

5/1E THE

CSE

COMPUTER NETWORK

TO EXCEL IN GATE

AND ACHIEVE YOUR DREAM IIT OR PSU!

GATE फरें

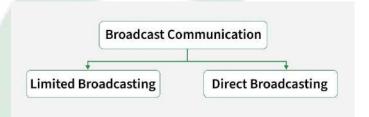
- 1. **IP address: 32 bit** [8 bit | 8 bit | 8 bit | 8 bit]
- 2. **IP address**: to identify n/w & host
- 3. **Port no**: to identify process in the device

IP address is divided into n/w ID and host ID

 In Classful Addressing, 32 bits address, starting bits get fixed → to make different classes.

Classful Addressing:

Class	First Range		No of IP
	Octet		addresses
А	0	[1 – 126]	2 ³¹
В	10	[128 – 191]	2 ³⁰
С	110	[192 – 223]	2 ²⁹
D	1110	[224 – 239]	2 ²⁸
E	1111	[240 – 255]	2 ²⁸


Class	No of N/W	No. of Host/NW
Class A	$2^7 - 2 = 126$	2 ²⁴ – 2
Class B	2 ¹⁴ = 16,384	2 ¹⁶ – 2
Class C	2 ²¹ =20,97,152	2 ⁸ – 2

Class D	No NID & HID, all 28 bits used for multicast
Class E	No NID & HID, for future purpose

- 5. Class A has reserved two networks:
 - \bigcirc 0.0.0.0 \rightarrow Default Route
 - \bigcirc 127.x.y.z \rightarrow Self loop address
- 6. 255.255.255.255 → Limited broadcast address.

Types of Communication:

- i) Unicast (1 to 1) \rightarrow one computer to another computer
- ii) Broadcast (1 to all)
- iii) Multicast (1 to many) → one computer to many computers

Broadcast Communication:

- Limited Broadcast → Transmitting data 1 to all in same n/w
- Directed Broadcast → Transmitting data 1 to all in different n/w
- Limited Broadcast address = 255.255.255.255
- Directed Broadcast address (DBA) = All HID should be 1
- Can't use as source IP
- Always used as destination address

GATE फरें

Special Cases:

NID	HID
valid	all 0's \rightarrow N/w id of entire n/w
valid	All 1's → Directed broadcast address (DBA)
All 1's	all 1's → Limited broadcast address (LBA)

7. **Subnetting**: Subnetting is borrowing bits from HID.

Subnet mask: It helps to identify which portion of IP is network ID and which portion is host ID.

- No. of 1's = (NID + Subnet ID)
- No. of 0's = HID

Default Subnet Mask:

• Class A: 255.0.0.0

• Class B: 255.255.0.0

• Class C: 255.255.255.0

Subnet mask (AND) IP add = N/w IP

VLSM (Variable Length Subnet Mask):

In VLSM, subnet design uses more than one mask in the same network. \rightarrow Means more than one mask is used for different subnets of single class (A, B, C).

In subnets, no of host = no of IP addresses 2

Classless Addressing:

a.b.c.d /n (where n = NID or subnet mask)

CIDR (Classless Interdomain Routing):

Rules to be followed:

- 1. All IP addresses in the block must be contiguous
- 2. Block size must be a power of 2
- 3. First IP address of the block must be divisible by size of block

Supernetting

- The process of combining two or more networks to get a single network is called supernetting.
- (Subnet mask borrowed from net ID)

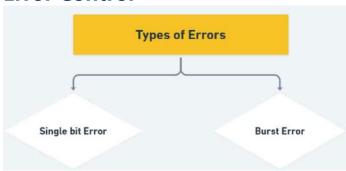
Advantages of Supernetting:

- Reduces routing table entries
- Router will take less time for processing packets
- Improves flexibility of IP address allotment

Rules of Supernetting:

- 1. Networks ID must be contiguous
- 2. Size of the Network must be same and networks must be multiple of 2
- 3. First Netwok ID must be divisible by size of supernet
- 4. Block should be of equal size & belong to same class

GATE फरें


Private IP addresses:

- 10.0.0.0 to 10.255.255.255
- 172.16.0.0 to 172.31.255.255
- 192.168.0.0 to 192.168.255.255

GATE फरें

Error Control

- Number of corrupted bits = Data rate × Noise duration
- Burst error is more likely to occur than single bit error.
- Error correction is more difficult than error detection.

