
i.e.

E.A. = address part of inst" + content of CPU
register

Page No:-05

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

R
w—

GATE CSE BATCH

KEY FiGHLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/4GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENRGLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! w

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

2.3.8. Relative Address Mode

Instruction

826 | Opcode | BR | 2

Memory
BR I 826 |
100+2=102=EA

In this mode the content of the program
counter is added to the address part to
obtain E.A. The address part is a signed
number (2’s complement) which can be
either positive or negative.

EA = Address Part (off set) + PC value

It results in a shorter address field since the
relative address can be specified with a
smaller number of bits compared to the
entire memory address. It's generally used
in Branch-Type instructions.

2.3.9. Indexed Addressing Mode

Instruction

azslonodclmlwl

Index I 2 1_@ Memory
1042=12=EA
| svz| s

e In this mode the content of an index
register is added to the address part to
obtain E.A.

e The index register contains an index
value.

e The address field of the instruction
defines the beginning address of a data
array in memory.

EA = Address Part (base address of data

array) + Index register value (index value)

2.3.10. Base Register Addressing Mode

OPcode Base Registen Address
D

Operand

Register Set
Memory

e In this mode the content of a base
register is added to the address part of
the instruction.

e The base register is assumed to hold the
base address.

e The address field gives the displacement
relative to this base address.

EA = Address Part (displacement/offset) +

Base register value (Base address)

2.4. CISC vs RISC
CISC (Complex Instruction Set
Computer)
e A large number of instructions-
typically from 100 to 250 instructions
e Some instructions that perform
specialized tasks and are used
infrequently
e A large variety of addressing modes-
typically from 5 to 20 different modes
e Variable-length instruction formats
Instructions that manipulate operands
in memory

RISC (Reduced Instruction Set
Computer)
e Relatively few instructions
e Relatively few addressing modes
e Memory access limited to load and
store instructions
e All operations done within the
registers of the CPU
e Fixed-length, easily decoded
instruction format

Page No:-06

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

e Single-cycle instruction execution,
CPI=1

e Hardwired rather than
microprogrammed control

e A relatively large number of registers
in the processor unit

e Use of overlapped register windows to
speed-up procedure call and return.
Efficient instruction pipeline, CPI=1
Compiler support for efficient
translation of high-level language
programs into machine language
programs.

3. ALU, Data-Path and Control Unit
3.1. ALU

ALU is a digital circuit that provides
arithmetic and logic operations. It is the
fundamental building block of the CPU of a

computer.
NIT

Input device Output device

CONTROL URIT
SET OF REGISTERS

Central Processing Unit

3.2. Datapath

CPU has 2 sections: Data Section(Data
Path)+ Control Section(Control Path)
Data Path = Registers + ALU +
Interconnecting bus

Internal processor
bus

FAN Control signals
i i
[|
Instruction
Address
lines decoder and
Memaory
bus
lines R

Constant 4

Rin- 1)

TEMP

JIRT:

The data and address lines of the external
memory bus are shown above connected to
the internal processor bus via the memory
data register (MDR) and the memory
address register (MAR) respectively.

3.2.1. Types of Datapath
a. One bus datapath

BUS1

GENERAL
PURPOSE
REGISTERS

fig. One Bus Organisation

e Structure: A single internal bus connects
all registers, ALU inputs, and memory
data lines.

e Operation:

O Only one data transfer or ALU operation
can occur at any given clock cycle.

O Uses multiplexers to select which register
drives the bus and where the bus feeds.

Page No:-07

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Advantages:
Minimal hardware (only one bus, fewer

multiplexers).

Low cost.

Disadvantages:

Poor parallelism — low throughput.

Longer instruction execution time due to
sequential transfers.

CO0O*0O O°

b. Two bus datapath

BUS1

GENERAL
PURPOSE
REGISTERS

Bus 2
fig.TWO BUS ORGANISATION

Structure:

O Two internal buses (Bus A and Bus B)
available for data movement.

O ALU takes inputs from both buses and
writes result back to one of them.

e Operation:

O Can perform one register-to- register
transfer and one ALU operation
concurrently in the same cycle.

O E.g., load register R[1 — Bus A, register R[] —

Bus B — ALU — resultback to Rs on Bus A.

Advantages:

O Better parallelism than single- bus — higher
instruction throughput.

O sitill relatively simple compared to
three-bus.

e Disadvantages:

O Increased hardware cost (double buses,
more multiplexers).

O Sstill limited: only one ALU operation per

cycle.

c. Three bus datapath

BUS1

ALU
GENERAL _\

PURPOSE
REGISTERS

ouTBUS1

OUTBUS 2
fig.THREE BUS ORGANISATION

e Structure:

O Three distinct internal buses (Bus A, Bus
B, Bus C).

O Two source operands and one destination
can be driven simultaneously.

e Operation:

O Enables two reads and one write to
registers in a single cycle.

