[ALGORITHMS

! ' T
J

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Module 1: Analysis of Algorithm

Aim : The goal of analysis of algorithms is to
compare algorithms mainly in terms of running time
but also in terms of other factors like memory,
developer effort.

Need for Analysis (Why to analyze || What to
analyze || How to analyze)

1. To determine resource consumption
<resource such that
space+time+cost+register>
Resources may differ from domain to
domain.

2. Performance comparison to find out efficient
solution

Need for Analysis (Why to analyze || What to analyze || How to analyze)

1. To determine resource
consumption<resource
such that
space+tiime+cost+register)

2. Performance comparison
to find out efficient solution

.y

Methodology of algorithm
Depends on language

Operating system

Hardware (CPU, processor, memory,
Input/output)

Types of analysis

1. Aposteriori analysis(platform dependent) : It gives
exact value in real units.

2. Apriori analysis(platform independent) : It allows
us to calculate the relative efficient performance of
two algorithms in a way such that it is platform
independent. It will not give real values in units.

Asymptotic Notations
0-Notation

Let f(n) and g(n) be two positive functions
f(n) = 6(g(n)) if and only if

f(n) < c1.g(n)and f(n) = c2 . g(n)

V n 2 n0 such that there exists three positive constant
c1>0,c2>0andn021

O-Notation [Pronounced “big-oh”]

Let f(n) and g(n) be two positive functions

f(n) = O(g(n)), if and only if

f(n)<c.g(n),3In =2n0

such that $ two positive constants ¢ > 0, n0 2 1.

Q-Notation: [Pronounced “big-omega”]

Q notation provides an asymptotic lower bound for a
given function g(n), denoted by Q(g(n)). The set of
functions f(n) = Q(g(n)) if and only if f(n) 2c.g(n), v n=
nO such that two positive constants ¢ > 0, n0 = 1.

Analogy between real no & asymptotic notation
: Let a, b are two real no & f, g two positive
functions

If f(n) is O(g(n)):a<b

If f(n) is Q(g(n)):a=b
Iff(n)ise(g(n):a=">b
If f(n) iso(g(n)):a < b
If f(n) is w(g(n)):a > b

Rate of growth of function

[Highest] 22 —> nl —> 4" —> 2" —> nz —>
nlogn —>log(n!) —> n —> 2'°" —> log® n —>
log logn —> 1 [lowest]

Trichotomy property:

For any two real numbers (a, b) there must be a
relation between them

(@a>b,a<b,a=Dhb)

Page No:- 01

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Asymptotic notation does not satisfy trichotomy
property

ex: f(n) = n,g(n) =n*|sin(n), n >0

= These two functions cannot converge

Example

1. Loop
for(i=1;i<=n;i++){
X=y+Z
}
T(n) = O(n)

2. Nested loop
for(i=1; i<=n; i++){
for(j=1; j<=n; j++){
k= k+1;

}
}
T(n) = O(n?)

3. Logarithm
for(i=1; i<=n;i*= 2){
k=k+1;

}
for(inti=1;i<=n;i++){
for(intj=1;j<=n;j*=2){
printf("GFG");
}
}
T(n) = O(n log n)
4. Linear recursion:
void fun(int n) {
if (n > 0){
fun(n - 1);
}
}
T(n) = T(n-1) + C
T(n) = O(n)
5. Recursive with logarithmic loop
void fun(int n) {
if(n>1{
fun(n/ 2); // Recursive call first
for(inti=1;i<=n;i*=2){
printf("Hello\n");
}
}

}
T(n) = T(n/2) + O(log n)

T(n) = O(log? n)
6. Time is infinite
c=0;
while(1)
C+=1;
7. Mutually Exclusive Loops
1. Fori<—1ton:C=C+1;
2. For j«—1 to m: K=Kx2;
Time = O(max(n, m))
8. Nested loop analysis
for (i=1;i <= n; ++i) // Executes 'n' times
for (j = 1;j <= n; ++)) // Executes 'n' times
for (k = n/2; k <= n; k +=n/2) // Executes 2 times (n/2,

n)
C=C+H;
Time = O(n?)

for(i=1;i<n;i = i+a)
Time : O(n/a) = O(n)