Error Control:

- **Error Detection:** If error found, discard and ask for retransmission.
- **Error Correction**: If can correct error, retransmission not required.

Methods for Error Detection:

- 1. Simple parity
- 2. 2D parity
- 3. Checksum
- 4. CRC

Methods for Error Correction:

Hamming code

Block Coding:

 Message is divided into blocks, each block of size K bits = datawords.

- Add r redundant bits → codewords of length n (n = k + r).
- Instead of sending datawords, send codewords.

Valid codeword = 2^k Invalid codeword = (2ⁿ – 2^k)

Hamming Distance:

- Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols (0 or 1) are different.
- Denoted by d(x, y).

Examples:

- 1. d(000, 101) = 2 hamming distance
- 2. d(100, 011) = 3 hamming distance
- **3.** d(101, 110) = 2 hamming distance
- Hamming distance can be found by applying XOR operation (⊕) on two codewords and counting the number of 1's in the result.

Minimum Hamming Distance:

 In a set of codewords, the minimum Hamming distance between all possible pairs of codewords is taken.

Example:

Valid codewords:

- a: 010
- b: 101
- c: 110
- d: 001

GATE फरें

Distances:

- d(a,b)=3
- d(a,c)=1
- d(a,d)=2
- d(b,c)=2
- d(b,d)=1
- d(c,d)=3

\rightarrow min hamming distance = 1

Minimum hamming distances Required for error detections.

- For detecting d bits error → min hamming distance = (d + 1)
- For correcting d bits error → min hamming distance = (2d + 1)

Linear Block Codes

Linear Block Code:

- A code in which XOR(⊕) of two valid codewords is also a valid codeword.
- Minimum HD = minimum number of 1's in non-zero codeword.

Simple Parity Check:

- Data + 1 parity bit.
- Even parity: parity bit added to make number of 1's even.
- Odd parity: parity bit added to make number of 1's odd.
- Limitation: Can't detect even number of errors.

2D Parity Check:

- Information bits organized in a matrix of rows and columns.
- For each row and column → parity bit calculated.
- Detects and corrects all single-bit errors, and detect 2- or 3-bit errors.
- Some patterns with 4 or more errors can be detected.

Cyclic Redundancy Check (CRC)

- Sender adds CRC at end of data.
- Receiver divides received data by divisor. If remainder = 0 → no error. Else → error.

Steps:

- Length of dataword = n
- Length of divisor = k
- Append (k-1) zeros to original message
- Perform modulo-2 division → remainder = CRC
- Codeword = dataword + (k-1) zero's + CRC

Note: CRC must be (k-1) bits

Example:

- Data = 1001001 (n=7)
- Divisor (CRC generator) = 1101 (k=4)

GATE फरें

1) Append k-1=3k-1=3k-1=3 zeros to the data

Dividend =1001001000=

1001001\mathbf{000}=1001001000

2) Long division (XOR when the current bit is 1)

Divisor = 1101 = 1101 = 1101

Step @pos0: 1001 ⊕ 1101 = 0000 → partial:

0000 001000

Step @pos1: 0010 \oplus 0000 = 0010 \rightarrow (no

XOR since leading 0, effectively shift)

Step @pos1: 0100 ⊕ 1101 = 1001 → partial

Step @pos2: 1001 \oplus 1101 = 0000

Step @pos3: 0001 ⊕ 0000 = 0001 →

(leading 0s skip)

Step @pos3: 0111 \oplus 1101 = 0010

Step @pos5: 1000 \oplus 1101 = 0101

Step @pos6: 1010

1101 = 0111

After division → remainder = CRC

- CRC Polynomial Notation

- Dataword = d(x)
- Codeword = C(x)
- Generator = g(x)
- Syndrome = S(x)
- Error = e(x)

Steps to Apply CRC:

- 1. Determine degree 'r' of g(x) (highest power).
- 2. Determine $x^r d(x)$.
- 3. Divide $x^r d(x)$ by $g(x) \rightarrow$ remainder.
- 4. Codeword = $x^r d(x)$ + remainder.

