
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

1. INTRODUCTION TO COMPILER
● A compiler is a type of translator that converts

a program written in a high-level language
(called source language) into a low-level
language (called machine or object language).

● If there is any mistake in the code, the
compiler gives a compilation error.

● High-level languages can perform more than
one operation in a single statement. These
languages are easy to understand and use, like
C, C++, Java, or Python.

● Low-level languages can perform at most one
operation in a single statement. These are
close to the machine and difficult for humans
to understand, like Assembly or Machine
Code.

● A translator is a general term for any tool that
converts code from one language to another.

● A compiler is a specific kind of translator that
works from high-level to low-level language.

There are two main parts of a compiler:
1. Analysis Phase

In this phase, the source code is checked and an
intermediate representation is created. It
includes:

○ Lexical Analyzer
→ Breaks the source code into tokens
→ Uses DFA (Deterministic Finite Automaton)
→ Checks spelling-like errors (example: wrong

keywords or characters)

○ Syntax Analyzer
→ Checks grammatical structure of the code
→ Uses a parser (Parser is a DPDA –

Deterministic Pushdown Automaton)
→ Example: Missing semicolon, incorrect
nesting

○ Semantic Analyzer
→ Checks the meaning of the program
→ Ensures correct use of variables, functions,
etc.
→ Example: Type mismatch, stack overflow

2. Synthesis Phase
In this phase, the final output (target code) is
generated from the intermediate code. It
includes:

○ Intermediate Code Generator
→ Converts high-level code into an easy-to-
optimize intermediate form
→ Helps in reusability and portability

○ Code Generator
→ Converts intermediate code into low-level

target code (machine code)

○ Code Optimizer
→ Improves performance of code without
changing output
→ Techniques:
(i) Loop invariant code motion
(ii) Common subexpression elimination
(iii) Strength reduction
(iv) Function inlining
(v) Dead code elimination

Page No:- 01

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Symbol Table
● Stores information about variables, functions,

objects etc.

● It is a data structure shared by all phases of
the compiler

● Meta-data: data about the data used in
program

Language Processing System :
When we write a program in High-Level Language
(HLL), it goes through multiple steps before becoming
executable:

1. Preprocessor:
Takes input HLL code and removes
comments, expands macros, and includes
header files. Output is Pure HLL.

2. Compiler:
Converts Pure HLL into Assembly Language
(which is low-level but human-readable).

3. Assembler:
Converts Assembly Language into Object
Code (machine-readable but incomplete).

4. Linker/Loader:
Links object code with other files (like
libraries) and converts it into Absolute
Machine Code.

5. Executable Code:
Final code which runs on the machine.

So the final output is the executable file that we can
run.

Page No:- 02

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

2. LEXICAL ANALYSIS
Introduction to Lexical Analysis

➢ Lexical Analysis is the first phase of a
compiler.

➢ It reads the source code character by
character and converts it into tokens.

➢ The lexical analyzer is also called scanner or
token recognizer.

➢ It also detects lexical errors, such as invalid
characters.

Functions of Lexical Analyzer

➢ Read the entire program character by character.

➢ Converts input into a sequence of tokens.

➢ Removes comments, whitespace, and tabs.

➢ Applies the Maximal Munch Rule (selects the
longest possible valid token).

➢ Uses regular expressions to define token
patterns.

➢ Uses Finite Automata (usually DFA) to
implement token recognition.

➢ Passes tokens to the syntax analyzer along with
their attributes.

Important Definitions

➢ Lexeme: A sequence of characters in source
code that matches a token pattern.
Example: x, +, 123

➢ Token: A structured representation of a lexeme,
usually as a pair:
<token-type, attribute>.
Example: <IDENTIFIER, name>, <NUMBER,
value>

➢ Attribute: Extra information associated with the
token, such as the actual name of a variable or
value of a constant.

