:' y el
[c-PROGRAMMING)

[BN P -
L
i L)
M
ok !
. -

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Flow chart of the C program

Loader
Assembler
Loads executable
into mamory

(m]
cécu
(m]

Expoands macros

and Includes Craatas abject file

&3 L[5

Compilar

N

Linkeyr CPU Executes
Combines with
libraries to create
executoable

Translates to
assembly

Data Types

Integer

Floating
Predefined / Primitive {those which are already

Character
thera)

Baolaan

Vold

Array
\ Derived, They use or extend existing data types o
i
to provide more complex structures or behaviors,

String
Structure
User Defined (we can create them as per our i
demand)}
Typedef

Signed vs Unsigned
e Signed (default): Can store both positive and

Euns the program

Data Types

negative numbers. —(2"1)to 271 — 1

e Unsigned: Can store only positive numbers, but with
double the max range. 0to 2™ — 1

Signad char: Range =-2"to 2" -1
char (8 bits)

Ungignad char: Range = 0t 2"~ 1

Signad short int:
short int (16 bits) —<
Unsigned short int:
\ Signed int
int (32its) —<
Unsigned int

Range =-2"t0 2" -1

Data Types

Rangs =0ted'-1

Range =—-2"to 2% -1

Range=Nto 2 -1

Format Specifier

Format Data Type Used For

Specifier

%d or %i int Signed integer

%u unsigned int Unsigned integer

%f float/double Decimal floating-point number
%c char Single character

%s char [] (string) Null-terminated string

%p void* Pointer address

%X int Unsigned hexadecimal (lowercase)
%0 int Unsigned octal number

\n: use to give the break in the line.

\t: move the cursor to the next available frame in the line.

Cyclic Property

This property is observed when we try to store a value
larger than the range of a given data type.

For example, a char (in signed form) has a range from
—-128 to 127. If we try to assign a value like 129 to a
char, the compiler does not show an error. Instead, it
uses the cyclic (wrap-around) behaviour and stores a
corresponding value within the valid range.

This happens due to integer overflow, and the excess
value wraps around using modulo arithmetic based on
the size of the data type. ‘

Page No:- 01

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

When we try to store 129 in a char variable, it

causes an overflow because the value exceeds the

maximum limit of 127 (for signed char).

Since it goes beyond the range, it wraps around

using the cyclic property.

Let's understand it step-by-step:

e If c =128, it overflows by 1 step and wraps to -
128 = - (129 -1)

e If c =129, it overflows by 2, so the stored value
becomes -127 = -(129-2)

e And soon...
This is not something you need to memorize —
just practice these kinds of questions more to
understand the behaviour intuitively.

e When value is +ve overflow then clockwise in the
circle

e When the value is -ve overflow then move
anticlockwise in the circle.

A Note: This cyclic property does not apply to float
and double types.
These are floating-point numbers, and they are
stored in memory using the IEEE 754 format.
Because of this, overflow in floating-point types
behaves differently and does not wrap around.
Hence, avoid relying on cyclic behaviour for float or
double.

Negative number will be stored in the 2's
complement from in the memory.

If the msb is 1 it means the number is -ve and it is
stored in the 2's complement form.
Range(2™1to2"1-1)

Operators
Assignment operator (=)

left value = right value

must be variable expression / constant
variable

Charc
(8bit)—28-1¢0 281 -1
Range =—128 to127

Example:
Char c = 129;
Printf (“%d”, c);

This is 129, it is positive overflow. So, we need to
move in the clockwise direction by 2 unit which is -
127.

The assignment operator = first assigns the value, then
returns the assigned value.
So if (a = 1) means:
e First, 1is assigned to a
e Then, the expression returns 1, which is true, so
the if block runs

Modulus (%)

both operands must be int value types
a%b = remainder of a when divided by b.
Sign of the Result Follows Dividend (Left Operand)

5%3=2

-5%3=-2
5%-3=2

-5%-3=-2

Page No:- 02

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Bitwise Operators

Logical AND (&&)
LoglcalOperators { Logical OR (1)
Logical NOT (1)
L= Bilwise AND (&)
Bitwise Operators
Bitwise OR {|)
Eltmse Operators Bitwise NOT (-}

Left Shift Operator (<<)

Right Shift Operator (==)

Logical AND (&&)

Bitwise And, OR

Bitwise And ()

Result bit is 1 only
if both bits are 1.
(5) 0101
(3) & 0011

= 0001

(Expression 1 && expression 2)
Returns:
o true (1) if both conditions are true

o false (0) if either condition is false

It has the short circuiting, means if the first operand
output is 0 or false then second expression will not be

evaluated.

