
https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

Flow chart of the C program

Data Types

Signed vs Unsigned
• Signed (default): Can store both positive and

negative numbers. −�𝟐𝟐𝒏𝒏−𝟏𝟏�𝒕𝒕𝒕𝒕 𝟐𝟐𝒏𝒏−𝟏𝟏 − 𝟏𝟏

• Unsigned: Can store only positive numbers, but with
double the max range. 𝟎𝟎 𝒕𝒕𝒕𝒕 𝟐𝟐𝒏𝒏 − 𝟏𝟏

Format Specifier

\n: use to give the break in the line.
\t: move the cursor to the next available frame in the line.

Cyclic Property

This property is observed when we try to store a value
larger than the range of a given data type.
For example, a char (in signed form) has a range from
–128 to 127. If we try to assign a value like 129 to a
char, the compiler does not show an error. Instead, it
uses the cyclic (wrap-around) behaviour and stores a
corresponding value within the valid range.
This happens due to integer overflow, and the excess
value wraps around using modulo arithmetic based on
the size of the data type.

Format
Specifier

Data Type Used For

%d or %i int Signed integer

%u unsigned int Unsigned integer

%f float/double Decimal floating-point number

%c char Single character

%s char [] (string) Null-terminated string

%p void* Pointer address

%x int Unsigned hexadecimal (lowercase)

%o int Unsigned octal number

C-PROGRAMMING
GATE फर्र े

Page No:- 01

https://www.geeksforgeeks.org/courses/category/gate

When we try to store 129 in a char variable, it
causes an overflow because the value exceeds the
maximum limit of 127 (for signed char).
Since it goes beyond the range, it wraps around
using the cyclic property.
Let’s understand it step-by-step:
• If c = 128, it overflows by 1 step and wraps to -

128 = - (129 -1)
• If c = 129, it overflows by 2, so the stored value

becomes -127 = -(129-2)
• And so on...

This is not something you need to memorize —
just practice these kinds of questions more to
understand the behaviour intuitively.

• When value is +ve overflow then clockwise in the
circle

• When the value is -ve overflow then move
anticlockwise in the circle.

⚠ Note: This cyclic property does not apply to float
and double types.
These are floating-point numbers, and they are
stored in memory using the IEEE 754 format.
Because of this, overflow in floating-point types
behaves differently and does not wrap around.
Hence, avoid relying on cyclic behaviour for float or
double.

Negative number will be stored in the 2’s
complement from in the memory.
If the msb is 1 it means the number is -ve and it is
stored in the 2’s complement form.
Range(𝟐𝟐𝒏𝒏−𝟏𝟏 𝒕𝒕𝒕𝒕 𝟐𝟐𝒏𝒏−𝟏𝟏 − 𝟏𝟏)

Operators
Assignment operator (=)

left value = right value
must be variable expression / constant

 variable

The assignment operator = first assigns the value, then
returns the assigned value.
So if (a = 1) means:

• First, 1 is assigned to a
• Then, the expression returns 1, which is true, so

the if block runs

Modulus (%)

both operands must be int value types
a%b = remainder of a when divided by b.
Sign of the Result Follows Dividend (Left Operand)

5 % 3 = 2
-5 % 3 = -2
5 % -3 = 2
-5 % -3 = -2

-

0 1 2
3

--

-
1 1 1

This is 129, it is positive overflow. So, we need to
move in the clockwise direction by 2 unit which is -
127.

Char c
(8bit)−𝟐𝟐𝟖𝟖−𝟏𝟏 𝒕𝒕𝒕𝒕 𝟐𝟐𝟖𝟖−𝟏𝟏 − 𝟏𝟏
Range =–128 to127

Example:
Char c = 129;
Printf (“%d”, c);

C-PROGRAMMING
GATE फर्र े

Page No:- 02

https://www.geeksforgeeks.org/courses/category/gate

Bitwise Operators

Logical AND (&&)

(Expression 1 && expression 2)
Returns:
• true (1) if both conditions are true

• false (0) if either condition is false

It has the short circuiting, means if the first operand
output is 0 or false then second expression will not be
evaluated.

Logical OR (| |)

(Expression 1 || expression 2)
Returns:
• false (0) if both conditions are false

• true (1) if either condition is true

It has the short circuiting, means if the first operand
output is 1 or true then second expression will not be
evaluated.