How to calculate number of tokens:
➢ To count tokens, break the line of code into

small parts like keywords, identifiers, operators,
literals, and punctuation symbols.

➢ Each part is counted as one token.

Common types of tokens:
● Keywords – like int, if, while

● Identifiers – variable or function names like
sum, main

● Operators – like +, -, =, *, /

● Literals – values like 5, "hello"

● Punctuation/Special Symbols – like ;, (), {}

Example: int sum = a + 5;
Tokens in this line:

1. int, 2. sum, 3. =, 4. a, 5. +, 6. 5, 7. ;

Total tokens = 7

Note: Spaces are not counted as tokens.

Page No:- 03

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

3. Syntax Analysis
➢ Syntax analyzer is also known as parser.
➢ The syntax (structure) of a programming

language is defined using context-free
grammar (CFG).

➢ A parser takes the stream of tokens (which are
generated by the lexical analyzer) and checks
whether they follow the correct syntax of the
language or not.

➢ Grammatical errors in a program are checked
using parsers.

➢ Parsers are basically DPDA (Deterministic
Pushdown Automata)

➢ All parsers are table-driven, meaning they use
parsing tables to decide how to process input.

Parsers are mainly of two types:

1. Top-Down Parsing

○ Starts from the root of the parse tree and
goes towards the leaves.

○ It can be of two types:

■ With backtracking

■ Example: Recursive Parser

■ Without backtracking

■ Examples:

■ Recursive Descent Parser

■ Non-Recursive Descent Parser (LL(1) Parser /
Predictive Parser)

2. Bottom-Up Parsing

○ Starts from leaves and moves towards the
root of the parse tree.

○ Types of Bottom-Up Parsers:

■ LR(0)

■ SLR(1)

■ LALR(1)

■ CLR(1) or LR(1) → This is the most
powerful parser

Ambiguous Grammar:
 If a single input string has more than one parse tree,
then the grammar is called ambiguous grammar.
Left Recursion:

● A grammar like A → Aα | β is called left
recursive.

● Top-down parsers cannot handle left
recursion, so we convert grammar into right
recursion.

Left Recursion Elimination:
● To remove left recursion, we do the following:

 Problem: Left recursive grammar can lead to infinite
loop in top-down parsers that use Left Most
Derivation.

Page No:- 04

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Left Factoring:
● A predictive parser (top-down parser without

backtracking) needs the grammar to be left
factored.

● Left factoring removes common prefixes and
helps avoid backtracking.

● It does not remove ambiguity but helps the
parser to choose the correct rule easily.

If any grammar has common prefixes like:

A→α β1 | α β2 |…| α βn | γ
We convert it to:
A→αA′ | γ
A→β1 | β2 |…| βn
This is called left-factored grammar.

Top-Down Parsing (TDP)

➢ Recursive-Descent Parsing:

○ A parsing technique that follows the brute
force method.

○ It suffers from backtracking, which makes it
inefficient. It is not widely used and is more
general-purpose.

○ Predictive Parsing:This method chooses the
correct production rule by simply looking at
the current input symbol.

○ Types of Predictive Parsing:

■ Recursive Predictive Parsing: Each non-
terminal symbol is represented by a separate
procedure.

■ Non-Recursive Predictive Parsing: A table-
driven approach, also known as LL(1) Parsing.

LL(1) Parser / Predictive Parser

○ The LL(1) grammar is unambiguous, left-
factored, and non-left recursive.

○ The parser follows a left-most derivation
approach.

○ LL(1): Refers to the number of look-ahead
symbols being 1.

○ It uses 1 Look-Ahead Symbol for deciding the
next production.

○ Left-Most Derivation: Parsing starts from the
left-most symbol in the production rule.

○ Left to Right Scanning: The input string is
scanned from left to right.

First Set
● The First Set represents the extreme left

terminal from which the string of a variable
starts.

○ It never contains a variable but can
contain the empty string (ε).

○ The First Set can always be
determined for any variable.