1. CRC (Cyclic Redundancy Check)

- **Dataword:** 1001001
- Divisor (Generator polynomial): $1101 = x^3 + x^2 + 1$
- Dataword polynomial: $d(x) = x^6 + x^3 + 1$
- Append r (degree of divisor = 3) → multiply by x³
 → x³·d(x) = x9 + x6 + x³
- Divide by g(x) to get **remainder** (CRC).
- Remainder = $x^2 + x + 1$
- Codeword = d(x)·x³ + remainder = x³ + x⁶
 + x³ + x² + x + 1
 → 1001001111

Final CRC codeword = 1001001111

2. Properties of a Good Generator Polynomial

- 1. Should have ≥ 2 terms.
- 2. Coefficient of highest term x^0 should be 1.
- 3. Should **not divide** x^k+1 for k between 2 and n-1.
- 4. Must have factor (x+1).

3. Checksum

- If 8 bit checksum is used data is divided into 8-8 bits group and added ,its 1's complement is checksum.
- Sender transmits (data + checksum).
- Receiver also does same ,if results come to zero then data is correct ..

GATE फरें

4. Hamming Code (Error Correction)

- **Hamming Code** is used for error correction.
- It can **correct** single-bit errors.
- It can **detect** up to two-bit errors.
- m = message bits
- r = redundant (check/parity/extra) bits
- n=m+r total codeword length

According to the Hamming Code condition, the minimum number of redundant bits required is:

$$2^{r} \ge m + r + 1$$

Here, r represents the **lower limit** of the redundant bits needed.

•

Key Points to Remember:

- CRC → remainder after polynomial division.
- Checksum → 1's complement sum method.
- Hamming Code → error detection + correction (1-bit errors, up to 2-bit detection).

GATE फरें

Flow Control

Bandwidth:

 Bandwidth refers to maximum rate of data transfer across a network or internet connection.

K, M, G are different for Data and Bandwidth:

Unit	Data	Bandwidth
K	2 ¹⁰	10 ³
М	2 ²⁰	10 ⁶
G	2 ³⁰	10°

Delay in Computer Networks

- 1. Transmission Delay (Td)
- 2. Propagation Delay (Pd)
- Queuing Delay (Qd) (Considered if not negligible)
- 4. Processing Delay (Pr d)

Transmission Delay: (Td)

 Amount of time taken to transfer a packet on to the outgoing link is considered as transmission delay.

Td=L/R where,

O L = Length of the packet

O R = Transmission rate

Propagation Delay:

 Amount of time taken to reach back from one (sender) point to another (receiver) point is called propagation delay.

Pd=Distance / Velocity

Queuing Delay:

 The amount of time packet will wait in the queue of a router before being taken up for processing is called queuing delay.

Processing Delay:

• Time required for a router or destination host to receive packet, open its input port, remove the header, perform an error detection, etc.

Total Time / Round Trip Time (RTT):

• It is the additional time between a **request for data** and the **display of that data**.

 $RTT=Td(frame)+2\cdot Pd+Qd+Prd+Td(ack)$

Efficiency / Line Utilization / Link Utilization / Sender Utilization:

Efficiency=Useful Time/Total Time

Throughput / Effective Bandwidth / Bandwidth Utilization:

Maximum data rate possible.

Throughput=Efficiency×Bandwidth
Throughpu t= L /
Td(frame)+2·Pd+Qd+Prd+Td(ack)

Capacity of Link / Wire / Channel:

• Max number of bits available on a link at any time.

Capacity of Link=B×Pd

Stop and Wait Protocol:

 Can deal with frame lost, ACK lost, ACK delayed.