Bitwise And, OR

Bitwise And (|)

Result bit is 1 only
if both bits are 1.

(5) 0101
(3) & 0011

= 0001

Bitwise OR (|)
Result bit is 1 if
either of bits are 1.

(5) 0101
(3) & 0011

= 0111

Left Shift Operator (<<)

Syntax: x << n = x * (2𝑛𝑛)
How It Works
• Each bit shift to the left multiplies the

number by 2.

• Zeros are added on the right side.

• Leftmost bits are discarded if overflow
occurs.

Use Cases
Now we have the example: 1 << 3
• 1 = 0000 0001

• 1 << 3 → 0000 1000 = 8

Another method: 1*23 = 8.

C-PROGRAMMING
GATE फर्र े

Page No:- 03

https://www.geeksforgeeks.org/courses/category/gate

Right Shift Operator (>>)

Bitwise NOT Operator (~)

Logical Not (!)

Comma Operator (,)

Increment (++) and Decrement (-)
Pre-Increment / Pre-Increment

Syntax: x >> n = x / (2𝑛𝑛)
Example: 8 >> 3
• 8 in binary: 0000 1000

• 8 >> 3 → 0000 0001 = 1

Another
method:
8 / 23 = 8 / 8
= 1

Operates bit-by-bit.
Converts each 1 to 0 and
each 0 to 1.
~x = -(x+1)

~5
• 5 = 0000 0101

• ~5 = 1111
1010 = -6 (in
two's
complement)

The Logical NOT operator is denoted by(!)

• It is a unary operator (works on a single operand).

• It reverses the logical state of its operand.

!0 = true
! true = false

it evaluates from left to right and discard, final
value is right most

ex. int a= (9,8,7);
we apply the associativity of comma
operator.

// so, the final value of a=9;

ex. int a= 9,8,7;
is interpreted as:
int a = 9;
8;
7;
// so the final value of a=5;

Syntax: ++x, --x
We do the increment or decrement first then will use
the value in the expression.
Ex. int x = 5;
int y = ++x; // x becomes 6, then y = 6

Syntax: x++, x--, First use the value and then perform
the increment or decrement.
int x = 5;
int y = x++; // y = 5, then x becomes 6

C-PROGRAMMING
GATE फर्र े

Page No:- 04

https://www.geeksforgeeks.org/courses/category/gate

Ternary Operator

sizeof

If and else statements

Syntax: ++x, --x
We do the increment or decrement first then
will use the value in the expression.
Ex. int x = 5;
int y = ++x; // x becomes 6, then y = 6

is a compile-time operator used to determine
the memory size (in bytes) of a data type or
variable.
 Returns size_t type (an unsigned integer).
Evaluated at compile time (except in Variable
Length Arrays).
No function call — it's an operator, not a
function.

Syntax: if(expression)
 {statements}

else {statements}

There is no compulsion of the else block after if.
This means you can use if without using
else.
if (exp) {
 statement;
} // valid syntax, there is no requirement of
the else block

Only else block can’t exist. if block is necessary
for else.
You cannot write else without if.
else {

 // statement;
 } // invalid, compiler give the error of wrong
syntax

If()
Statement; // expression is mandatory in the if block
If(1) –> this is perfect statements
Note: In C, if you do not use curly braces {} after an if
statement, only the very next single statement is
considered part of the if block.

There should be no statement between
the if and else block.
You must not insert any statements
between if and else.
if (exp) {
 // statement1;
}
// statement2;
else {
 // statement3;
}
Result: Compilation error — "else
without if"

C-PROGRAMMING
GATE फर्र े

Page No:- 05

https://www.geeksforgeeks.org/courses/category/gate

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

Loops
For loops

While

Pattern Valid? Explanation

if (exp)
{statement;}

yes Only if block, no else needed,
but expression is mandatory in if
block

If () statement; no Expression is missing
else
{statement;}

no Must follow an if block

if (exp)
{statement;}
statement;
else
{statement;}

no Statement between if and else
breaks the pair

if (exp)
{statement;}
else
{statement;}

yes Proper structure

In a chain of if - else if - else if - else, only the first
block whose condition is true will execute, even if
other conditions are also true.
int x = 15;
if (x > 10)
 printf ("Condition 1: x > 10\n");
else if (x > 5)
 printf ("Condition 2: x > 5\n");
else if (x > 0)
 printf ("Condition 3: x > 0\n");
else
 printf("Condition 4: x <= 0\n");

There is all the blocks condition are true. But we
check first condition which is if(x > 10) and it comes
true then we will not execute to the next level, even
if the next blocks like else if(x>5), else(x>0) are true.