Follow Set:

● The Follow Set contains terminals and the
special symbol $ (end of input).

● It never contains variables or the empty
string (ε).

● How to Find the Follow Set:

1. Include $ in the follow set of the
start variable.

2. If the production is of the form:
A → αBβ

■ Follow(B) = First(β).

■ If β → ε (epsilon, empty
string), then Follow(B) =
Follow(A).

3. For productions like: A → αA (where
a variable repeats in the production),
there is no Follow Set for A.

Page No:- 05

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Example of First and Folow Set

Algorithm to Construct Parsing Table:

Remove Left Recursion (if any).

1. Left Factor (remove common prefixes in
productions).

2. Find First and Follow Sets.

3. Construct the Parsing Table using First and
Follow sets.

4. Increase Look-Ahead Symbol if necessary
for better accuracy.

LL(1) Parsing Table Construction

1. Use First and Follow sets to build the table.
2. For each production A → α

a. If a terminal ‘a’ is in First(α) → add A
→ α in table at [A, a].

b. If First(α) has ε → for each ‘b’ in
Follow(A), add A → ε in [A, b].

LL(1) Grammar Condition Checking:
To check if grammar is LL(1):

1. If A → α₁ | α₂, then:
First(α₁) ∩ First(α₂) = ∅

2. If A → α | ε, then:
First(α) ∩ Follow(A) = ∅

Exam Focus

● A grammar is LL(1) if its parsing table has no
multiple entries.

● Left recursive, not left factored, or
ambiguous grammars cannot be LL(1).

Bottom-Up Parsing (Shift Reduce Parsing)

Introduction to Bottom-Up Parsing

➢ Bottom-up parsing is the method of building
the parse tree from input to start symbol of
grammar.

➢ It works by reducing the input string step by
step using grammar rules.

➢ It follows the reverse of rightmost
derivation (RMD).

NOTE:
● Handle: A part of the input string that matches

the right-hand side (RHS) of a production.

● Handle Pruning: The process of identifying
the handle and replacing it with the left-
hand side (LHS) of the corresponding
production.

Characteristics of Bottom-Up Parsing

★ Also called as shift-reduce parser.

★ Can be used for ambiguous and
unambiguous grammars.

★ It simulates the reverse of rightmost
derivation.

★ More powerful than top-down parsing
techniques.

★ Time complexity: O(n³) in the general case.

Page No:- 06

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

★ Handle pruning is the main source of
overhead.

★ Capable of handling left recursion and
common prefixes.

★ Some unambiguous grammars may still not
have any bottom-up parser.

Types of Bottom-Up Parsers

Bottom-up parsers include various LR-based
parsers, such as:

1. LR(0)

2. SLR(1) – Simple LR

3. LR(1) – Canonical LR

4. LALR(1) – Look-Ahead LR

5. CLR(1) – Canonical LR (same as LR(1))

Note:
➔ LR(k) parser:

◆ L → Scans input from Left to right

◆ R → Produces Reverse of Rightmost
Derivation

◆ k → Number of Lookahead symbols

➔ LR(1) = LR(0) + 1 Lookahead symbol

LR(0) Parser:
● LR(0) Parser is used to analyze LR(0)

grammars. It’s designed to avoid conflicts in
the parsing table, meaning no multiple actions
are allowed for the same state.

Conflicts in LR(0) Parser:

1. Shift-Reduce (SR) Conflict:
● This happens when, in one state, both shift

and reduce actions are possible.

○ Shift means moving to the next
symbol.

○ Reduce means applying a rule to
reduce part of the string.

● The parser doesn’t know whether to shift or
reduce, causing a conflict.

Example:

○ If you have A → α·xβ (shifting) and B
→ γ· (reducing), then parser can’t
decide what to do.

2. Reduce-Reduce (RR) Conflict:
● This happens when two reduce actions are

possible in the same state.

● The parser doesn’t know which reduction to
apply.