Bitwise OR (|)
Result bit is 1 if
either of bits are 1.
(5) 0101
(3) & 0011
= 0111

Left Shift Operator (<<)

Logical OR (| |)

(Expression 1 || expression 2)
Returns:
o false (0) if both conditions are false

o true (1) if either condition is true

It has the short circuiting, means if the first operand
output is 1 or true then second expression will not be
evaluated.

Syntax: x << n =x*(2")

How It Works

e Each bit shift to the left multiplies the
number by 2.

e Zeros are added on the right side.

e Leftmost bits are discarded if overflow
occurs.

Use Cases
Now we have the example: 1 << 3
e 1 =0000 0001

e 1<<3— 00001000 =38

Another method: 1*23 = 8.

Page No:- 03

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Right Shift Operator (>>)

Comma Operator (,)

Syntax: x >> n = x/ (2")
Example: 8 >> 3
e 8in binary: 0000 1000

e 8>>3— 00000001 =1

Another
method:
8/23=8/8
=1

Bitwise NOT Operator (~)

Operates bit-by-bit.
Converts each 1 to 0 and
eachOto 1.

~X = -(x+1)

~5
«5=0000 0101

e~5=1111
1010 = -6 (in
two's

complement)

Logical Not (!)

it evaluates from left to right and discard, final
value is right most

ex. inta= 9,8,7;

is interpreted as:
inta=29;

8;

7

// so the final value of a=5;

ex. inta= (9,8,7);
we apply the associativity of comma
operator.

// so, the final value of a=9;

Increment (++) and Decrement (-)

The Logical NOT operator is denoted by(!)

e |tis a unary operator (works on a single operand).

¢ |t reverses the logical state of its operand.

Pre-Increment / Pre-Increment

Syntax: ++x, --Xx

We do the increment or decrement first then will use
the value in the expression.

Ex.intx = 5;

10 = true
! true = false

inty = ++x; // x becomes 6, theny = 6

Syntax: x++, x--, First use the value and then perform
the increment or decrement.

intx = 5;

inty = x++;//y =5, then x becomes 6

Page No:- 04

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Ternary Operator

Syntax: ++X, --x

We do the increment or decrement first then
will use the value in the expression.

Ex.intx = 5;

inty = ++x; // x becomes 6, theny = 6

sizeof

is a compile-time operator used to determine
the memory size (in bytes) of a data type or
variable.

Returns size_t type (an unsigned integer).
Evaluated at compile time (except in Variable
Length Arrays).

No function call — it's an operator, not a
function.

If and else statements

Syntax: if(expression)
{statements}
else {statements}

This means you can use if without using
else.
if (exp) {

statement;
} I/ valid syntax, there is no requirement of
the else block

There is no compulsion of the else block after if.

Only else block can't exist. if block is necessary
for else.
You cannot write else without if.
else {

Il statement;
} // invalid, compiler give the error of wrong
syntax

If()
Statement; // expression is mandatory in the if block

If(1) —>this is perfect statements

Note: In C, if you do not use curly braces {} after an if
statement, only the very next single statement is
considered part of the if block.

There should be no statement between
the if and else block.
You must not insert any statements
between if and else.
if (exp) {
I/l statement1;
}
Il statement2;
else {
I/l statement3;
}
Result: Compilation error — "else
without if"

Page No:- 05

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

GATE CSE BATCH

KEY HIGHLIOHTS:
» 300+ HOURS OF RECORDED CONTENT
e 900+ HOURS OF LIVE CONTENT
e SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/AGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
e COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Pattern Valid? | Explanation

if (exp) yes Only if block, no else needed,

{statement;} but expression is mandatory in if
block

If () statement; | no Expression is missing

else no Must follow an if block

{statement;}

if (exp) no Statement between if and else

{statement;} breaks the pair

statement;

else

{statement;}

if (exp) yes Proper structure

{statement;}

else

{statement;}

In a chain of if - else if - else if - else, only the first
block whose condition is true will execute, even if
other conditions are also true.
int x = 15;
if (x > 10)
printf ("Condition 1: x > 10\n");
else if (x > 5)
printf ("Condition 2: x > 5\n");
else if (x > 0)
printf ("Condition 3: x > O\n");
else
printf("Condition 4: x <= 0\n");

There is all the blocks condition are true. But we
check first condition which is if(x > 10) and it comes
true then we will not execute to the next level, even
if the next blocks like else if(x>5), else(x>0) are true.