Valid syntax:
for (exp1; exp2; exp3) {
 Statements;
}

 Flow: exp1 → exp2? → statements → exp3
Expression inside the for loop are optional.
But 2 semicolons are compulsory.

 for (;
;)
this is valid
for loop, will

Valid syntax:
while(expression) {
Statements;
}
expression is not optional it is mandatory.
When to use

• When number of iterations is not known in
advance

C-PROGRAMMING
GATE फर्र े

Page No:- 06

https://www.geeksforgeeks.org/courses/category/gate

Do-while

Switch Statement

 it executes the loop body first, then checks the
condition
How It Works

• Always runs once, even if the condition is
initially false.

• After executing, it checks the condition.

• Continues if condition is true.

Expression is mandatory not optional.

break: To exit a loop or switch statement immediately,
skipping the remaining iterations or cases. Used in loops,

Continue: To skip the current iteration of a loop and go to
the next iteration, used in loops, but in switch it will give

switch (expression) {
 case constant1:

 // code
 break;

…
 default:

 // code
}

• break is not a mandatory statement.
• The expression must evaluate to an integer, char, or

Enum (not float, double, or string).
• Each case must use a constant value (no variables or

ranges allowed).
• default is optional and executes when no cases match.
• The position of the default case doesn’t matter.
• continue cannot be used inside a switch statement.
• If there is any statement between two case labels, it is

ignored (not executed) unless one of the cases above
falls through.

• switch is generally faster than if-else for fixed constant
comparisons.

• If break is not used and one case matches, execution
will continue through all subsequent cases, including
default.

C-PROGRAMMING
GATE फर्र े

Page No:- 07

https://www.geeksforgeeks.org/courses/category/gate

PRIORITY OPERATORS

Operators Description Associativity

(), [], . ,-> Function call, array
subscript, struct

Left to Right

++, --, +, -
, !, ~, *, &,
(type),
sizeof ()

Unary operators, type cast,
dereference

Right to Left

*, /, % Multiplication, division,
modulus

Left to Right

+, - Addition, subtraction

<<, >> Bitwise shift left/right

< <=, >
>=

Relational operators

==, != Equality operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

?: Ternary conditional Right to Left

= Assignment operators

, Comma (sequential
evaluation)

Left to Right

print in C

Concept:
printf (“%d”, 1 || printf (“I’ll be rank 1”) && 0);
In C:

• && has higher precedence than ||
• So, the expression is grouped like this:
 1 || (printf("I'll be rank 1") && 0)

But when we see the short-circuiting, (printf ("I'll
be rank 1") && 0) will not execute.
Output: 1.

• printf () is defined in the <stdio.h> header file.

• It returns the number of characters it prints.

• If an error occurs, it returns a negative number
(usually -1).

• Format specifiers like %s (for strings), %d (for
integers), etc., are used to control what and
how values are printed.

printf ("%s %d", "I'm the rank", 1);
output: I'm the rank 1
Always ensure that the number and type of
format specifiers match the values you pass to
printf (). Mismatches can lead to undefined
behaviour or runtime errors.

C-PROGRAMMING
GATE फर्र े

Page No:- 08

https://www.geeksforgeeks.org/courses/category/gate

Scanf in C

Functions
A function is a block of code that performs a specific
task. It promotes code reusability and modular
programming.

• scanf () is defined in the <stdio.h> header file.

• It is used to read input from the user.

• scanf () returns the number of input items
successfully assigned.

• If the input fails (like wrong format or EOF),
it returns 0 or EOF (-1).

• Format specifiers like %d, %f, %c, %s is used
to specify the type of input expected.

• Address-of operator & is used to pass the
memory address of variables (except for
strings).

• Do not use & with strings (character arrays), as
the array name already represents the address.

Syntax
return_type function_name(parameter_list) {

 // body of function
}

Prototype: A function prototype declares a
function's name, return type, and parameters to
the compiler before its definition, enabling type
checking and early function calls.
int add (int, int); // Function prototype
Note:

• If you do not specify a return type, the
default return type is considered as int.

• If the definition or call mismatches the
prototype, the compiler throws an error.