Example:

○ If both A → α· (reducing) and B → γ·
(reducing) are possible in the same state
then its RR conflict.

Closure and Goto Functions:

● Closure() and Goto() are used to build the
LR items.

○ Closure() adds more items to a state,
expanding it.

○ Goto() moves from one state to another,
following transitions.

Page No:- 07

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

LR(0) Parsing Table Construction:

While creating the parsing table:
1. If GOTO (Iₖ, a) = Iⱼ, set the action as shift: [i,

a] = Sⱼ.

2. If GOTO (Iₖ, A) = Iⱼ, set the action as state
entry: [i, A] = j.

3. If Iᵢ contains A → α· (reduced production),
set the action as reduce: [i, all entries] = Rₚ.
Where P is the production number and A →
α is the production rule.

4. If the state contains S’ → S then set the
action to accept at that point: [i, $] = accept.

★ If any state has Shift-Reduce (SR) or
Reduce-Reduce (RR) conflicts, it’s called an
Inadequate State and it can’t be used in
parsing.

SLR(1) Parser:
● SLR(1) is a more advanced version of LR(0),

designed to handle some extra complexities.
● It handles Shift-Reduce (SR) and Reduce-

Reduce (RR) conflicts by considering
FOLLOW sets.

Conflicts in SLR(1) Parser:

1. Shift-Reduce (SR) Conflict:
❖ Happens when in a state, both shift and

reduce actions are possible.
Example:

■ A → α·xβ (shift)

■ B → γ· (reduce)

❖ Condition: This conflict can be avoided if
FOLLOW(B) and {x} do not intersect (i.e., the
terminal set after the symbol doesn't clash
with the FOLLOW set of a non-terminal).

2. Reduce-Reduce (RR) Conflict:
❖ Occurs when two reduce actions are possible

in the same state.

➢ Example:

■ A → α· (reduce)

■ B → γ· (reduce)

❖ Condition: This conflict can be avoided if
FOLLOW(A) and FOLLOW(B) do not overlap
(i.e., no common terminal symbols in their
FOLLOW sets).

SLR(1) Parsing Table Construction:

1. SLR(1) Table is constructed in a similar way
to LR(0) except for the reduced entries.

2. If a state Iᵢ contains a reduced production like
A → α·, we find the FOLLOW(A) set. For
every element in FOLLOW(A), we set the
action [i, a] = Rₚ where P is the production
number.

Important Points on SLR(1):

1. SLR(1) is more powerful than LR(0) because
it can handle a wider range of grammars.

2. The size of the SLR(1) parsing table is the
same as the size of the LR(0) parsing table.

3. Every LR(0) grammar is also an SLR(1)
grammar, but not every SLR(1) grammar is
LR(0).

Canonical LR(1) Parser or (CLR(1))
➢ CLR(1) parser is the most powerful among

LR parsers (LR(0), SLR(1), LALR(1), CLR(1)).

➢ It uses 1-symbol lookahead while
constructing the parsing table.

Page No:- 08

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

➢ Each item is written as:
A → α·β ,a
where a is the lookahead symbol.

➢ CLR(1) can handle a larger class of grammars
than LR(0) and SLR(1), but the size of the
parsing table is very large.

CLR(1) Parsing Table Construction:

i) Table construction is the same as SLR(1) for shift
and goto entries.
ii) If state Iᵢ contains a reduce item like A → a·,$|a|b,
then reduce action Rₚ (where P is production

number) is added at
● [i, $] = Rₚ

● [i, a] = Rₚ

● [i, b] = Rₚ
This means reduce A → a is done only when
lookahead is $, a, or b.

Conflicts in CLR(1):

➢ SR (Shift-Reduce) conflict:
Example:
A → α · xβ , a (shift)
B → γ · , x | y (reduce)
Conflict occurs when x is both after dot and

in lookahead.