Loops
For loops
Which loop type should be used?
While Loop
For Loop

Use when the condition
is checked before each
iteration.

Do-While Loop

Use when the loop must
run at least once.

Use when the number of
iterations is known
beforehand.

Valid syntax: for (;
for (exp1; exp2; exp3) { ;)

Statements; this is valid

} for loop, will

~ N

Flow: exp1 — exp2? — statements — exp3
Expression inside the for loop are optional.

But 2 semicolons are compulsory.

While

Valid syntax:
while(expression) {
Statements;

}

expression is not optional it is mandatory.
When to use
e When number of iterations is not known in

advance

Page No:- 06

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

e break is not a mandatory statement.

Do-while

o The expression must evaluate to an integer, char, or
it executes the loop body first, then checks the Enum (not float, double, or string). .

- e Each case must use a constant value (no variables or
condition

How It Works

e Always runs once, even if the condition is

ranges allowed).
o default is optional and executes when no cases match.

e The position of the default case doesn’'t matter.

initially false. e continue cannot be used inside a switch statement.

« After executing, it checks the condition o If there is any statement between two case labels, it is

ignored (not executed) unless one of the cases above

e Continues if condition is true. falls through.

o] e switch is generally faster than if-else for fixed constant

Expression is mandatory not optional. .
comparisons.

e If break is not used and one case matches, execution

will continue through all subsequent cases, including
default.

Continue: To skip the current iteration of a loop and go to
the next iteration, used in loops, but in switch it will give

break: To exit a loop or switch statement immediately,
skipping the remaining iterations or cases. Used in loops,

Switch Statement

switch (expression) {
case constant1:
Il code
break;

default:
Il code

Page No:- 07

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

PRIORITY OPERATORS

Operators

Description

Associativity

()I []I >

Function call, array
subscript, struct

Left to Right

++, --, +, - | Unary operators, type cast, | Right to Left
.1, ~, % &, | dereference
(type),
sizeof ()
* [, % Multiplication, division,
modulus
+, - Addition, subtraction
<<, >> Bitwise shift left/right
<<=, > Relational operators Left to Right
>=
==, I= Equality operators
& Bitwise AND
A Bitwise XOR
| Bitwise OR
&& Logical AND
Il Logical OR

GATE B¢
Concept:

printf (“%d", 1 || printf (“I'll be rank 1") && 0);
In C:
o && has higher precedence than ||
e So, the expression is grouped like this:
1| (printf("I'll be rank 1") && 0)
But when we see the short-circuiting, (printf ("I'll
be rank 1") && 0) will not execute.
Output: 1.

printin C

e printf () is defined in the <stdio.h> header file.
e Itreturns the number of characters it prints.

o If an error occurs, it returns a negative number
(usually -1).

e Format specifiers like %s (for strings), %d (for
integers), etc., are used to control what and
how values are printed.

printf ("%s %d", "I'm the rank”, 1);

output: I'm the rank 1

Always ensure that the number and type of
format specifiers match the values you pass to
printf (). Mismatches can lead to undefined
behaviour or runtime errors.

Ternary conditional

Assignment operators

Right to Left

Comma (sequential
evaluation)

Left to Right

Page No:- 08

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Scanf in C
Syntax
e scanf () is defined in the <stdio.h> header file. return_type function_name(parameter_list) {
e Itis used to read input from the user. } if body of function

e scanf () returns the number of input items
successfully assigned.

Prototype: A function prototype declares a
o If the input fails (like wrong format or EOF),

it returns 0 or EOF (-1).

function's name, return type, and parameters to
the compiler before its definition, enabling type

o Format specifiers like %d, %f, %c, %s is used checking and early function calls.
to specify the type of input expected. int add (int, int); // Function prototype
Note:

e Address-of operator & is used to pass the « If you do not specify a return type, the

memory address of variables (except for default return type is considered as int.

strings). o If the definition or call mismatches the

« Do not use & with strings (character arrays), as prototype, the compiler throws an error.

the array name already represents the address.