9. For a loop with a multiplicative increment:
for (i=1;i<=n;i=i*2): This loop's complexity is Logzn.
for (i=1;i<=n;i=i*3): This loop's complexity is Logszn.
for (i=1;i<=n;i=ixa);

General formula: The time complexity is
O(logan).

k=1, i=1
while(k<=n){
i++;
k=k+i;
}
Time complexity : T(n) = O(Vn)
for (i=n;i>=2;i=sqrt(i))
Time complexity: O(log log n).
10. for (i = 2;i <=n; i++) {// log logn
for(=1;j <=1 j++){
for(k =1k <=n;k +=j){//n/j, wherej=123.n
X=y+z

}
}
}
T(m) = O(log logn (n logn))

Page No:- 02

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Master Theorem:

Let f(n) is a positive function and T (n) is defined
recurrence relation:

T(n) = aT(n/b) + f(n)

Where a >=1and b > 1 are two positive constants.
Case 1:

If f(n) = O(n(°9°2-9)) for some constant € > o then T(n)
=0 (n(logb a))

Case 2:

If f(n) = 8 (N9 @), then T(n) = 8 (n9? *log n)
Case 3:

If f(n) = @ (n"°9b @) for some constant €> 0, and if a
f (n/b) < cf(n) for some constant c < 1 and all
sufficiently large n, then T(n) = 6(f(n))

Master theorem for subtract and conquer
recurrence:

Let T(n) be a function defined on possible n:
T(n) = aT(n-b) + f(n), if n > 1

Tn)=C,ifn <=1

For some constant C, a>0, b>0, and f(n) = O(n9)
1.T(n) = O(n%) , ifa < 1

2.T(n) = O(n%+1), ifa =1

3.T(n) = O(n * a™) ,ifa > 1

Common Recurrence Relation

Recurrence relation Time
complexity

Tn)=Cn=2 O(logn)
TN)=2TEn) +C, n>2
TnN)=Cn=2 O(n)
TN)=Th-1+C;n>2
TnN)=Cn=1 O(n"2)
TN =Tn-1)+n+C;n>2
Tn)=C;n="1 O(nn)
Tn)=Tn-1)*n +C;n>2
Tn)=C;n="1 O(n)
T(n) =2T(n/2) + C; n > 1
Tn)=C;n=1 O(nlogn)
T(n) =2T(n/2) + C;n > 2
Tn)=C;n=1 O(logn)
Tn) =T(n/2) + C;n> 1
Tn)=1n=2 O(loglogn)
Tn)=T(n)+Cn>2
T(n) = T(n/2) + 2”~n ifn > 1 O(2”n)

Analogy between real no & asymptotic notation
Let a, b are two real no & f, g two positive functions
e Iff(n)is O(g(n)) : a < b (f grows slower than
some multiple of g)
o Iff(n)is Q(g(n)) : a2 b (f grows faster than
some multiple of g)
e Iff(n)is ©(g(n)) : a = b (f grows at same rate of

9)
e Iff(n)is o(g(n)):a < b (f grows slower than any
multiple of g)
e Iff(n)is w(g(n)):a > b (f grows faster than any
multiple of g)
Analysis
1. f(n) = n!

nl<=c*n":n>=2

n! = O(n") withc=1,n0 = 2.

using stirling’s approximation : n! = \V(2nm) n" *
e—n

Page No:- 03

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Discrete Properties of Asymptotic Notation

Property Big Big Theta() | Small Small
Oh(O) Omega() oh(o) omega
)

Reflexive v v/ v/ x x
Symmetric x x v x x
Transitive v v/ v/ v/ v
Transpose v v x v v
symmetric

Analogy between real no & asymptotic notation

Let a, b are two real no & f, g two positive functions
e If f(n) is O(g(n)) : a < b (f grows slower than some
multiple of g)
e If f(n) is Q(g(n)) : a 2 b (f grows faster than some
multiple of g)
e If f(n) is ©(g(n)) : a = b (f grows at same rate of g)
e If f(n) is o(g(n)) : a < b (f grows slower than any
multiple of g)
o If f(n) is w(g(n)) : a > b (f grows faster than any
multiple of g)
Analysis
1. f(n) = n!
n'<=c*n*n:n>=2
n! = O(n*n)withc=1,n0 = 2.
using stirling’s approximation : n! = \(2nm) nAn * e
A-n

Trichotomy property:

For any two real numbers (a, b) there must be a
relation between them
(@a>b,a<b,a=Dhb)

Asymptotic notation does not satisfy trichotomy
property
Ex: f(n) = n, g(n) = n A |sin(n)], n >0
=~ These two functions cannot converge
1. Reflexive
f(n) = O(f(n))
f(n) = Q(f(n))
f(n) = o(f(n))

2. Symmetric
f(n) = ©(g(n)), iff g(n) = O(f(n))

3. Transitive
f(n) = ©(g(n)) & g(n) = O(h(n))
f(n) = O(h(n))
Note : Q and © also satisfy transitivity

4. Transpose Symmetric
f(n) = O(g(n)) iff g(n) = Q(f(n))

Best case(n) < Average case(n) < Worst case(n)
Space Complexity
Space required by algorithm to solve an instance of
the problem, excluding the space allocated to hold
input.
Space complexity : C + S(n)
C - Constant space
S(n) - Additional space that depends on input size n

Space Complexity VS Auxiliary space

Space Complexity = Total space used including input
Auxiliary space = Extra space used excluding the input

/,—-— Instruction

Datafinput

\~ Auxiliary Space

Program/Algorithm

Page No:- 04

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Space Complexity (Memory)
Example:

Algo sum(A, n){

intn,all, i

int sum=0;

for(i=0; i<n; i++)

sum = sum-+arr[i];

}

Time complexity : O(n)
Space complexity : O(1)
Algo swapNum(int a, int b){

int temp = a;
a=b;
b = temp;

}
Time complexity : O(1)
Auxiliary space : O(1)

Page No:- 05

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Module 2 : Divide and Conquer (DAC)

Note : In DAC, divide and conquer is mandatory
but combine is optional.

e - Oind
Min max protiem —{
5C : Olagn] (Stack spacal
TC : Oftagal
Merge sart -<
&L - Bfn)

— TCiBast + Awgd 1 Olnkogn)

DandC . TClavg « worsth : Ditega)

Quick sort ﬁt\% TEC dweh : Dl a2y
/ e 5 : R}
|'|r TC - Gelognl
f Power of an element -
! 5L : Dilegn)

Binary search TCiRest) : DL1)

SC Oinl {Stack space]
TE (using DACH: Bins3)
TC [Strassen sl @ ad2 A1)

Matrie multiplication

S0 0nt)

Algorithm DAC(A, 1, n)
if(small(1, n)

return (S(A, 1, n);

Else

m «—— Divide(1, n)

S1 «—— DAC(A, 1, m)
S2 «—— DAC(A, m+1, n)
Combine (51, S2);

Time Complexity for DAC Problem
T(n) = F(n), if n is small,

T(n) = 2T(n/2) + g(n) : if nis large

| Tin) = 2Tin/2) + g:n}
T L»lmwnltdnrrd-h-:nmhnnl

Size of each sub-problem

He. of Sub-problem

Generalized Form : T(n) = aT(n/b) + g(n)
g(n)—+ve,a>0,b>0;

| Symmetric form
T(n) = aT(n/b) + g(n)
a : number of sub-problem
b : size shrink factor(each sub-problem n/b)
g(n) : cost to divide and combine
eg. Merge sort : T(n)=2-T(2n)+O(n)

Il Asymmetric form 1

1
eg: T(n) = T(n/3) + T(2n/3) + g(n)

I1l Asymmetric form 2
T(n) = T(n/2) + T(n/4) + g(n)
ex. Quick sort with asymmetric partitioning

Page No:- 06

GeoksforGeeks

T(n) = T(an) + T((1-a)n) + g(n) provide that: 0 < a <

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Divide and conquer problem
1. Finding minimum and maximum

T(n) = 2T(n/2) + 2, n>2

Time complexity using DAC : T(n) = O(n)
Space complexity using DAC :

T(n) = O(logn)

2. Power of an element

Recurrence relation
Tn)=1ifn=1

T(n) =T(n/2) + Cifn > 1
Time complexity : O(logn)
Space complexity : O(logn)

3. Binary Search Algorithm

Note: Provided that list of elements already sorted.