➢ RR (Reduce-Reduce) conflict:
Example:
A → α · , a₁
B → γ · , a₂

★ If a₁ ∩ a₂ ≠ ∅, conflict occurs.

NOTE:
❖ CLR(1) is the most powerful parser.

❖ CLR(1) can handle all LR(0), SLR(1), and
LALR(1) grammars.

❖ But it is not commonly used due to the large
table size.

❖ CLR(1) forms the basis for the LALR(1)
parser.

Lookahead LR(1) Parser or (LALR(1))
➢ LALR(1) is made by merging states in CLR(1)

which have the same core but different
lookaheads.

➢ This reduces the size of the parsing table
while maintaining almost the same power
as CLR(1).

➢ LALR(1) is the most commonly used LR
parser in practice.

Construction of LALR(1):

➢ States with the same core in CLR(1) are

merged into one in LALR(1).
➢ The lookaheads of merged states are

combined.
➢ After merging, if reduce actions are added

with overlapping lookaheads, RR conflict
may occur.

Conflicts in LALR(1):

● No SR conflict occurs after merging.

● But RR conflict can occur when two reduce
actions are possible for the same lookahead
symbol.

Example:
 A → α ·, a | t₁ → reduce A → α
B → γ ·, a | t₂ → reduce B → γ

❖ If lookahead a is common in both (t₁ ∩ t₂ ≠
∅), then RR conflict happens.

NOTE:

Page No:- 09

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

● LALR(1) is less powerful than CLR(1) but
more powerful than SLR(1) and LR(0).

● Every LALR(1) grammar is also CLR(1).
But CLR(1) grammar is not LALR(1).

● Parsing table size is the same as SLR(1),
which makes LALR(1) efficient and practical.

Parser Comparison :

● OPP = Operator Precedence Parser

● LL(1) = Top-down parser

● LR(0), SLR(1), LALR(1), CLR(1) = Bottom-up
parsers

Set Relationship of Grammars:

➢ LR(0) ⊆ SLR(1) ⊆ LALR(1) ⊆ CLR(1)
➢ LL(1) ⊆ CLR(1)
➢ Every LR(0) grammar is also a valid SLR(1),

LALR(1), and CLR(1) grammar.
➢ Every LL(1) grammar is also CLR(1) grammar.

But the reverse is not always true.

NOTE:

★ Number of states in SLR(1) = Number of
states in LALR(1)

★ Number of states in CLR(1) ≥ LALR(1)

★ All these parsers handle unambiguous
grammars only.

★ Ambiguous grammars cannot be parsed
by LR-family parsers.

Page No:- 10

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4. Syntax Directed Translation
➢ SDT combines Context-Free Grammar (CFG)

with Semantic Actions (Transitions).
➢ The semantic actions are written on the right-

hand side of production rules to specify the
meaning of the syntax.

Applications of SDT:

1. Semantic Analysis: Checks the meaning of the
program.

2. Parse Tree Generation: Creates a tree that shows
how the program is structured.

3. Intermediate Representation: Converts the
program into a format that is easier for a
computer to process.

4. Expression Evaluation: Used to calculate or
solve mathematical expressions.

5. Infix to Prefix/Postfix Conversion: Converts
mathematical expressions from infix form to
prefix or postfix form.

Example:
 For the production rules:

● S → S1 S2 [S.count = S1.count + S2.count]
● S → (S1) [S.count = S1.count + 1]
● S → ε [S.count = 0]

Here, count is an attribute for the non-terminal S
and stores information during the parsing process.

NOTE:

S → AB { print(*) }
A → a { print(1) }
B → S { print(2) }

★ Here, print(*), print(1), and print(2) are the
semantic actions executed when the respective
rules are applied.

Steps to Construct SDT:
1. Symbol Table: Stores information about variables

(names, types, etc.).