Definition: it contains the code what the function

does.
Functions int add (int a, int b) // Function definition
A function is a block of code that performs a specific {... contains what the function does}
task. It promotes code reusability and modular Things to Include in Function Definition:
programming. 1. Return Type - What type of value the

function returns (int, float, void, etc.)
. 2. Function Name - The name you’ll use to
Types of Functions call the function
3. Parameter List — Input values the function
receives (can be empty)

4. Function Body - The block of code that
Library Functions User-defined Functions performs the task

5. Return Statement — (if not void) To send the
result back to the caller

Predefined Functions Created by the Programmer

strlen() printf() scanf()

Page No:- 09

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Function calling: function_name (arguments); Storage Classes in C

Function Call l ! 1 v

| Auto Register extern Static
\l, J, Storage classes define the scope, lifetime, visibility,
Call by Value Call by Reference and memory location of variables.
auto
o Default for local variables.
Call by Value o Scope: Inside block/function.

o Lifetime: Till the block ends.

Formal arguments are the parameters listed in the auto int a = 10; /I usually just written as int a = 10;

function definition. When a function is called, copies

of actual values are passed to them.

register
Ch de to f I tsd t affect

angesmade 10N - raumen= NS 1. Stored in CPU registers (if available) for faster
actual arguments.

This is the default behaviour in C.

Separate memory is allocated for the formal

access.
2. Cannot get the address using & register int
counter;

parameters. .
register int counter;

Referenced Parameter Passing

In this method, instead of sending a copy, we send the static

address of the variable to the function using * Retains value between function calls.

pointers. This allows the function to modify the * Scope: Local to block in which itis

- declared.
original value.

Any change made inside the function affects the * Lifetime: Entire program.

- . Static int count = 0;
original variable.

This is done using pointers in C.

Both actual and formal parameters point to the
same memory.

Page No:- 10

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

GATE CSE BATCH

KEY HIGHLIOHTS:
» 300+ HOURS OF RECORDED CONTENT
e 900+ HOURS OF LIVE CONTENT
e SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/AGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
e COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Storage Scope Lifetime | StoredIn | Keyword | Default
extern Initial Value
e Declares a variable defined in another file. auto Block Till Stack auto Garbage
. (local) block (default) | value
e Used for global sharing. ends (undefined)
extern int x; // Defined elsewhere
register Block Till CPU register Garbage
» If a variable is used before it is defined, (local) block Register value
you can declare it using extern. ends ::a“able) (undefined)
. If a variable is used before it is defined, static Block / Entire Data static 0 (zero)
you can declare it using extern. File program | Segment
extern Global Entire Data extern 0 (if defined
(across program | Segment globally
files) without
initialization)
extern int count; global Global Entire Data — 0
int main 0{ (no (entire program | Segment
. " " keyword) rogram)
printf ("%d", L 2
count);
return O;
}
int count = 5; //
Defined later
1. You cannot initialize an extern variable
during declaration.
extern int x = 10; // Error
Page No:- 11

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢
Array alil = *(a + i) = *(i + a) = i[a]

But remember: this is valid only for access, not for

¢ Array name represents the address of its first declaration.
element.

int arr [5];

printf ("%p", arr); // Prints address of arr [0]);

arr means &arr[0]

i[a] is not valid during declaration — it will result in an
error.

Also, expressions like:

a++, a--, --a, ++a are invalid if a is an array, because

* Array name is constant, so it can't be the left array names cannot be used as left-hand values.

value.

arr = value; — Invalid

e Array size must be a constant or fixed expression]
y P e Pointers are variables that store the address of

(at compile time). another variable or item.

int arr[10]; valid

L R, ¢ You can also have pointers to pointers, and even
int size; int arr[size]; invalid

more levels (multiple indirection).
e variable can't be used as a size in the array.