Tn)=c:n="1

Tn)=a+ T(n/2):n > 1

Time complexity : T(n) = O(logn)
Space complexity : T(n) = O(1)

4. Merge Sort Algorithm

Comparison based sorting

Stable sorting but outplace
Recurrence relation: T(n) = cif n = 1
T(n) = T(n/2) + T(n/2) + cnif n > 1

Time complexity = O(n log n)

= Q(n log n)

= 0(n log n)

Space complexity : O(n + logn) = O(n)

5. Quick Sort Algorithm
Best Case / Average Case
Tn)=1;ifn=1.
T(n) = 2T(n/2) + n + C, if n>1
Time complexity : O(n logn)
Worstcase:T(n) =n+ T(n-1) + C;ifn > 1
Note: Quick sort behaves in worst case when
element are already sorted
Time complexity : O(n”2)

6. Matrix Multiplication

I. Using DAC: T(n) = 8T(n/2)+0(n”"2), for n>1
T(n) = O(n"3)

Il. Strassen’s matrix multiplication :

T(n) = 7T(n/2) + a.n?2, forn > 1

Time complexity : O(n~2.81) (by Strassen’s)

Time complexity : O(n”2.37) (by Coppersmith and
winograd)

Space complexity :

7. Selection Procedure (Find kth smallest on given an
array of element and integer k)
Time complexity : O(n"2)
Space complexity : O(n)

8. Counting Number of Inversion (An inversion in an
array is a pair(i, j) such that i<j and arr[i] > arrl[j])
Time complexity : O(nlogn)

Space complexity : O(n)(due to merges)

9. Closest pair of points (Find the minimum Euclidean
distance between any two points in a 2D plane.)
Recurrence relation => T(n) = 2T(n/2) + O(n)

Time complexity = O(nlogn)

Sorting copies (x-sorted, y-sorted): O(n)
Auxiliary space (recursion stack): O(log n)
Space complexity : O(logn)

10. Convex hull (Find smallest convex polygon that
encloses a point in a 2D plane)
T(n) = 2T(n/2) + O(n)
Time complexity = O(nlogn)
Space complexity : O(logn)

Note: In GATE exam if merge sort given then
always consider outplace.

« If array size is very large, merge sort preferable.
« If array size is very small, then prefer insertion sort.
« Merge sort is a stable sorting technique.

Page No:- 07

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

11

1.
2.

. Longest Integer multiplication(LIM)

int data type, can stores digits max 32767

long int data types, can store 4B/8B (8-10 digits
number) not more than that.

Solution : We can store long integer multiplication
in an array.

T(n) = 4T(n/2) + b.n; if n>1

Time complexity : O(n"2)

Space complexity : O(logn)

Karatsuba optimization :

T(n) = 3T(n/2) + bn;ifn>1

Time complexity : O(n”1.58)

Karatsuba is better but still not fast enough

Toom cook optimization :

Toom-Cook is a generalization of Karatsuba's
algorithm that splits the input numbers into three
parts.

Toom-3 (3-way split)
l.

T(n) = 9T(n/3) + bn.

Time complexity : O(n”2)

T(n) = 8T(n/3) + bn.

Time complexity :

T(n) = xT(n/3) + bn

for x = 5,

T(n) = 5T(n/3) + bn

Time complexity : O(O(n”"1.464)

Generalised equation of time complexities of k-
ways split

DAC : T(n) = kT(n/k) + bn

Karatsuba : T(n) = (kA2 - 1)T(n/k) + bn

3. Toom-cook : T(n) = (2k-)T(n/k) + bn

Toom-4 exists but is less practical due to overhead.

Page No:- 08

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE CSE BATCH

KEY HiGHLIGHTS:
« 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* CPROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE RS
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Module 3 : Greedy Algorithm

The greedy technique algorithm is a method that
makes the locally optimal choice at each step with
the hope of finding a global optimum, without
reconsidering previous choices.

Job sequencing with deadline

Huffman coding

Knapsack problem
[Kruskal's Minimum spanning troe
-
-

Greedy Problem :
- Prim's Minimum spanning tree

Single source shortest pathiDijkstra's
algorithm)

Bellmeon ford algerithm

Active selection problam

Application of Greedy algorithm

1. Job sequencing with deadline
Schedule jobs to maximize profit before their
deadlines (one job per time slot).
Sort jobs by profit (descending).
Find maximum deadline in the given array of n-
deadlines and take the array of maximum deadlines
size
Schedule each job in the latest available slot
before its deadline.