O E.g.,read R[l - Bus A, R[1 — Bus B — ALU
— write resultto Rs via Bus C.

e Advantages:

O Maximum data transfer parallelism for
simple register-to- register and ALU
ops.

O Shortest instruction cycle times for
register-based operations.

e Disadvantages:

O Highest hardware overhead (three buses,
extensive multiplexing).

O Greater control complexity and cost.

3.3. Control Unit
a. The control unit supervises the transfer of
information among the registers and

instructs the ALU as to which operation to
perform.

b. The function of the control unit in a digital
computer is to initiate sequences of micro-
operations.

Page No:-08

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢
3.4.3. Hardwired Control Unit
| Control Step Counter J

Microprogrammed Control Unit

{ \ I i
> = ; External

! Inputs

Hardwired Control Unit |

Horizontal Microprogramming Vertical Microprogramming — -
1 -~ 7

Fig. Types of Control Unit - e .
g] e
3.4.1. Microinstruction (Control Word)] —
Each word in control memory contains within l i """"" 1
it @ microinstruction. The microinstruction Control Signals
specifies one or more microoperations for 1. Implementation
the system.

a. Fixed combinational and sequential logic

(decoders, counters, gating circuits).

b. Control signals expressed as Boolean SOP

(Sum-of-Products) functions of:

- Control step counter outputs (T1, T2,...).

- Instruction register bits (opcode).

- Condition codes & external flags (e.g.
MFC, interrupt request).

3.4.2. Microprogram

A sequence of microinstructions.

An instruction can be executed by
performing one or more of the following
operations in some

specified sequence:

a. Transfer a word of data from one
processor register to another or to the ALU. 2. Characteristics

b. Perform an arithmetic or a logic operation - Speed: Very fast (single-cycle micro-
and store the result in a processor register. operations).

c. Fetch the contents of a given memory > Complexity: Logic grows exponentially
location and load them into a processor with ISA complexity.

register. - Flexibility: Difficult to modify or extend
d. Store a word of data from a processor once designed.

register into a given memory location - Use Cases: Simple RISC processors with
limited instruction sets.

3.4.4. Microprogrammed Control Unit

External Next -

Control
input ™| address ™ word

Control Control Control
| address | memory | data
geocrmor register (ROM) register

(sequencer) —‘
Next-address information

1. Implementation
a. Control signals generated by
microinstructions stored in Control Memory

(CM).

Page No:-09

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

b. Each microinstruction (control word)
encodes one or more control signals.

C. Sequencing via a Micro-Program Counter
(UPC) & Address Sequencer.

2. Microinstruction Fields
3 3 3 2 2 7

Fl F2 F3 (@)) BR AD

F1, F2, F3 micro-operations fields, CD:
Condition for branching, BR: Branch Field,
AD: Address field.

3. Characteristics

- Speed: Slower than hardwired (multiple
memory accesses).

- Flexibility: Easy to modify control
sequences (update micro-program).

- Complexity Handling: Suited for
complex ISAs (CISC) with many
instructions.

- Storage: Requires ROM/RAM for control
memory (2 K-10 K microinstructions).

3.4.4.1. Horizontal Microprogramming

e Control Word: One bit per control signal —
maximal parallelism.

e Word Width: Very wide (one bit x
number of signals).

e Decoder: None (signals directly driven).

3.4.4.2. Vertical Microprogramming

e Control Word: Encoded fields (k-bits select 2k
signals).

e Word Width: Narrower, but requires
decoders.

e Parallelism: Limited (typically one group
executed per cycle).

3.5. Booth’s Algorithm
3.5.1. Goal: Efficiently multiply two signed
binary integers (two’s-complement) with

fewer add/subtract operations by encoding
runs of 1’s in the multiplier

START),

Ac—0,Q_ ;0
M « Multiplicand
Q « Multiplier

Count « n

=01

i i s
| A«—A-M Il A+—<A+M

Arithmetic shift
> Right: A, Q, Q_,

Count « Count — 1

3.5.2. Best Case and Worst Case
Occurrence:

Best case is when there is a large block of

consecutive 1's and 0's in the multipliers, so
that there is minimum number of logical
operations taking place, as in addition and
subtraction.

Worst case is when there are pairs of

alternate 0's and 1's, either 01 or 10 in the
multipliers, so that maximum number of
additions and subtractions are required.

3.5.3. Key Idea

> Examine pairs of bits of the multiplier
(current LSB and an extra “previous”
bit); decide whether to add, subtract, or
do nothing with the multiplicand.

> Shift right each cycle, accumulating the
partial product in a combined register.

Page No:-10

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

R
w—

GATE CSE BATCH

KEY FiGHLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/4GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENRGLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! w

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

3.5.4. Registers & Initialization

.. Final [A|Q]1= 11110001, =—12(117 , which is
3 x (—4).