. . e We dereference a pointer using the * operator.
If an array has n dimensions, and:

¢ You use all n dimensions — you're accessing an int variable; // Normal integer variable
element.
e You use fewer than n dimensions — you're int *ptr; // Declaration of a pointer to int
referring to an address (sub-array).
) ! g (su Y) ptr = &variable; // Storing the address of variable in
int a [2][3]; pointer
a [11[2]; // Element
a [1]; // Address of &a[1][0] // Or in a single line:

a; // Address of &a[0][0]

1 % = 1 .
e Initialization at Declaration — Size is Optional (for int *ptr = &variable;

first dimension) It Means:

If you initialize the array during declaration, the first . . .
y y g e int *ptr; — Declares ptr as a pointer to int

dimension’s size can be omitted — the compiler

will count it automatically.
intarr [] = {1, 2, 3}; // Size = 3 (automatically)
int arr [3] = {1, 2, 3}; // Also OK This the value
e Multidimensional Arrays — Only First Dimension 2500 stored in the
Can Be Omitted

In multi-dimensional arrays: \

. o P This is th
* You can omit the first dimension if initializing. diees ot the
o All other dimensions must be specified. . variable x
pt 100
30

Page No:- 12

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

We cannot perform arbitrary pointer arithmetic
between unrelated pointers, but pointer - pointer is
valid when both pointers point to elements of the
same array.

In this case, the result is the difference in element
positions, not in bytes, because the compiler
automatically divides the address difference by the
size of the data type.

int a[10];

int *p = &al7];

int *q = &al2];

intdiff =p-q;

difference = (address at p - address at q) / sizeof(int)

Types of Pointers
Null Pointer

Points to nothing. Used for safety.
int *p = NULL;

Dangling Pointer
Points to memory that has been freed or is out of
scope.

Wild Pointer
Uninitialized pointer that points to a random memory
location.

Void Pointer (Generic Pointer)
Can point to any data type. Needs to be typecasted
before dereferencing.

void *ptr;
int *const p = &x; — constant pointer (address can't
change).
const int *p = &x; — pointer to constant (value can't
change).

const int *const p = &x; — both value and address are
constant.

Pointer Arithmetic

int a[5] = {1,2,3,4,5};

int *p = a;

p++; // moves to next integer (adds sizeof(int))

malloc(), calloc(), realloc(), and free() are used with
pointers for dynamic memory.

int *p = (int *)malloc(sizeof(int) * 5);

free(p);

Dynamic memory allocation

malloc () - Memory Allocation
Definition:

malloc (memory allocation) is used to dynamically
allocate a single block of memory of a specified size (in
bytes). It does not initialize the memory—it contains
garbage values.

int *ptr = (int*) malloc (5 * sizeof(int));

calloc () — Contiguous Allocation

calloc (contiguous allocation) allocates memory for an
array of elements, initializes all bytes to zero.

void* calloc (size_t num_elements, size t

element _size);

realloc () - Reallocation

is used to resize a previously allocated memory block
(from malloc or calloc). The contents are preserved up
to the minimum of the old and new sizes.

void* realloc (void* ptr, size_t new_size);

All three functions return NULL if memory allocation
fails.

Always free () the allocated memory when done, to
avoid memory leaks.

String Representation in C

Strings in C can be represented in two ways:
1. Using a character array

2. Using a pointer to a string literal

Page No:- 13

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Feature Array Pointer — Both print the same address.
Declaration char str] char *str AISO:,
= "hello”; = f(a ==b)
' "hello™ printf ("Same location\n");
Memory Stored in Stored .Output: Same |ocation
. . . Read / write memory
Location read/write in read-
Strings stored using arrays, e.g., char str [] = "hello";
memory only . . .
memo Stored in stack or heap, which is read/write memory
. M Duplicates are allowed — each array creates a separate
Modifying Allowed Not cobv of the strin
individual allowed Py 9
h o .
= ara.cter.s Strings in C can be represented in two ways:
Reassigning the Not Allowed .
hole stri lowed 3. Using a character array
WhOole string atiowe 4. Using a pointer to a string literal
Array name used Cannot Pointer
as l-value be used isan |- Example:
as l-value value char a [] = "hello™:
. char b [] = "hello";
Summary of Key Points // a and b have different memory addresses
e Arrays allow changing individual characters,

e.g., str [0] = 'H’;

e Pointers may point to string literals, which are
often read-only

¢ You cannot assign a new string to an array
like: str = "new"; — invalid

e But with pointers: str = "new"; — valid

Memory Behaviour for Strings in C

Read-Only Memory (String Literals)
e Strings stored using pointers, e.g., char *str =
"hello";
e Stored in read-only (constant) memory
e Duplicate strings are not created — if two
literals are the same, they share the same
memory location

char *a = "hello";
char *b = "hello";