Time complexity
Best case : O(nlogn)
Worst case : O(n?)

2. Optimal merge pattern (Huffman coding is one
of its application)

Merge n sorted files with minimum total cost
(record movements).

Always merge the two smallest files. Repeat until
one file remains.

Huffman coding is a direct application of the
optimal merge pattern.

Step to solve a problem : Create a min-heap

(priority queue) of all characters based on their

frequencies.

Repeat until the heap contains only one node:

(i) Extract the two nodes with the smallest

frequencies.

(ii) Create a new internal node with:

Frequency = sum of the two nodes.
Left child = node with smaller frequency.
ight child = node with larger frequency.

(iii) Insert this new node back into the heap.
The remaining node is the root of the Huffman
tree.

Time complexity : O(n log n)
Space complexity : O(n)

3. Fractional Knapsack

Maximize profit with given weight capacity.
Fractional items allowed.

Sort by value/weight ratio. Pick greedy until
capacity is full.

for(i=1;i<=n;i++)

ali] = Profit(i)/weight(i)

Take one by one object from a and keep in
knapsack until knapsack becomes full arrange array
a in ascending order

Time complexity : O(n log n)

4. Activity selection problem (You are given n
activities, each with a start time and finish time.
The goal is to select the maximum number of
activities that can be performed by a single
person, under the constraint that the person can
work on only one activity at a time (i.e,, no
overlapping activities).

Sort the activities by their finishing time (in
ascending order).

Select the first activity in the sorted list and
include it in the final solution.

Iterate through the remaining activities in the
sorted list:

Page No:- 09

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

e For each activity, check if its start time is greater
than or equal to the finish time of the last
selected activity.

e If the condition holds, select the activity and
update the last selected finish time.

Time complexity

If activities are not sorted by finish time:

If activities are sorted by finish time:
e Only the selection loop runs — O(n)
e Total time = O(n)

5. Minimum cost spanning tree

I. Kruskal’s Minimum spanning tree algorithm
It builds the Minimum Spanning Tree by always
choosing the next lightest edge that doesn't form
a cycle.

Sort all edges of the graph in non-decreasing
order of their weights.

Initialize an empty set for the MST.

For each edge in the sorted list:

o [f the edge does not form a cycle with the MST
formed so far, include it in the MST. Otherwise
discard the edge.

Repeat until the MST includes V-1V - 1V-1 edges
(where VVV is the number of vertices).

Time complexity : O(E log E) or O(E log V)

Note : Works well with sparse graphs (fewer
edges). May produce a forest if the graph is not
connected.

Il. Prim’s minimum spanning tree algorithm
It builds the MST by growing it one vertex at a
time, always choosing the minimum-weight edge
that connects a vertex inside the MST to one
outside.

Start with a random vertex, Initialize a MST set
(vertices included in MST), and a priority queue (or
min-heap) of edge weights.

While the MST set does not include all vertices:

e Select the minimum-weight edge that connects a
vertex in the MST to a vertex outside.

e Add the selected edge and vertex to the MST.
e More efficient for dense graph

Time complexity :

Adjacency matrix + linear search = O(VA2)
Adjacency list + binary heap = O(E log V)
Adjacency list + Fibonacci heap = O(E + log V)

6. Single source shortest path algorithm

I. Dijkstra’s algorithm
Using min heap & adjacency list = O(E + V)logV
Using adjacency Matrix & min heap = O(VA2 *E *
logV)
Using adjacency list & Unsorted array = O(VA?2)
Using adjacency list & sorted Doubly linked list =
O(EV)

Il. Bellman Ford algorithm
It finds the shortest path from source to every
vertey, if the graph doesn’t contain a negative
weight edge cycle.
If a graph contains a negative weight cycle, it does
not compute the shortest path form source to all
other vertices but it will report saying “negative
weight cycle exists”.
It finds shortest path from source to every vertex,
Input : A weighted, directed graph G = (V+E), with
edge weights w(u, v), and a source vertex s.
Output : Shortest path distance from source s to all
other vertices, or detection of a negative-weight.
Time complexity : O(EV)

Page No:- 10

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Module 4 : Dynamic Programming

Use case of Tabulation and memoization method

e [f the original problem requires all subproblems to
be solved, then tabulation is usually more efficient
than memoization.

e Tabulation avoids the overhead of recursion and
can use a preallocated array, leading to better
performance in both time and space in some cases.

e If only some subproblems are needed to solve the
original problem, then memoization is preferable,
because it solves only the required subproblems
(solved /azily, i.e., on-demand).