GATE फरें

- Can work on both full-duplex and halfduplex.
- 1. Sender can send one data packet at a time.
- 2. Receiver will receive and consume the data packet.
- 3. After consuming, the data receiver sends ACK, and ready for the next.
- 4. Sender can't send next data packet unless ACK of previous packet is received.
- 5. Sender must maintain a copy of the frame and timeout must be started after sending.

Sliding Window Protocol:

- Instead of sending one packet and waiting for ACK, sender sends multiple packets and waits for acknowledgements.
- Send window size = WS

Window Size Calculations:

- Max Window Size: (1+2a)·Pkt
- where a=Pd/Td
- Min Seq Number: (1+2a)
- Min No. of Bits Req in Sequence No Field:

ceil(log2(1+2a)

Go-Back-N (GBN):

- 1. Sender window size = N itself
- 2. Receiver window size = 1 always
- Out-of-order packets not received by receiver
- 4. Timer maintained only for **first frame** in window
- 5. GBN uses cumulative ACK
- 6. ACK time should be less than timeout time

Selective Repeat (SR):

- Sender window size = receiver window size = W
- 2. SR receiver can receive **out-of-order** packets and stores them in buffer
- 3. Reordering and sorting is done
- 4. Timer is maintained for each frame
- 5. If a packet is corrupted, NAK is sent, sender resends
- 6. NAK more than 1 only packet with NAK is retransmitted
- 7. Duplicate Packet Problem:
 - O Occurs when same data packet is received **more than once**
 - O Can be solved by:
 - Increasing sequence number
 - Decreasing sender window size

GATE CSE BATCH KEY MIGHLIGHTS:

- 300+ HOURS OF RECORDED CONTENT
- 900+ HOURS OF LIVE CONTENT
- SKILL ASSESSMENT CONTESTS
- 6 MONTHS OF 24/7 ONE-ON-ONE AI DOUBT ASSISTANCE
- SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

- ENGINEERING MATHEMATICS
- GENERAL APTITUDE
- DISCRETE MATHEMATICS
- DIGITAL LOGIC
- COMPUTER ORGANIZATION AND ARCHITECTURE
- C PROGRAMMING
- DATA STRUCTURES
- ALGORITHMS
- THEORY OF COMPUTATION
- COMPILER DESIGN
- OPERATING SYSTEM
- DATABASE MANAGEMENT SYSTEM
- COMPUTER NETWORKS

LEARNING BENEFIT:

- GUIDANCE FROM EXPERT MENTORS
- COMPREHENSIVE GATE SYLLABUS COVERAGE
- EXCLUSIVE ACCESS TO E-STUDY MATERIALS
- ONLINE DOUBT-SOLVING WITH AI
- QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

TO EXCEL IN GATE
AND ACHIEVE YOUR DREAM IIT OR PSU!

GATE फरें

O Condition to solve:

WS+WR≤ASN

Where:

- WS = Window Size
- WR = Receiver Window
- ASN = Available Sequence Numbers

Final Conditions:

- Go-Back-N: Receiver window size is always 1 WS+1≤ASN
- **SR:** Best condition: 2WS≤ASN

Comparison Table:

Metric	Stop and Wait	Go-Back-N (GBN)	Selective Repeat (SR)
Efficiency	η = Td / (Total Time)	$\eta = N \times Td /$ (Total Time)	η = WS×Td / (Total Time)
Through put	L / Total Time	N×L / TotalTime	WS×L / TotalTime
Buffer	1 + 1	N + 1	N + N
Seq Formula	2(0 or 1)	N + 1 (0 - N)	2N (0 - 2N-1)
Seq no in K bits .	/	Ws Wr 2^k-1 1	Ws Wr 2^(k-1) 2^(k- 1)

GATE फरें

IPv4 Header

Layers:

- Application Layer → Message
- Transport Layer → Segment
- Network Layer → Datagram

IPv4 Header Format:

VER (4 bits)	HL (4 bits)	Services (8 bits)	Total Length (16 bits)		
Identification bits)	Flags (3 bits)	Fragment offset (13 bits)			
Time to Protocol (8 Header checksum (16 bits) Live (8 bits)					
Source IP Address (32 bits)					
Destination IP Address (32 bits)					
Option (0-40 bytes)					

• Min Header Size: 20B + 0 B = 20 B

Max Header Size: 20B + 40B = 60B

Field Descriptions

Version (4 bits)

• Indicates IPv4 or IPv6.