Register Width Initial Content
A n-bit 0..0
Q n-bit Multiplier
M n-bit Multiplicand
Q-1 1 bit 0
n - Number of bits in
Qand M

ACC = [A (n bits) | Q (n bits) | Q-1(1 bit)]
starts as [0...0 | Qinitial | O]

3.5.5. Step-by- Step Algorithm
1. Initialize A = 0, Q = multiplier, Q. = o,
count = n.

2. Repeat until count = 0:

a. Examine (Qo, Q1) and modify A per the
decision rule.

b. Right-shift the triple [A | Q | Q- 1]:

i New Q. old Q
iil. NewQ < old Ao (leastsignificantbit of A)
...oldQr ... old QI
iii. New A < sign- extended shiftof old A
3. Decrement count by 1.
4. Resultisin [A | Q] (2n bits).

3.5.6. Example
Multiply M = +3 (00112) by Q = -4 (11002)
using 4-bit registers:

Init 0000 1100 Initial values

g 0000 1100 0 (0,0): No op Shift —+ 000011100

2 0000 1110 0 (0,0): No op Shift — 000001110

£ 0000 0111 0 (1,0): Shift -+ 111000111
A+ A-M=1101,

4 1110 0011 3 (1,1): No op Shift =+ 111100011

0 —

4. Cache Memory Organisation
4.1. Introduction

Block Transfer
Word Transfer f‘-}‘-"‘\
CPU i Cache Main memory
Fast Slow

4.2. Cache Organisation
-> Cache Line (Block): Unit of transfer
- Fields in Address:

- Metadata:

A small, fast SRAM buffer placed between
the CPU and main memory.

Holds copies of frequently accessed
memory blocks (cache lines), exploiting
temporal locality & spatial locality

Goal: Reduce average memory access
time by satisfying most requests from the
cache rather than slower DRAM.

CPU always generated MM address (even
to access cache too)

The performance of cache can be
analysed with the following
characteristics.

Cache size (Small in KB’s)

Block or line size

No. of levels of cache

Cache mapping

Cache replacement policy

Cache updating scheme

ONONONONONO)

€ Tag: Identifies which memory block is
cached.

€ Index: Selects a cache set or line.

€ Offset: Chooses the byte/word within
the cache line.

€ Valid Bit: Line contains valid data.
4 Dirty Bit: Line has been written (for
write-back).

Page No:-11

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Note:

1. CM block number = (MM block no.)
modulo (no. of blocks/lines in cache)

2. No. of blocks = Cache size/Block size

4.3. Cache Mapping

s bits n bits

Main .
Memory Index Field Block Offset
s - r bits r bits n bits
Cache
Memory Tag Index Block Offset

4.3.1. Direct Mapping
Main Memory(MM) Address is
| Tag

| Cm block number | Byte offset |

e Index in direct mapping = cm block
number

e Tag in direct mapping = mm address -
logz(cache size)

e MM block no. = Tag + cm block no.

Note:

1. Tag directory size (all mappings) =
Number of blocks in cache * (tag + extra
bits)

2. For a given cache size, block size and
mm size: Tag is same (for byte and word
addressable memory both)

4.3.2. Set Associative Mapping

[Tag | Set offset | Byte offset |

e Cm set number = (mm block no.) % no.
of sets in cache

e Index in set associative mapping = Set
offset

e Tag in K-way set associative mapping =
mm address — log>(cache size) + logzK

4.3.3. Fully Associative Mapping

Tag Byte offset
e Index in fully associative mapping = 0-
bits

e Tag in fully associative = mm address -
logz2(block size)
e In fully associative mapping,
tag = mm block no.
Note:
1. Size of tag is maximum in fully associative
& minimum in direct mapping.
2. Size of index is minimum in fully
associative & maximum in direct mapping.

4.4. Hardware Implementation

4.4.1. Direct Mapping

> Number of MUX for tag selection = Tag-
bits

> Size of MUX for tag selection = Number

of blocks : 1

Number of comparators = 1

Size of comparator = Tag-bits

Vv

4.4.2. K-way Set Associative Mapping
>Number of MUX for tag selection =

K * Tag-bits

>Size of MUX for tag selection= Number of set : 1
>Number of comparators = k

>Size of comparator = Tag-bits

>O0R-gate = 1 (k-input OR gate)

4.4.3. Fully Associative Mapping
>Number of comparators = Number of blocks in
cache

>Size of comparator = Tag-bits

>0OR-gate = 1 (number of blocks-input OR gate)

Note: Hit Latency Time

>Direct mapping = MUX delay + comparator delay
>Set associative mapping = MUX delay +
comparator delay + OR-gate delay