1. Longest common subsequence (LCS)

Given two strings, find the length of their longest
subsequence that appears in both. Subsequence
must be linear only not necessarily contiguous.

Input : x= <ABCD>, y = <BDC>
Output : 2 <BC>

Let, i & j denote indices of x & y. L(i, j) denote the
LCS of string x & y, n & m are length respectively.
LG, j) = 1 + L@i-1, j-1) ; if x[i] = y[j]

L(-i,j)=0

LG, -j) =0

Time complexity : O(n * m)
Space complexity : O(n * m)

2. 0/1 Knapsack problem

Input : N items, each item has weight W[i], profit[i]
and a knapsack with a minimum capacity M
Objective : Total weight <= M, and total profit
maximized. Each item can be either 1 (include) or 0
(exclude)

Recurrence relation

KS(M, N) = 0; if M=0 or N=0

KS(M, N) = 0; if WIN]>M

KS(M, N) = max(K(M - W[N], N-1) + P[N], K(M, N-
1)) ; otherwise

Time complexity : O(M * N) (We compute and
store results in a 2D of table of size M* N)

3. Travelling salesman problem

Given a set of cities and distances between every
pair of cities, the goal is to find the shortest
possible tour that visits each city exactly once and
returns to the starting city.

This is equivalent to finding the minimum cost
Hamiltonian cycle.

A cost/distance function C(i, j) representing the cost
to travel from city i to city j.

TSP(A, R) be the minimum cost of visiting all cities
in the set R, starting from city A.

TSP=C(A S) ;ifR=0

TSP = min(C(A, K) + TSP(K, R-{K}) ; otherwise.
Where A is current city

R : set of unvisited cities

S : Starting city

C(A, K) : cost from city A to city K

Time complexity : (without dynamic programming)
O (nAn) with dynamic programming O(2~n * nA2)
Space complexity : O(2”n * n*2)

LG, j) = max(L(i-1,j) , LG, j-1) ; if x[il != y[jl 4. Matrix chain multiplication

Given a sequence of matrices, find the most
efficient order of multiplication of these matrices
together in order to minimize the number of
multiplications.

Let MCM(i, j) denote the minimum number of scaler
multiplication required to multiply matrices from Ai
to Aj.

MCM(,j)=0;i=]

MCM(, j) = min(MCM(, k) + MCM(k + 1, j) + Pi-1*
Pk*Pj);ifi<]j

The cost of multiplying the resulting matrices is
Pi-1-Pk-Pj

The total number of ways to parenthesize the
matrix chain of n matrices :

T(n) =i T6)-T(n-i)

Number of parenthesizing for a given chain
represented by catalan number: [1/ (n+1) (2nCn)|

Page No:- 11

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Time complexity:
e Without DP : O(n!)
e With DP: O(n”3)
Space complexity:
e Without DP : O(n)
e With DP: O(n"2)

5. Sum of subset problem
Given a set of numbers W[1..N] and a value M,
determine if there exists a subset whose sum is

exactly M.

Recursive Relation:

SoS(M, N, S) =
return(S) ; ifM=0
return(-1) ; ifN=0
SoSMM,N-1,S) ; if WIN] > M
min(
SoS(M - W[N], N - 1, S U {W[NI}),
SoS(M, N-1,9)
); otherwise

Time complexity by brute force: O(2~N)

Time complexity with DP: O(M x N) where M is the
target sum, N is the number of elements

Space complexity : without optimization O(M x N)
With space optimization : O(M)

6. Floyd-warshall’s : All pair shortest path

Used to find the shortest distances between every
pair of vertices in a weighted graph. Works with
positive and negative edge weights (but no
negative weight cycles allowed).