2. Variable Declaration Checking: Ensures all
variables are properly declared.

3. DAG Construction: Builds a Directed Acyclic
Graph (DAG) to optimize code.

4. Type Checking and Conversion: Ensures types
are used correctly in expressions.

5. Algebraic Expression Evaluation: Calculates
values for mathematical expressions.

★ An annotated parse tree shows the attributes for
each node in the parse tree. This helps us
understand the meaning of the program and the
intermediate values at each step.

Attributes:
It is of two types.

1. Inherited Attribute (RHS): The value of an
inherited attribute is calculated based on the
parent or sibling nodes in the syntax tree.

○ Example: S → AaB {A.x = f(B.x | S.x)}
○ In this case, the computation at the node

depends on its parent (S) or siblings (A and B).

2. Synthesized Attribute (LHS): The value of a
synthesized attribute is calculated based on its
children nodes in the syntax tree.

○ Example: S → AB {S.x = f(A.x | B.x)}
○ The computation depends on the children (A

and B).

Page No:- 11

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Syntax Directed Definition (SDD) :

It is of two types.

1. S-attributed SDD :
○ Uses only synthesized attributes.
○ The semantic actions (or computations) are

placed at the end of the production rules.
○ Evaluation follows a bottom-up approach.

Example:
 For the rule:
 A → BC { A.i = f(B.i or C.i) }
 Here, A.i depends on B.i or C.i (children of the node).

2. L-attributed SDD
○ Attributes are synthesized or restricted to

inherit from parent or left siblings.
○ Evaluation follows a top-down approach,

typically following Depth First Search (DFS).

Example:
 For the rule:
 A → BCD { C.i = f(A.i or B.i) } or
D.i = f(A.i or B.i or C.i) or
B.i = f(A.i)
These values depend on the children (left siblings or
parents).

Important Points

❖ Every S-attributed SDT is also an L-attributed SDT.
❖ Not every L-attributed SDT is S-attributed.
❖ SDT follows a depth-first search (DFS) approach for

evaluation.
❖ For L-attributed evaluation, use the in-order

traversal of the annotated parser tree.
❖ For S-attributed evaluation, use the reverse of

the RMD (Rightmost Derivation) order.

5. Intermediate Code Generation
Introduction:

➢ It is the 3rd phase in the compiler (after syntax
and semantic analysis).

➢ This phase converts source code into an
intermediate representation (IR).

➢ Intermediate code is not machine code, and
not high-level either. It is something in-
between.

➢ It is used to make the compiler machine-
independent.

➢ If we have Intermediate Code, we can easily
generate code for multiple machines from the
same compiler.

➢ It helps in optimization (because this code is
easier to analyze).

➢ Also used in error detection and debugging.
Types of Intermediate Representations:

Intermediate code can be represented in two main
forms:
1. Linear Form:
 Instructions are written one after another (like
assembly code)
A. Postfix code: Also called Reverse Polish Notation

(RPN)

B. Three-address code (TAC): Each instruction has
at most 3 operands

C. Static Single Assignment (SSA): Every variable is
assigned exactly once, with unique names (e.g.,
a1, a2, a3)

2. Non-Linear Form:
These are structured representations like trees or
graphs
A. Syntax Tree: Tree representing structure of

expression or program

B. Directed Acyclic Graph (DAG): Used to detect
common subexpressions

C. Control Flow Graph (CFG): Shows how control
flows between basic blocks

Example:
Expression : (y + z) * (y + z) Represent this in all
form

Page No:- 12

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Postfix Notation:
 yz+yz+*
→ Uses operator precedence, no parentheses
required.
3AC (Three Address Code):
t₁ = y + z
t₂ = t₁ * t₁
→ At most 3 addresses used: LHS, operand1,
operand2.
SSA (Static Single Assignment):
t₁ = y + z
t₂ = t₁ * t₂
→ In SSA, once a variable is assigned (t₁, t₂), it
cannot be reassigned again.
Syntax Tree:
Represents the full expression in a tree format based
on operators and operands.