Definition: it contains the code what the function
does.
int add (int a, int b) // Function definition
{ ….. contains what the function does}
Things to Include in Function Definition:

1. Return Type – What type of value the
function returns (int, float, void, etc.)

2. Function Name – The name you’ll use to
call the function

3. Parameter List – Input values the function
receives (can be empty)

4. Function Body – The block of code that
performs the task

5. Return Statement – (if not void) To send the
result back to the caller

C-PROGRAMMING
GATE फर्र े

Page No:- 09

https://www.geeksforgeeks.org/courses/category/gate

Function calling: function_name (arguments);

Call by Value

Formal arguments are the parameters listed in the
function definition. When a function is called, copies
of actual values are passed to them.

Changes made to formal arguments do not affect
actual arguments.
This is the default behaviour in C.
Separate memory is allocated for the formal
parameters.

Referenced Parameter Passing

In this method, instead of sending a copy, we send the
address of the variable to the function using
pointers. This allows the function to modify the
original value.
Any change made inside the function affects the
original variable.
This is done using pointers in C.
Both actual and formal parameters point to the
same memory.

Storage classes define the scope, lifetime, visibility,
and memory location of variables.

auto
• Default for local variables.
• Scope: Inside block/function.
• Lifetime: Till the block ends.

auto int a = 10; // usually just written as int a = 10;

register
1. Stored in CPU registers (if available) for faster

access.
2. Cannot get the address using & register int

counter;
register int counter;

static
• Retains value between function calls.
• Scope: Local to block in which it is

declared.
• Lifetime: Entire program.

Static int count = 0;

C-PROGRAMMING
GATE फर्र े

Page No:- 10

https://www.geeksforgeeks.org/courses/category/gate

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

Storage Scope Lifetime Stored In Keyword Default
Initial Value

auto Block
(local)

Till
block
ends

Stack auto
(default)

Garbage
value
(undefined)

register Block
(local)

Till
block
ends

CPU
Register
(if
available)

register Garbage
value
(undefined)

static Block /
File

Entire
program

Data
Segment

static 0 (zero)

extern Global
(across
files)

Entire
program

Data
Segment

extern 0 (if defined
globally
without
initialization)

global
(no
keyword)

Global
(entire
program)

Entire
program

Data
Segment

— 0

extern
● Declares a variable defined in another file.
● Used for global sharing.

extern int x; // Defined elsewhere
• If a variable is used before it is defined,

you can declare it using extern.
• If a variable is used before it is defined,

you can declare it using extern.

1. You cannot initialize an extern variable
during declaration.

 extern int x = 10; // Error

extern int count;
int main () {
 printf ("%d",
count);
 return 0;
}
int count = 5; //
Defined later

C-PROGRAMMING
GATE फर्र े

Page No:- 11

https://www.geeksforgeeks.org/courses/category/gate

Array

Pointers

• Array name represents the address of its first
element.

int arr [5];
printf ("%p", arr); // Prints address of arr [0]);
arr means &arr[0]
• Array name is constant, so it can’t be the left

value.
 arr = value; → Invalid

• Array size must be a constant or fixed expression
(at compile time).

 int arr[10]; valid
 int size; int arr[size]; invalid

• variable can’t be used as a size in the array.

If an array has n dimensions, and:
• You use all n dimensions → you're accessing an

element.
• You use fewer than n dimensions → you're

referring to an address (sub-array).
int a [2][3];
a [1][2]; // Element
a [1]; // Address of &a[1][0]
a; // Address of &a[0][0]
• Initialization at Declaration → Size is Optional (for

first dimension)

If you initialize the array during declaration, the first
dimension’s size can be omitted — the compiler
will count it automatically.

int arr [] = {1, 2, 3}; // Size = 3 (automatically)
int arr [3] = {1, 2, 3}; // Also OK
• Multidimensional Arrays → Only First Dimension

Can Be Omitted
In multi-dimensional arrays:
• You can omit the first dimension if initializing.
• All other dimensions must be specified.

a[i] = *(a + i) = *(i + a) = i[a]
But remember: this is valid only for access, not for
declaration.
 i[a] is not valid during declaration — it will result in an
error.
Also, expressions like:
 a++, a--, --a, ++a are invalid if a is an array, because
array names cannot be used as left-hand values.

• Pointers are variables that store the address of
another variable or item.