> Fully associative mapping = comparator delay +
OR-gate delay

Page No:-12

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

he an he;
4.5. Types of misses in cache (rﬁ;:inenie?nory (rﬁgrlfiine as
4.5.1. Compulsory/Cold Miss immediately. | dirty.
The very first access to a block that can’t be
in the cache, so the block must
z?stl:a:(:;egrhetnlcnetomcizi: These are also called On Eviction N/A (dat_a If (_jirty, |
already in write entire
memory) block back
4.5.2. Capacity Miss to memory.
If the cache cannot contain all the blocks]
needed to during execution of a :f';';}?cry \I/-|V|rgijthe(every I(_\?v\xfe"s only
program. Capacity misses will occur because generates a on dirty-line
of blocks being discarded and later retrieved. memory evictions)
write)
4.5.3. Conflict Miss
When multiple blocks compete for the same Data Always Memory
cache line (or set) under the chosen o EZ?:VIZZint jvtﬁltz_l:)r;télk
mapping, even though other lines are free. cache & OCCUTS.
memory.
Note:
1. To reduce conflict miss: increase Hardware Simple; no Requires
associativity Needs dirty_bits c_Iirty bit per
2. To reduce cold miss: increase block size required. Lllllﬁc:_%ick
3. To reduce capacity miss: increase cache logic.
size
4.6. Cache Replacement Policies Typical Use | L1 caches for (L2/L3
4.6.1. FIFO (First-In-First-Out) simplicity & | caches to
It replaces the cache block having the PrEelEEl ey E?Sfl;iie bus
longest time stamp with a new block.
4.6.2. LRU (Least Recently Used) 4.7.2. Write Miss Handling
It replaces the cache block which is having 4.7.2.1. Write Allocate
less no. of references with the longest time On a write miss, fetch the block into cache,
stamp with a new block. then perform the write (marking it dirty
under write-back).
4.7. Cache Write Policy
4.7.1. Write Through VS Write Back 4.7.2.2. No-Write-Allocate
On a write miss, bypass cache and write
directly to main memory; cache remains
Feature 1V_Vhrict)egh Write Back unchanged.
rou
On Write Hit | Update both Update only

Page No:-13

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

4.7.4. Summary

4.7.3. Write Buffering: Reduces CPU stalls
on write operations by enqueuing the write
in a write buffer.

Policy Pros Cons
Combinat
ion
Write Simple; High memory
Through | consistent traffic; write
+ No memory; no misses still go
Allocate block to memory.
pollution on
writes.
Write Subsequent Still high
Through reads of the memory traffic.
+ Write block benefit
Allocate from caching.
Write Lowest Complex; must
Back + memory track dirty
Write traffic; good lines; potential
Allocate for write- data staleness.
heavy
workloads.
Write Rarely used Not practical;
Back + block writes
No aren’t cached,
Allocate so dirty bits
unused.

.OO.

Increase in cost per bit
Increase in Capacity & Access Time

<
-

5. Memory Organisation
5.1. Memory Hierarchy

p
Y
S CPU
/ Registers

y (SRAMS)

/ Cache Memory

Memory Hierarchy Design

5.2. Types of memory (Based on
methods of accessing)
5.2.1. Sequential Access Memory

Data is accessed in a fixed linear order.
Example: Magnetic tape.

Use Case: Archival storage (low cost,
high capacity), not for random
reads/writes.

5.2.2. Direct Access Memory

Allows access to a record by first moving
to a general area (track/sector), then
sequentially to the exact record.
Example: Hard disks, optical disks
(CD/DVD).

Use Case: File systems,

databases; moderate access time, large
capacity.

5.2.3. Random Access Memory (RAM)

Uniform constant-time access to any
location

Each address has a dedicated physical
path (wired) for immediate read/write.
Examples:

DRAM (Dynamic RAM)

SRAM (Static RAM)

Use Case: Primary/main memory, CPU
caches (fastest at their level).

5.2.4. Associative (Content-
Addressable) Memory

Retrieves data by content rather than by
specific address

All words are compared simultaneously;
matching word(s) are returned.

Example: Translation Lookaside Buffer
(TLB) in virtual memory.

Use Case: Fast lookups (e.g., cache tags,
TLB), where search key determines the
fetch.

Page No:-14

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

R
w—

GATE CSE BATCH

KEY FiGHLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/4GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENRGLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! w

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note: Average Memory Access Time (AMAT)
= Hit Time+Miss RatexMiss Penalty

5.3. Difference b/w SRAM & DRAM

SRAM |
Static I
1. Implemented using flip-flops :
2. No refresh required
3. Faster Read/Write
4. Used for Cache Consider n levels, then;
5. Low Idle power consumption Tavg = H1*T1 + (1-Hi)*H2*T2 +...+ (1-
6. High operational power consumption H1)*(1-H2)...(1-Hn-1)*Ha*Tn
DRAM (where H; is Hit Ratio, T, be access time for
Dynamic — each level)
1. Implemented using capacitors
2. Periodic refresh is required 5.4.2. Hierarchical Access
3. Slow Read/Write Data comes from other levels to Level 1 then
4. Used for main memory CPU gets its access as shown in the figure
5. High Idle power consumption below.
6. Low operational power consumption

Note: DRAM consists of rows of cells &
DRAM Refresh time = no. of rows of cells in
DRAM * 1 cell refresh time

Consider n levels, then;

Tavg=T1+(1-H1)To+(1-H1)(1-H2)Ts+...+(1-
Hi)*(1-H2)...(1-Hn-1)*Th

Note:

1. Memory Access Rate = 1/cycle time

2. Multiplication table for 2, n-bit unsigned
number = 22" * 2n bits

3. Addition table for 2, n-bit unsigned
number = 22" * (n + 1) bits

e

5.5. Locality Principles

5.5.1. Temporal Locality: Recently
accessed data likely to be reused soon.
5.5.2. Spatial Locality: Data near recently
accessed addresses likely to be accessed
soon.