Header Length (4 bits)

- Contains length of the header.
- Min: 20B, Max: 60B
- Formula: Header Length = Field Value × 4(scaling factor)

Services (8 bits)

- First 3 bits = **Priority**
- Next 4 bits = **Type of Service** (TOS)

Last bit = Not used

Structure:

- P = Priority
- D = Min delay
- T = Max throughput
- R = High reliability
- C = Min cost

Priority

It is a 3-bit subfield ranging from 0 to 7 (000 to 111 in binary). Priority field is needed if a router is congested and need to discard some datagram, those datagrams which have the lowest priority are discarded first.

Types of Services

It is a 4 bit subfield. Each bit having a special meaning, although a bit can be 0 or 1. One and only one of the bits can have the value 1 in each datagram.

Total Length (16 bits)

- Total Length = Data + Header
- Min Datagram size = 20B
- $Max = 2^16 = 65535B$

Identification Number (16 bits)

- Each datagram is assigned a sequence number for identification.
- All fragments of a datagram share the same ID.

GATE फरें

Flags (3 bits)

- Bit 1: Not used
- Bit 2: DF = Don't Fragment
- Bit 3: MF = More Fragments

Fragment Offset (13 bits)

- Indicates the position of the fragment relative to the original datagram.
- Stored as offset/8 (scaling factor = 8).

Fragment Types:

- $FO = 0 \rightarrow First fragment$
- FO ≠ 0→ Middle OR LAST
- FO \neq 0, MF = 0 \rightarrow Last fragment
- FO = 0, MF = $0 \rightarrow No$ fragmentation

TTL (8 bits) - Time To Live

- Prevents infinite looping of packets.
- Decremented by 1 on each hop.

If the **TTL** (**Time to Live**) field becomes **zero** before reaching the destination:

- The datagram is **discarded**.
- An ICMP (Internet Control Message Protocol) message is sent back to the sender.

Protocol (8 bits)

- Indicates the protocol in data portion:
 - O ICMP \rightarrow 01
 - O IGMP \rightarrow 02
 - O UDP \rightarrow 17

Header Checksum (16 bits)

- Calculated for header only.
- Computed at **each router** as headers may change (e.g., TTL).

Source Address (32 bits)

• IPv4 address of sender.

Destination Address (32 bits)

• IPv4 address of receiver.

Options (0–40 bytes)

The IPv4 datagram header consists of **two parts**:

- A fixed part, which is always 20 bytes long.
- A variable part, which can be up to 40 bytes long.

Types of Options:

- 1. Strict Source Routing
- 2. Loose Source Routing
- 3. Record Routing
- 4. Timestamp
- 5. Padding

GATE फरें

Not Changed	May be Changed	Definitely Changed
VER	Total Length	TTL
Services	MF (More Fragments)	Header Checksum
Identificatio n Number	Fragment Offset	
DF (Don't Fragment)	HL & Options (if present, HL may change)	
Protocol	manage,	
Source IP (SIP)		
Destination IP (DIP)		

GATE फरें

TCP & UDP

Sequence number (32 bits) Acknowledgement number (32 bits) Header Length (4 bits) R C S S Y I (Advertisement B K H T N N Window) (16 bits) Check sum (16 bits)	Source Port (16 bits)					Destination Port (16 bits)			
Header Length (4 bits) Reserved bits (6 bits) R C S S Y I (Advertisement B K H T N N Window) (16 bits)		Sequence number (32 bits)						bits)	
Length (4 bits) bits (6 bits) B K H T N N Window) (16 bits)	Acknowledgement number (32 bits)					r (32 bits)			
R C S S Y I (Advertisement B K H T N N Window) (16 bits)		THE PERSON OF TH				Window Size			
	_	bits)	R	C	S	S	Υ	1	(Advertisement
Chack sum (16 hits)		B K H T N N					Window) (16 bits)		
Chack sum (16 hits)									
Check suili (10 bits)									
Options (0-40 bytes)									

Header length: (4 bits)

- Header length is a 4-bit field that contains the length of header.
- Scaling factor = 4
 - ➤min^m size = 20B
 - \rightarrow max^m size = 60B

Source Port Address: (16 bits)

 This is a 16-bit field that defines the port no of the application/program in the host that is sending the segment.