• You can also have pointers to pointers, and even
more levels (multiple indirection).

• We dereference a pointer using the * operator.

int variable; // Normal integer variable

int *ptr; // Declaration of a pointer to int

ptr = &variable; // Storing the address of variable in
pointer

// Or in a single line:

int *ptr = &variable;

It Means:

• int *ptr; → Declares ptr as a pointer to int

 & A i h dd f

2500

30
pt

100

This is the
address of the
variable x

This the value
stored in the

C-PROGRAMMING
GATE फर्र े

Page No:- 12

https://www.geeksforgeeks.org/courses/category/gate

We cannot perform arbitrary pointer arithmetic
between unrelated pointers, but pointer - pointer is
valid when both pointers point to elements of the
same array.
In this case, the result is the difference in element
positions, not in bytes, because the compiler
automatically divides the address difference by the
size of the data type.
int a[10];
int *p = &a[7];
int *q = &a[2];
int diff = p - q;
difference = (address at p - address at q) / sizeof(int)

Types of Pointers

Null Pointer

Points to nothing. Used for safety.
int *p = NULL;

Dangling Pointer
Points to memory that has been freed or is out of
scope.

Wild Pointer
Uninitialized pointer that points to a random memory
location.

Void Pointer (Generic Pointer)
Can point to any data type. Needs to be typecasted
before dereferencing.

void *ptr;
int *const p = &x; → constant pointer (address can't
change).
const int *p = &x; → pointer to constant (value can't
change).
const int *const p = &x; → both value and address are
constant.

Pointer Arithmetic
int a[5] = {1,2,3,4,5};
int *p = a;
p++; // moves to next integer (adds sizeof(int))

malloc(), calloc(), realloc(), and free() are used with
pointers for dynamic memory.
int *p = (int *)malloc(sizeof(int) * 5);
free(p);

Dynamic memory allocation

malloc () – Memory Allocation
Definition:

malloc (memory allocation) is used to dynamically
allocate a single block of memory of a specified size (in
bytes). It does not initialize the memory—it contains
garbage values.

int *ptr = (int*) malloc (5 * sizeof(int));

calloc () – Contiguous Allocation
calloc (contiguous allocation) allocates memory for an
array of elements, initializes all bytes to zero.
void* calloc (size_t num_elements, size_t
element_size);

realloc () – Reallocation

is used to resize a previously allocated memory block
(from malloc or calloc). The contents are preserved up
to the minimum of the old and new sizes.
void* realloc (void* ptr, size_t new_size);
All three functions return NULL if memory allocation
fails.
Always free () the allocated memory when done, to
avoid memory leaks.

String Representation in C

Strings in C can be represented in two ways:
1. Using a character array

2. Using a pointer to a string literal

C-PROGRAMMING
GATE फर्र े

Page No:- 13

https://www.geeksforgeeks.org/courses/category/gate

Summary of Key Points

• Arrays allow changing individual characters,
e.g., str [0] = 'H';

• Pointers may point to string literals, which are
often read-only

• You cannot assign a new string to an array
like: str = "new"; → invalid

• But with pointers: str = "new"; → valid

Memory Behaviour for Strings in C

Read-Only Memory (String Literals)
• Strings stored using pointers, e.g., char *str =

"hello";
• Stored in read-only (constant) memory
• Duplicate strings are not created — if two

literals are the same, they share the same
memory location

Both a and b point to the same memory address.
So

→ Both print the same address.
Also:

if (a == b)
 printf ("Same location\n");
 Output: Same location

Read / write memory
Strings stored using arrays, e.g., char str [] = "hello";
Stored in stack or heap, which is read/write memory
Duplicates are allowed — each array creates a separate
copy of the string

Strings in C can be represented in two ways:
3. Using a character array
4. Using a pointer to a string literal

Feature Array Pointer

Declaration char str []
= "hello";

char *str
=
"hello";

Memory
Location

Stored in
read/write
memory

Stored
in read-
only
memory

Modifying
individual
characters

Allowed Not
allowed

Reassigning the
whole string

 Not
allowed

 Allowed

Array name used
as l-value

Cannot
be used
as l-value

 Pointer
is an l-
value

char *a = "hello";
char *b = "hello";

printf ("%p\n", a);
printf ("%p\n", b);

Example:
char a [] = "hello";
char b [] = "hello";
// a and b have different memory addresses