Note: Caches exploit both to deliver high hit
rates.

5.4. Types of Memory Access

5.4.1. Simultaneous Access

CPU can access the data simultaneously
from all levels of memory

Page No:-15

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

5.6. Memory representation
Eg: 2!% x 32 bits memory means,
2% addresses and 32 bits wide word

5.7. Interrupts

5.7.1. Introduction

An interrupt is a signal that causes the CPU
to temporarily halt the current execution and
jump to a specific service routine (ISR i.e.
Interrupt Service Routine) to handle an
event (e.g., I/O completion, error, etc.).

Hardware Software
il i FESGL.
Device controller or
other system hardware l
issues an interrupt
Save remainder of
process state
information
Processor finishes
execution of current
instruction
Process interrupt

Processor signals
acknowledgment I
of interrupt

Restore process state
information
Processor pushes PSW
and PC onto control
stack
Restore old PSW
and PC
Processor loads new
PC value based on
interrupt

Simple Interrupt Processing

5.7.2. Types of Interrupts

5.7.2.1. Vectored Interrupts

A unique ISR address is supplied (either
directly or via vector table) to reduce the
time involved in the polling process.

5.7.2.2. Non-Vectored Interrupts
CPU jumps to a general or fixed location
(e.g., predefined interrupt handler), and
software determines the source.

5.7.2.3. Maskable Interrupts

5.7.2.4. Non-Maskable Interrupts

Note: Difference b/w Interrupts and
Exceptions

6. Pipelining
6.1. What Is Pipelining?

Interrupts that can be disabled or ignored
by the CPU using a special flag or
instruction.

Used for lower-priority or non-critical
tasks.

Eg. INTR in 8085, I/O completion.
Controlled By: Interrupt Enable/Disable
instructions (EI, DI)

Cannot be disabled by the CPU; always
gets attention.

Used for critical events (e.g., power
failure, hardware fault).

Eg. TRAP in 8085.

Priority: Highest as it overrides all other
interrupts.

Exceptions are caused by software
executing instructions. Eg. a page fault,
or an attempted write to read only page.
An expected exception is ‘trap’,
unexpected is a “fault”.

Interrupts are caused by hardware
devices. Eg. device finishes I/0, timer
fires.

Pipelining is a technique of overlapping
the execution of multiple instructions by
dividing the processor’s datapath into
stages, each handling a part of the
instruction.

It increases instruction throughput
without reducing the execution time of
individual instructions.

Page No:-16

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

6.2. Types of Pipelines
6.2.1. Linear Pipeline
Used for single specific function

6.2.2. Non-linear Pipeline

At a given stage, multiple parallel functional
units or paths exist

rather than a single straight chain.

6.2.3. Synchronous Pipeline
On a common clock, all registers transfer
data to next stages simultaneously.

6.2.4. Asynchronous Pipeline

6.3. Performance of Pipeline
6.3.1.

Clock

v v vy v
Input
T H) H | H i I

Figure 93 Foursegmenrt pipeline.
Suppose 5 inst", T1 through Ts, pass through
a pipeline of four stages.

Clock cycle ——— =
T | @& |23] 4 | B |67 |6

Instr. 1 [IF Lo 1= R i e o s

et IF 1o IE RW 3 HE i

IF ({83 IE RV

iF o 1E R

N 7= T o S
|Wumber of stages
engaged

e Cycle 1: Stage 1 processes T1

e Cycle 2: Stage 2 works on T1 while Stage
1 begins T2

e Cycle 3: Stage 3 takes on T1, Stage 2
handles T2, and Stage 1 starts Tz

e Cycle 4: Stage 4 completes Tz;
meanwhile, earlier stages are busy with
T2, T3, and Ta

After these four cycles, the pipeline is “full,”

and thereafter it finishes one task per cycle.

“— Instruction

More generally, for a pipeline with k stages

and clock period tl[] running n instructions:

e First inst” takes k*t, to traverse all
stages.

e Remaining (n-1) inst" each completes in
one additional tO

Total time: k*t, + (n—1)*t, = (k+n—-1)*,

Note:

1. To complete n tasks using a k-segment
pipeline requires k + (n - 1) clock cycles

2. T, = max(all segment/stage delays) +
register delay

Note: Consider a nonpipeline unit that
performs the same operation and takes time
equal to t, to complete each task. The total
time required for n tasks is n*t,, where t, =
sum of all segment delays

6.3.2. Speedup (S)
6.3.2.1. The speedup of a pipeline
processing over an equivalent non-pipeline

processing is defined by the ratio, S =
DXDD
(@+0O-1)x0Og

6.3.2.2. In ideal conditions i.e. n>>>k, we
ignore (k-1), then S = %
[}

6.3.2.3. If we assume that the time it takes
to process a task is the same in the pipeline
and non-pipeline circuits, we will have t, =
k*tp, then S = k

In this scenario, maximum speedup is
achieved.