DAG (Directed Acyclic Graph):

→ Optimized version of syntax tree
→ Reuses common subexpressions, like (y + z)
→ Helps in eliminating redundancy

Three-address code (3-AC)

● Code where each statement has at most 3
addresses, including LHS

● Easy to generate and optimize

● Example: t1 = a + b, t2 = t1 * c
● 3AC is always generated using operator

precedence

Forms of 3AC Representation:

1. Triple Notation
● Each row has: (Operator, Arg1, Arg2)
● Result is position index, not explicitly stored
● Space efficient, but time inefficient (hard to

reorder instructions)

2. Quadruple Notation
● Each row has: (Operator, Arg1, Arg2, Result)
● Result is explicit, easy to use and reorder
● Time efficient, but uses more space

3. Indirect Triple
● Maintains a pointer table to triples
● Easier to move instructions
● Improves flexibility in optimization

Page No:- 13

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Static Single Assignment (SSA) Code:

➢ In SSA form, each variable is assigned only
once.

➢ That means, whenever a variable is updated,
we give it a new version name (like x1, x2 or
p, p1, p2).

➢ SSA = Single meaning of each variable + 3-
address code style

Example :

Find SSA ?

● Already assigned: u, t, w, z
● New SSA vars: x, y, x1, y1, y2

Total = 4 (already) + 5 (SSA) = 9 variables

Control Flow Graph (CFG)

● CFG shows the flow of control between
different parts of a program.

● It is made of nodes (basic blocks) and edges
(jumps/branches).

● Each basic block is a group of statements
where:

○ Control always enters from the first
instruction (called the leader)

○ Control leaves only at the end — no
jumps inside the block

Basic Block:
A basic block is a group of 3-address code
instructions with:

● No jump except at the end

● No label (target of jump) except at the
beginning

Leaders (start of each basic block):
1. First instruction (i = 1)

2. Any target of jump (goto 3 → line 3, goto 2
→ line 2)

3. Instruction after a jump (line 10 after line 9)

Identified Basic Blocks:
● LB1 → Line 1

● LB2 → Line 2

● LB3 → Lines 3 to 7

● LB4 → Line 8 and 9

● LB5 → Line 10

● LB6 → Line 11

Page No:- 14

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Control Flow (Edges):
LB1 → LB2
LB2 → LB3
LB3 → LB4
LB4 → LB3 (if j ≤ 5)
LB4 → LB5 (else)
LB5 → LB6
LB6 → LB2 (if i < 5)

This CFG shows two loops:
★ Inner loop on j → LB3 to LB4 back to LB3
★ Outer loop on i → from LB6 to LB2

6. Code Optimization
Introduction :

● The main goal is to save time or memory by
improving the code.

● Optimization is based on Flow Analysis:

○ Control Flow Graph (CFG) – shows
possible execution paths.

○ Data Flow Graph (DFG) – shows how
data moves across the code.

Types of Optimization:

1. Local Optimization

○ Happens inside a basic block (a
straight-line code with no jumps).

○ Called Intra-procedural optimization.

2. Global Optimization

○ Happens across multiple
blocks/functions in the entire
program.

○ Called Inter-procedural optimization.

Optimization Techniques:

1. Constant Folding
2. Copy Propagation
3. Strength Reduction
4. Dead Code Elimination
5. Common Sub-expression Elimination
6. Loop Optimization
7. Peephole Optimization

Constant Folding

● Evaluate constant expressions at compile
time.

Example:
x = 2 * 3 + y
→ x = 6 + y (Folding done)
But if a variable is involved, like x = 2 + y * 3, folding
cannot happen.