Both a and b point to the same memory address.
So

printf ("%p\n", a);
printf ("%p\n", b);

Page No:- 14

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Note: "hello" is a string literal, which means it + Positive or negative difference of ASCII
represents the address of the first character ('h') in values where mismatch occurs

memory. " non n

printf ("%s", "hello” + 1); stremp ("papu”, "pake”)

output: ello Compares: 'p'=="p','a'=="a’, 'p' 1= k'
"hello" is a pointer to the first character ('h') 'p' -'k'=112-107 =5

"hello" + 1 moves the pointer one character ahead .

o' Return value: 5

So printf starts printing from ‘e’

Structure in C

string.h Functions in C A structure is a user-defined data type in C.
strlen It allows you to group different types of variables
Get Length of String under one name.

unsigned int strlen(const char *str); by default, structure contains the 0 or null values.

Useful for representing real-world entities (e.g.,
student, book,
employee, etc.).

Returns the number of characters in the string struct Name {
(excluding the "\O' null terminator). data_type member1;
The parameter is const because strlen does not modify data_type member2;
the string.
3
strcpy struct Student s1; // variable of type struct Student
char *strcpy (char *destination, const char *source);

Copies the string from source to destination including
\O".

source is const because it should not be changed.
destination must be a writable array or memory block,
i.e we should pass the array because the string will be
in the r/w area.

strcat
Appends src string to the end of dest string, removing
"\0' of dest and adding one at the end.

strcmp
Compares two strings character by character.
Returns:
e 0 if both strings are equal

Page No:- 15

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

Feature Expfanation struct { [
int roll;
User-defined Unlike int, char, etc., created char name[20];
by the programmer }s1, s2;

This is anonymous and we can’t create object of
it but can use the variable s1 and s2 which we

declared.
Holds multiple e.g., int, float, char [], all
data types together
Memory layout All members stored

contiguously in memory

Struct name is not | Unlike arrays, structure
an address names are not pointers

Can contain Yes
nested structures

typedef struct Student {
int roll;
char name[50];
float marks;

} Student;

Student s1; // now no need to write 'struct' again

Page No:- 16

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

C-PROGRAMMING

GATE B¢

struct Student { Dynamic Scoping

int roll_num =9; // Invalid Variabl i decided at i
char str [] = "Kunal®; // Invalid ariable scope is decided at runtime.

% The program searches the call stack to find the most

. recent variable definition.
This is incorrect, because:

e A struct is only a blueprint, it does not

allocate memory until an object (variable) X=5
is created. foo() {

e In C, you cannot assign values to structure print(x);
members inside the definition. }

e Memory is only allocated when you bar() {
create an object like: local x=10

struct Student s1;

foo # Output: 10 — because bar called foo, and

x=10in bar
Structure definition is just a template. You can't assign }
values inside it — you assign values only after creating
a variable.

we access structure members using either the dot (.)
operator or the arrow (->) operator
Unionin C
A union is a special data type in C that allows storing
different types of data in the same memory location.
union Data {

inti;

float f;

char str[20];
I
All members share the same memory, and the size of
the union is equal to the size of its largest member.

Scoping
e Scoping defines where a variable can be
accessed in a program (its visibility or lifetime).
Static scoping
Variable scope is decided at compile time.
Local to the block will be preferred.

int x=10;
void func () {
int x = 20;
printf ("%d", x); // Output: 20 (local x used)

A

Page No:- 17

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate

GATE CSE BATCH

KEY HIGHLIOHTS:
» 300+ HOURS OF RECORDED CONTENT
e 900+ HOURS OF LIVE CONTENT
e SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/AGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
e COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate
https://www.geeksforgeeks.org/courses/category/gate

	Call by Value
	Referenced Parameter Passing
	Types of Pointers
	Pointer Arithmetic
	Dynamic memory allocation
	malloc () – Memory Allocation
	calloc () – Contiguous Allocation
	realloc () – Reallocation

	String Representation in C
	Memory Behaviour for Strings in C
	Read-Only Memory (String Literals)
	Read / write memory

	string.h Functions in C
	strlen
	strcpy
	strcat
	strcmp

	Structure in C
	Union in C
	Scoping
	Static scoping
	Dynamic Scoping

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