C-PROGRAMMING
GATE फर्र े

Page No:- 14

https://www.geeksforgeeks.org/courses/category/gate

string.h Functions in C
strlen
Get Length of String
unsigned int strlen(const char *str);

Returns the number of characters in the string
(excluding the '\0' null terminator).
The parameter is const because strlen does not modify
the string.

strcpy
char *strcpy (char *destination, const char *source);
 Copies the string from source to destination including
'\0'.
 source is const because it should not be changed.
destination must be a writable array or memory block,
i.e we should pass the array because the string will be
in the r/w area.

strcat
Appends src string to the end of dest string, removing
'\0' of dest and adding one at the end.

strcmp
 Compares two strings character by character.
 Returns:

• 0 if both strings are equal

• Positive or negative difference of ASCII
values where mismatch occurs

Structure in C

A structure is a user-defined data type in C.
It allows you to group different types of variables
under one name.
by default, structure contains the 0 or null values.
Useful for representing real-world entities (e.g.,
student, book,
employee, etc.).

Note: "hello" is a string literal, which means it
represents the address of the first character ('h') in
memory.
printf ("%s", "hello" + 1);
output: ello
 "hello" is a pointer to the first character ('h')
 "hello" + 1 moves the pointer one character ahead
— to 'e'
 So printf starts printing from 'e'

strcmp ("papu", "pake")
Compares: 'p' == 'p', 'a' == 'a', 'p' != 'k'
'p' - 'k' = 112 - 107 = 5
Return value: 5

struct Name {
 data_type member1;
 data_type member2;
 ...
};
struct Student s1; // variable of type struct Student

C-PROGRAMMING
GATE फर्र े

Page No:- 15

https://www.geeksforgeeks.org/courses/category/gate

Feature Explanation

User-defined Unlike int, char, etc., created
by the programmer

Holds multiple
data types

e.g., int, float, char [], all
together

Memory layout All members stored
contiguously in memory

Struct name is not
an address

Unlike arrays, structure
names are not pointers

Can contain
nested structures

Yes

typedef struct Student {
 int roll;
 char name[50];
 float marks;
} Student;

Student s1; // now no need to write 'struct' again

struct {
 int roll;
 char name[20];
} s1, s2;
This is anonymous and we can’t create object of
it but can use the variable s1 and s2 which we
declared.

C-PROGRAMMING
GATE फर्र े

Page No:- 16

https://www.geeksforgeeks.org/courses/category/gate

Structure definition is just a template. You can’t assign
values inside it — you assign values only after creating
a variable.
we access structure members using either the dot (.)
operator or the arrow (->) operator
Union in C
A union is a special data type in C that allows storing
different types of data in the same memory location.
union Data {
 int i;
 float f;
 char str[20];
};
All members share the same memory, and the size of
the union is equal to the size of its largest member.

Scoping
• Scoping defines where a variable can be

accessed in a program (its visibility or lifetime).
Static scoping
Variable scope is decided at compile time.
Local to the block will be preferred.

Dynamic Scoping

Variable scope is decided at runtime.
The program searches the call stack to find the most
recent variable definition.

int x = 10;
void func () {
 int x = 20;
 printf ("%d", x); // Output: 20 (local x used)
}

x=5
foo() {
 print(x);
}
bar() {
 local x=10
 foo # Output: 10 – because bar called foo, and
x=10 in bar
}

struct Student {
 int roll_num = 9; // Invalid
 char str [] = "Kunal"; // Invalid
};
This is incorrect, because:

• A struct is only a blueprint, it does not
allocate memory until an object (variable)
is created.

• In C, you cannot assign values to structure
members inside the definition.

• Memory is only allocated when you
create an object like:

 struct Student s1;

C-PROGRAMMING
GATE फर्र े

Page No:- 17

https://www.geeksforgeeks.org/courses/category/gate

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

	Call by Value
	Referenced Parameter Passing
	Types of Pointers
	Pointer Arithmetic
	Dynamic memory allocation
	malloc () – Memory Allocation
	calloc () – Contiguous Allocation
	realloc () – Reallocation

	String Representation in C
	Memory Behaviour for Strings in C
	Read-Only Memory (String Literals)
	Read / write memory

	string.h Functions in C
	strlen
	strcpy
	strcat
	strcmp

	Structure in C
	Union in C
	Scoping
	Static scoping
	Dynamic Scoping

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