Copy Propagation

Replace variables with their assigned values.
i) Variable Propagation:
x = y
z = y + 2
z = x + 2 ← Replace y with x
ii) Constant Propagation:
x = 3
z = 3 + a
→ z = x + a

Strength Reduction

Replace expensive operations with cheaper ones.
Examples:

● x = 2 * y → x = y + y (Addition is cheaper)

● x = 2 ^ y → x = y << 1 (Shift is much
cheaper than exponentiation)

● x = y / 8 → x = y >> 3 (Right shift is
cheaper than division)

Page No:- 15

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Dead Code Elimination

Remove code that will never execute.

Example:
x = 2
if (x > 2)
 printf("code"); ← This will never run (dead
code)
else
 printf("optimization");
Since x > 2 is false, the printf("code") line will never
run. It can be safely removed by the compiler.

Common Subexpression Elimination

If a computation is repeated, calculate it once and
reuse.

Example:
x = (a + b) + (a + b) + c
→ t1 = a + b
→ x = t1 + t1 + c
This saves time and reduces redundant operations.

NOTE: DAG (Directed Acyclic Graph) is often used to
identify and eliminate common subexpressions.

Loop Optimization

Used to improve performance by reducing the
number of operations inside loops.

(i) Code Motion (Frequency Reduction)
Move statements that do not change within the
loop, outside the loop.

(ii) Induction Variable Elimination
Remove unnecessary induction variables.
Example:

(iii) Loop Merging / Loop Jamming
Combine multiple loops with the same range to
reduce overhead.
Example:

(iv) Loop Unrolling
Reduce loop control overhead by manually
expanding the loop body.
Example:

Peephole Optimization

Looks at small sets of instructions (like through a
"peephole") and replaces them with faster or shorter
alternatives.

➔ Applied to intermediate or target code.

➔ Typical optimizations include:

◆ Redundant instruction elimination

◆ Strength reduction

◆ Algebraic simplification

◆ Use of registers

◆ Jump optimization

Page No:- 16

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

7. Runtime Environments
➢ The runtime environment manages memory

and control during program execution. It
includes the structure of memory, registers, and
control flow.

Types of Runtime Environments
1. Fully Static Runtime Environment

○ Suitable for languages without
recursion or dynamic memory.

○ Activation record is fixed before
execution.

○ Variables use fixed addresses.

○ Minimal bookkeeping.

○ No support for recursive calls.

2. Stack-Based Runtime Environment

○ Activation records are pushed when a
function is called and popped after
return.

○ Stack grows/shrinks with function
calls.

○ Common in languages like C, Pascal.

3. Fully Dynamic Runtime Environment

○ Used in functional languages (Lisp,
ML).

○ Activation records are created and
destroyed dynamically.

○ Managed by garbage collector.

○ Uses heap-based memory.

Activation Records
● A block of memory used during the execution

of a procedure.

● Created when a procedure is called and
destroyed when it returns.

Contents of Activation Record:

1. Return Value

2. Static Link

3. Dynamic Link

4. Stack Pointer (SP) – Points to top of the stack

5. Return Address

6. Parameters (static and dynamic)

7. Local Variables

8. Local Arrays and Array Parameters

9. Intermediate Results

10. Saved Registers

11. Frame Pointer (FP) – Points to base of the
current activation record

NOTE:
Activation records can be allocated in:

○ Static area (e.g., Fortran 77)

○ Stack area (e.g., C, Pascal)

○ Heap area (e.g., Lisp)

Page No:- 17

COMPILER DESIGN
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Top-Down Parsing (TDP)
	Bottom-Up Parsing (Shift Reduce Parsing)
	Types of Bottom-Up Parsers
	1. Shift-Reduce (SR) Conflict:
	2. Reduce-Reduce (RR) Conflict:

	SLR(1) Parser:
	1. Shift-Reduce (SR) Conflict:

	Lookahead LR(1) Parser or (LALR(1))
	1. S-attributed SDD :
	2. L-attributed SDD
	1. Triple Notation
	2. Quadruple Notation

	Identified Basic Blocks:
	Control Flow (Edges):

	Blank Page
	Blank Page
	Blank Page
	Blank Page