6.4. Latency & Throughput

6.4.1. Latency

After how much time i/p is given to the

system

e Pipeline Latency = t, (. after every cycle,
new i/p)

Page No:-17

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

e Non-Pipeline Latency = t; e If the branch is not taken, we keep and
6.4.2. Throughput use the inst" that FI already fetched in
No. of tasks/inst" per unit time cycle 4, and the pipeline keeps flowing as
e Pipeline:_In ideal case = 1/t, normal.
6.5. Instruction Pipelining Step 1]2)3)sfsjef7]8fojw nfr)n
It overlaps the fetch-decode-execute phases i e B L B
of multiple instructions in a linear chain of B ki z = ':: :: : -
stages, so each clock cycle a different = 5il= | = | 5l 5015
instruction occupies each stage. 5 - | - A [pa|Fo | Eex
6 Fl |DA | FO | EX

Eg. Consider a four stage pipeline as U T oAlPfEX
follows: Figure 9-8 Timing of instruction pipeline
1. FI is the segment that fetches an

instruction. 6.6. Pipeline Hazards/Conflicts
2. DA is the segment that decodes the 6.6.1. Structural Hazard/Resource

instruction and calculates the effective Conflict

address. a0

3. FO is the segment that fetches the tesourci
operand. — cycle —

4. EX is the segment that executes the 5 |
instruction. A B e e e
= Instr. 3 s s IF] 13 AW - s
We assume the CPU has separate instruction l ol AREEAC 0 e
and data memories, so it can do an ' —
instruction fetch (FI) and a data fetch (FO) || -Memory access required
at the same time. F TR
At cycle 4 in our 4-stage pipeline: Caused by access to memory by two
* Stage EXis finishing Instruction 1 segments at the same time. Most of these
e Stage FO is loading the operand for conflicts can be resolved by using separate
Instruction 2 instruction & data memories.
Stage DA is decoding Instruction 3
Stage FI is fetching Instruction 4 Solution:
1. Incure stall cycles
Now suppose Instruction 3 turns out to be a 2. Increase no. of resources
branch. As soon as it’s decoded in DA (still in
cycle 4), we stop feeding any new inst" from Stall cycles
FI into DA until we know where the branch Also called a pipeline bubble, a stall is a
goes. clock cycle in which no new instruction
completes, inserted to resolve a hazard or
e If the branch is taken, we throw away resource conflict.

what was in FI/DA and fetch the correct
next inst" in cycle 7.

Page No:-18

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Solution of above figure: Sol" of Structural Hazard
Introduce bubble/stall cycles which stalls the
pipeline as in figure besides. Note:
At t4, 14 is not allowed to proceed, rather e Stalls because of branch =i - 1 (if after
delayed. It could have been allowed in t5, ith stage, the condition is evaluated)
but again a clash with I2 RW. For the same e Even if branch is not taken, then too
reason, I4 is not allowed in t6 too. Finally, 14 stalls are there due to branch instructions
could be allowed to proceed (stalled) in the e Result of branch condition evaluation is
pipe only at t7. available after execution phase of branch
I Clockcycle — instruction

§ AR % [&7 [8 [O [0t
g Instr IF (=] IE RW — — —— e T T =
t"é |.:.:" — |1 o] & P — | — | = — | - —=
1 ||:|52tr = —_ F (=] IE W — | el == i

Mix |
l HEEECLSLTE | B

Instr 233 S 2 s - = IF o 1E AW

| - Memory access required

r —| - Memory access may be required

Hardware
Interlocks

Forwarding

6.6.2. Data Hazard/Data dependency

Delayed Load
Consider the following set of instructions in a 5-stage pipeline.

_ e T R T KW i W S A data dependency occurs when one
accessed i | il ekl instruction needs data that is produced or
READ mode; SUB R4, R3, RS - R3 has one of the operand .))

used by another instruction,creating a
potential conflict in a pipeline.

But result of
ADD written
in R3 at t5

expect the ORRG, R3, R7 -R3 Goo oof tho acocand
result of Data Hazard scenario
ADD to be AND RE, R3, R7 - R2 has one of the operand

availablein XORR1Z, R3, R10 - R3 has one of the operand

[] i I
R - | - | v | onT] e ew | wv] -
anopamame | - | - | - | % Jons | N [mem || -
e e m - | - | i w |os [e | mew | oaw
Conflicts
instruction, all three instructions would be
In the above case, ADD instruction writes using the wrong data from R3, which is
the result into the register R3 in t5. If stalls earlier to ADD result. The program goes
are not introduced to delay the next SUB wrong! The possible solutions are:
6.6.2.1. Hardware Interlocks 6.6.2.2. Operand/Data Forwarding
Hardware Interlocks are built-in pipeline Also called bypassing, is a hardware
controls that detect hazards at runtime & technique that routes results directly from
automatically stall the pipeline to prevent one pipeline stage to an earlier stage that
incorrect execution. needs them, avoiding a stall.