Recurrence relation

ARO(i, j) = C(i,)

ANK(, j) = min(AMK-13G, j), AMNK-13G, k) + AN k-
1}k, j))

where : C(i,j): initial weight of the edge from iii to jjj

ANK(iJ)ANK(, Ak(ij): shortest path from iii to jjj
using vertices {1,2,...kN\{1, 2, \dots, k\}1,2,....k} as
intermediate nodes

Time complexity O(n”3)

Space complexity O(n”2)

7. Optimal binary search tree

Given a sorted array of keys[0..n-1] and their
frequencies:

- plil: frequency of successful searches for keys]i]

- q[i]: frequency of unsuccessful searches between
keys

Goal: Construct a binary search tree that minimizes
the total expected cost of searches.

Recurrence relation
cost(i, j) =
ifj <i—return0
else — min over k € [i.,j] of:
cost(i, k-1) + cost(k+1, j) + w(i, j)
Where: w(i, j) = sum of pl[i.j] + sum of q[i-1.,j]
Time complexity : O(n”3)
Space complexity : O(n”2)

8. Multistage graph

A multistage graph is a directed acyclic graph
(DAG) in which the set of vertices is partitioned into
stages (e.g., S1,S2,...,Sk) such that:
Every edge connects a vertex from stage iii to stage
i+1
The goal is to find the shortest path from the
source vertex in stage S1to the destination vertex
in stage Sk
MSG(si, vj) =
0 if si = F and vj is the destination
min over all K in si+1 where (vj, K) € E:

cost(vj, K) + MSG(si+1, K)

Time Complexity:
e Without dynamic programming: O(2”n)
e With dynamic programming: O(V + E)

Space Complexity:
e Without dynamic programming: O(VA2)

Page No:- 12

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

e With dynamic programming: O(V2)

Time Complexity:

e Without DP: O(2”n) (due to exponential
combinations)

e With DP: O(V + E)
(because each vertex and edge is processed only
once)

Space Complexity:

e Without DP: O(VA2)

e With DP: O(VA2)

?:-haﬁ{t‘?ﬂ Source : 0
0-3-6-7 Destination : 7

Page No:- 13

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Module 5 : Graph traversal Techniques

Visiting all nodes of the tree/Graph in a specified
order and processing the information only once.

Connectad
Unfirected —<
Disconnec: tod
/-— Depth first search(DFS)
Connacted
Directed —<
\ Breath first search(BFS)

Graph traversal

FIFO BFS

DFS in Undirected graph:

a. Connected graph
Structure of node
E-node: Exploring node
Live node: Node which is not fully explored
Dead node: Node which is fully explored
Time associated with the node, during traversal
Discovery time: The time at which the node is
visited for the first time.
Finishing time: The time at which nodes
become dead.

116

b. Disconnected/Disjoint graph : Depth forest
tree

DFS in Directed graph: DFS when carried out on a

directed graph leads to following types of edge.

1. Tree edge : it is part of DFS spanning tree or
forest

2. Forward edge: Leads from a node to its non

child descendant in the spanning tree

Back edge: Leads from a node to its ancestors

4. Cross edge: Leads to a node which is neither
ascending nor descending.

w

DFS in Directed graph acyclic graph
Topological Sort:

Linear order of the vertices representing the activities
maintaining precedence.

Example below.

Topological sort(){

BFS : Level by level order traversal

2/ 3/4
e o\ olE)
5 H—>E

7o _4@\’@

By -,
(1 _.__}.D
R _)/) =

s
o
z | B
) ?/{; - /«3;5 %E) 5/L
ol g _p-R
6< E-fF—2
Np—A—c¢ < _4

—p—-A-CF-E
F-€ = B=D-A-CF

1. DFS(v).
2. Arrange all the nodes of traversal in
decreasing order of finishing time.

1. FIFO BFS: (BFS spanningtree) ABCDEFG

H
()

| €1 B [£ 4 [
foren (A LATBIS el €l D

= Fibo BFS A CDE Flaft
2. LIFOBFS:ACGHEDFB

Page No:- 14

GeoksforGeeks

Pankaj Rawat
Stamp

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Application of DFS & BSF
Time complexity of DFS and BFS depends upon
representation of Graph:

(i) Adjacency matrix: O(V?)