Destination Port: (16 bits)

• This is a 16-bit field that defines the port no of application program in the host that is receiving the segment.

Sequence Number:

- This is a 32-bit field defines the seq number of the first data byte.
- Every byte is associated with one seq number.

Data size at TL = Total Length (IP) - IP(H) - TCP(H)

- Every packet is associated with one sequence number.
- **TCP Suggests**: Do not start with the sequence number 0.
 - ➤ Always choose any random sequence number initially.

Acknowledgment number (32-bit)

 A 32-bit field that indicates the next expected byte seq number from the other end of the connection.

Flags:

There are 6 different flags and they can have values 0 or 1.

- 1. URG
- 2. **ACK**
- 3. **PSH**
- 4. **RST**
- 5. **SYN**
- 6. **FIN**

1. URG (Urgent):

Indicates that the urgent pointer field is valid and contains urgent data that should be processed with priority.

2. ACK (Acknowledgement):

Indicates whether the acknowledgment number field is valid. It's used to confirm the receipt of a data segment.

3. PSH (Push):

Instructs the receiver to deliver data to the application layer **immediately** without buffering.

GATE फरें

4. RST (Reset):

Used to abruptly terminate a connection, often in response to some error or invalid segment.

5. SYN (Synchronize):

Used to initiate a connection during the TCP 3-way handshake. It signals the beginning of a TCP conversation.

6. FIN (Finish):

Used to terminate a TCP connection gracefully.

→When a sender sets FIN, it indicates that it has no more data to send.

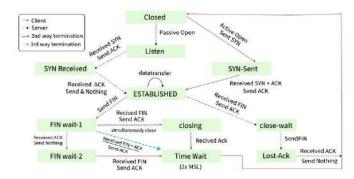
SYN / FIN / ACK Consumption Table

Condition	Notes
SYN=1	Consume 1 seq no
FIN=1	Consume 1 seq no
ACK=1	Consume 0 seq no
Data byte	Consume 1 seq no

	SYN	ACK	
1.	1	0	= Request
2.	1	1	= Reply
3.	0	1	= Ack
4.	0	0	= Data Transfer

Wrap Around Time (WAT):

Time taken to wrap around **2**³² sequence numbers (based on bandwidth)


WAT = Total seq no / Bandwidth (B/s)

To avoid wrap around within the lifetime: Min seq no \geq LT \times B

Transmission Control Protocol (TCP)

- TCP is **reliable**, port-to-port, byte/stream transport layer protocol.
- Supports full-duplex, connection-oriented communication.
- TCP connection has **3 phases**:
 - 1. Connection Establishment
 - 2. Data Transfer
 - 3. Connection Termination
- Uses sliding window protocol for flow control; the window size is set and controlled by the receiver.
- Each TCP connection is associated with four windows.
- Not useful for broadcasting and multicasting
- Data will be received at destination in order
- TCP provides end-to-end error control and flow control

TCP State Transition Diagram

GATE फरें

Retransmission in TCP:

- 1. Retransmission after timeout timer
- 2. Retransmission after 3 duplicate ACKs

Silly Window Syndrome

- When we use capacity of the network inefficiently (overhead >> data transfer)
- Happens when:
 - O Receiving capacity becomes 0
 - O Produces only one byte at a time
 - O Consumes only one byte at a time → leads to **Silly Window Syndrome**

TCP Timer Management

- 1. Keep-alive timer
- 2. Persistent timer
- 3. ACK timer
- 4. Linear wait timer
- 5. Timeout timer