Page No:-19

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

T [2 [N [@ _JA5[[16 | &7 [B8 [9]

| b | ,.@\/R - —

R e~ I

s — IF 1D g3 1E MEM RW

S T =1 - L ® [ow] & |wew|iow
6.6.2.3. Delayed load/No operation by reordering subsequent instructions or
Delayed Load is a compiler technique that inserting a “no-op” slot before using the
avoids a pipeline stall after a load instruction loaded data.
6.6.2.4. Data Hazard Classifications > RAW (Read After Write)
Assume 2 inst"i & j
i: Rt —~ R+ R3 If j writes a destination before its read by i,
j: Rs—Ri+ R4 hence i reads incorrect value
If j reads a source before its written by i,
hence j gets incorrect value Note:

1. RAW is True Dependency while WAR &
> WAW (Write After Write) WAW are False Dependencies as they can
i: Ri < R2+ R3 be solved by register renaming.

j: Rt <~ R4 * Rs 2. WAR is known as Anti-dependency
If j writes a destination before its written by 3. WAW is known as Output Dependency

[4. Operand forwarding and register

> WAR (Write After Read) renaming can not solve the memory
i: Ri <~ R2+ R3 access dependencies

j: R «— Rg + Ry

6.6.3. Control hazard
is always executed, regardless of whether
Hazard the branch is taken. The compiler fills this
slot with a safe instruction (or a NOP) to
hide the branch-decision penalty and
improve pipeline throughput without extra

hardware.

Hardware Sol”

Branch
Prediction

6.6.3.2. Branch Prediction

It is hardware logic that guesses the
outcome of a conditional branch before it is
resolved, allowing the pipeline to continue
fetching along the predicted path and avoid
stalls when the guess is correct.

6.6.3.1. Delayed Branch
A technique where the instruction
immediately following a branch, “delay slot”

Page No:-20

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

7. Secondary Memory

7.1. Introduction

7.1.1. Platters & Surfaces

One or more circular platters coated with
magnetic material; each surface has its own
read/write head.

7.1.2. Track

A concentric circle on a platter surface. All
tracks on different platters at the same
radius form a cylinder i.e. No. of cylinders =
No. of tracks

7.1.3. Sector

e Smallest addressable unit on a track
(typically 512 B)

e Contains user data + control information
(format overhead)

7.1.4. Gaps

7.1.4.1. Inter-Sector Gap: Empty region
between adjacent sectors.

7.1.4.2. Inter-Track Gap: Empty region
between adjacent tracks.

=y

track t «— spindle
— T =
e
— arm assemb!
- e y
secior s | I _""‘"--_h"‘-"::-__‘:_‘___‘_‘_‘__‘___:
3 =
SRR i
| : —
cylinder ¢ e [read-write
l | head
_amme—l———1
|
L i
platter ﬁ
‘_) arm

rotation

Fig. Disk Structure

7.2. Types of Disk Constructions
7.2.1. Constant Track Capacity (CTC)

Variable recording density: Outer tracks hold
more sectors than inner tracks.
Maintains constant angular velocity.

7.2.2. Variable Track Capacity (VTC)
Constant recording density: Same number of
sectors per track; disk spins slower at outer
tracks to equalize data rate.

Note: Each rotation of disk covers 1 track

7.3. Disk Performance

Sector to access

Rotational latency

7.3.1. Seek Time (Ts)
Time to move the R/W head from its current
track to the target track.

7.3.2. Rotational Latency (T:)

Time for the platter to spin so the desired
sector comes under the head.

Tr = (rotation time)/2

7.3.3. Transfer Time (Ttansfer)
Time to actually read/write the bits in the
sector once under the head.

7.3.4. Overhead Time (Toverhead)
Controller delays (e.g., command
processing).

7.3.5. Disk Capacity

Disk Capacity = 2 * no. of platters * tracks
per surface * sectors per track * sector
capacity

Page No:-21

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note:
1. Tayg = Ts+Tr+Transter+ Toverhead(if given)
2. Sequentially stored N sector transfer time

= Seek Time + Rotational Latency + N *
(1 sector Transfer Time)

3. Randomly stored N sector transfer time =
N * (Seek Time + Rotational Latency + 1
sector Transfer Time)

7.4. Disk Addressing

Disk addressing < ¢, h, s >, where c =

cylinder number, h = surface number, s =

sector number

e Sector number for given address =
C * sectors per cylinder + h * sectors per
track + s

e ¢ = sector number / sectors per cylinder
h = (sector number % sectors per
cylinder) / sectors per track

e s = (sector number % sectors per
cylinder) % sectors per track

8. I/0 Interface

8.1. Introduction

Input-output interface provides a method for
transferring information between internal
storage and external I/O devices.