(i) Adjacency list: O(V + E)
Both DFS and BFS can be used to detect the presence
of cycle in the graph.
Both DFS and BFS can be used to know whether the
given graph is connected or not.
Both DFS and BFS can be used to know whether the
two vertices u and v are connected or not.
DFS is used to determine connected, strongly
connected, biconnected components, and
articulation points.
Connected Component (Undirected graph) : It is a
maximal set of vertices such that there is a path
between any pair of vertices in that set.
Strongly connected component (Directed graph): A
Strongly Connected Component (SCC) of a directed
graph is a maximal set of vertices such that for every
pair of vertices u and v in the set, there is a path from
u to v and a path from v to u.
Properties of Strongly Connected Components

1. Every directed graph is a D.A.G. of strongly
connected components.

2. Let Cand C' be distinct strongly connected
components in directed graph G = (V, E). Let u,
v € Cand u’, v' € C'. Suppose that there is a
path u — u'in G, then there cannot be a path v’
—vinG.

3. If Cand C' are strongly connected components
of G, and there is an edge from a node in C to a
node in C', then the highest post number in C is

b e,r than thepl hest post number in C'.
Artlc tlon point (cut vertex

Articulation Point: A vertex whose removal
increases the number of connected components in a

graph.

Bi-connected Graph: A graph with no articulation
points.

Bi-connected Component: A maximal subgraph that
is bi-connected.

Page No:- 15

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

Searching and Sorting

Classification

Internal vs
External
sorting

Explanation

Internal: All data fits into main
memory (RAM).

External: Used when data is too large
to fit into memory and uses external
storage

Comparison
vs Non-
comparison
Based

Comparison: Sorting is done using
comparisons between elements
Non-comparison: Uses digit-based
or counting approaches(radix sort,
counting sort)

Recursive vs

Recursive: The function calls itself to

Not-in-place

Iterative divide and conquer (e.g., Merge Sort,
Quick Sort).
In-place vs Space required is generally O(1) or

O(log n) at most (for recursion stack)
Merge Sort — O(n) space

Stable vs
Unstable

Relative order of same elements is
maintained (Stable)

1. Comparison based sorting

algorithm
Algorithm Time complexity Stable |In
sorting | place
sorting
Best Avera | Worst
ge
Quick sort | Q(n o(n O(n? | No Yes
log n) |logn)
Merge Q(n o(n O(n Yes No
sort logn) |[logn) |logn)
Insertion Q(n) o(n? O(n? | Yes Yes
sort
Selection [Q(n?) |6((n?» |0OMm? |No Yes
sort
Bubble Q(n) o(n? | Om? | Yes Yes
sort
Heap sort | Q(n o(n O(n No Yes
logn) |logn) |logn)

Selection sort takes the least number of swaps overall
i.e. (n — 1) swaps — no matter how unsorted the input

IS.

Page No:- 16

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

ALGORITHMS

GATE B¢

2. Non Comparison based sorting:

Algorithm Time complexity Stable | In
sorting | place
Best Averag | Worst Sl
e
Radix sort Qd*(n [ed*(n | Od*(n | Yes No

+ k) + k) + k)

Counting an+k) [on +k) | On + Yes No
sort k)

Bucketsort | Q(n + k) | o(n + k) | O(n? Yes(if No
stable
sort
used
inside
buckets
)

Page No:- 17

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE CSE BATCH

KEY HiGHLIGHTS:
« 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* CPROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE RS
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

STAR MENTOR CS/DA

KHALEEL SIR CHANDAN SIR
ALGORITHM & OS DIGITAL LOGIC
29 YEARS OF TEACHING EXPERIENCE GATE AIR 23 & 26 / EX-ISRO
SATISH SIR MALLESHAM SIR
DISCRETE MATHEMATICS M.TECH FROM IIT BOMBAY
BE in IT from MUMBAI UNIVERSITY AIR - 114, 119, 210 in GATE
(CRACKED GATE 8 TIMES)

14+ YEARS EXPERIENCE

VIJAY SIR PARTH SIR
DBMS & COA
M. TECH FROM NIT o
& A G EXDETIENCE IIT BANGALORE ALUMNUS

FORMER ASSISTANT PROFESSOR

SAKSHI MA'AM SHAILENDER SIR
ENGINEERING MATHEMATICS C PROGRAMMING & DATA STRUCTURE
IIT ROORKEE ALUMNUS M.TECH in Computer Science

15+ YEARS EXPERIENCE

AVINASH SIR AJAY SIR

APTITUDE PH.D. IN COMPUTER SCIENCE
10+ YEARS OF TEACHING EXPERIENCE 12+ YEARS EXPERIENCE

	Topological Sort:
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