There are 3 ways that computer buses can
be used to communicate with memory and
I/0:

1. Use two separate buses, one for memory
and the other for I/0.

2. Use one common bus for both

memory and IO but have separate

Memory Mapped 10

1. Memory wastage

2. All Memory access instructions used for 10 access also

3. No separate address space for 10

4. More Instructions for 10 access

5. More addressing modes for 10 access

6. More 10 devices connected

GATE B¢
control lines for each.

3. Use one common bus for memory and I/0
with common control lines.

Data
Processor Address

Control

Interface Interface I Interface |

Keyboard

and Printer Magnetic
display disk
terminal

Connection of 1/O bus and input-output device

8.2. I/0 processor (IOP)

- Same memory bus for both CPU & IOP

- IOP communicates with I/O devices
through a separate I/O bus with its own
address, data and control lines.

8.3. Isolated I/0
Common address space and different control
lines

8.4. Memory mapped I/0

- take few addresses from memory address
space

-> same address space for both memory

and I/O

Difference between Memory mapped I/0 &
Isolated I/O

Page No:-22

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

8.5. I/0 Interface

3.5.1. Programmed I/O

3.5.2. Interrupt driven I/O

3.5.3. Direct Memory Access (DMA)

No Interrupts

Programmed 1O

Use of Interrupts

VO-w-memory trunsfer throvgh processor
Direct FO-to-memory transfer

Interrupt-driven 1/0

Direct memory access (DMA)

8.5.1. Programmed I/0

With programmed I/0, data is exchanged
between the processor and the I/O module.
The processor executes a program that gives
it direct control of the I/O operation. If the
processor is faster than the I/O module, this
is wasteful of processor time.

Time in programmed IO = time to check
status + time to transfer data

8.5.2. Interrupt driven I/0

a. Interrupt I/0O is a data transfer technique
where the CPU is interrupted by the I/O
device only when it is ready (e.g., after
completing a data transfer or requiring
service).

b. It eliminates constant polling of the
device, thus increases CPU efficiency.

Time in Interrupt IO = interrupt overhead +
time to service interrupt

8.5.2.1. Daisy- Chaining Priority
(Serial- Priority Interrupt)

The system consists of a serial connection of
all devices that request an interrupt. The
device with the highest priority is placed in
first position followed by lower-priority
devices.

Processor Data Bus

VAD 2

Interrupt Request

Interrupt Acknowledge

8
8

8

8
a
°

b
R

-

-

.5.3. Direct Memory Access
.5.3.1. Definition & Purpose

-> DMA is a mode of data transfer where a

dedicated DMA controller moves data
directly between I/0O device and main
memory without CPU intervention for
each word.

Frees the CPU from high-volume data
transfers, improving overall system
throughput.

.5.3.2. DMA Controller

Address Register: Holds the current
memory address for transfer.

Count Register: Holds the humber of
words/bytes left to transfer.

Control Logic: Generates read/write and
bus-request signals.

Bus Arbitration Interface: Requests and
releases the system bus from the CPU.

.5.3.3. DMA Transfer Sequence
. CPU Initialization:
Loads DMA controller’s Address and
Count registers.
Issues a “Start DMA” command.
. Bus Request: DMA controller asserts Bus
equest (BR); CPU grants via Bus Grant

(BG).
c.

Data Transfer:

Page No:-23

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

e DMA takes control of the bus, reads from
device — writes to memory (or vice versa)
automatically.

e Address register increments/decrements;
Count register decrements.

d. Completion: When Count = 0, DMA

releases bus and raises an Interrupt to CPU

indicating end of transfer.

8.5.3.4. DMA Modes

2. % of time CPU blocked (cycle stealing)

transfer time
[eriime ., 100%
prepatation time

3. Max data transferred using DMA without
CPUs intervention =

Mode Description CPU
Burst DMA transfers the CPU
Mode entire block in one paused
bus-hold period. for the
burst
Cycle DMA takes the bus | CPU
Stealing for one transfer, slowed
then releases; later | slightly
it will ‘steal’
memory cycle when
CPU is idle.
Interleavin | DMA transfers only | Minimal
g Mode when CPU is not interfere
using the bus. nce
= Drata
(count
Data lines ~ > K
L register
> Address
Address lines register
Request to DMA -
Acknowledge from DMA ik
il‘llt‘;;’:l:(; s Soghc
Write
L

Figure 7.11 Typical DMA Block Diagram
Note:

1. % of time CPU blocked (burst mode)
transfer time to memory N 100%

prepatation time+transfer to memory time

2* — 1, x = bits in data count

Page No:-24

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

R
w—

GATE CSE BATCH

KEY FiGHLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/4GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENRGLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! w

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