1. Persistent Timer

- Deals with zero-window deadlock
- Ensures window size info continues even if other end closes receive window

2. Keep-alive Timer

 Server closes the connection if the client does not send any data for a fixed time

3. Time-wait Timer (2MSL)

• Used during connection termination

 Connection stays open for 2MSL to allow TCP to resend final ACK in case ACK is lost

4. Timeout Timer

- Starts after sending TCP segment
- If ACK not received in time →
 Retransmission
- Timeout timer = **Retransmission Timer**
- Should adapt based on traffic:
 - O Increase if traffic is high
 - O Decrease if low traffic

Algorithms for Computing Timeout Timer

- 1. Basic Algorithm
- 2. Jacobson's Algorithm
- 3. Karn's Algorithm

Timeout Timer = 2 × RTT Karn's Algo:

- When a segment is retransmitted, do not use Basic/Jacobson's algorithm since RTT is invalid.
- Instead, double the RTT × TOT when timeout occurs.

RTT Formulas:

Next RTT (NRTT):

$$NRTT = \alpha(RTT) + (1-\alpha)ARTT$$
$$0 < \alpha < 1$$

Actual Deviation (AD) = |RTT - ARTT|Next Duration (ND) = $\alpha(AD) + (1 - \alpha)(prev AD)$

GATE फरें

Congestion in Network / Congestion Control

Congestion:

 State where message traffic is too heavy → slows down response time

Congestion Control:

- Techniques/mechanisms to:
 - O Prevent congestion before it happens
 - O Handle congestion after it occurs

TCP reacts by reducing sender window size:

Ws = min(Wc, Wr)

Where:

- Wc = congestion window
- Wr = receiver window

Threshold = Wr / 2

TCP Congestion Control Phases:

- 1. Slow Start
- 2. Congestion Avoidance
- 3. Congestion Detection

Slow Start:

 Window size increases exponentially until it hits threshold

After 1 RTT: $Wc = 2 \times (Wc)$ If ACK arrives: Wc = Wc + 1

Congestion Avoidance (Additive Increase):

• Window size increases linearly

After 1 RTT: Wc = Wc + 1If ACK arrives: Wc = Wc + 1/wc

Congestion Detection:

- If congestion occurs, window size must be decreased
- 1. Timeout
- 2. 3 Duplicate ACKs

Threshold new = Wc / 2 Restart from threshold

Traffic Shaping:

Mechanism to **control traffic** sent to the network.

1. Leaky Bucket:

- Fixed output rate even with variable input
- Packets leak at constant rate if there's water (packets) in the bucket

2. Token Bucket:

- Allows bursty traffic at regulated rate
- Max number of packets = C + r × t
 (C = capacity, r = rate, t = time)

UDP - User Datagram Protocol

- Message-oriented, connectionless, unreliable transport protocol
- No flow or error control
- Header is simple & fixed (8 bytes)

UDP Header Format:

Source Port (16)	Destination Port (16)			
Length (16)	Checksum (16)			

UDP Length = IP Length - IP Header Length

e.g. 65535 - 20 = 65515

GATE फरें

• Max payload = 65515 - 8 = **65507**

Checksum:

- Not mandatory
- No flow/error control
- Depends on IP & ICMP for error reporting

Where We Use UDP:

- Applications requiring:
 - O One request, one reply
 - O Constant data flow
 - O Multimedia streaming
 - O Speed over reliability
- Used in:
 - O SNMP
 - O Route updates
 - O Broadcasting/Multicasting
 - O Real-time apps
 - O TFTP (Trivial File Transfer Protocol)

TCP vs UDP Summary:

Feature	ТСР	UDP	
Header Size	Dynamic (20–60B)	Fixed (8B)	
Flow End-to-End		None	
Control			
Error	Yes (Checksum	Optional	
Control	Mandatory)	(Checksum)	
Connection Connection-		Connectionless	
Туре	Oriented		

Reliability	Reliable	Not Reliable
Sequence Numbers	Yes	No
Acknowledg ment	Yes	No
Overhead	High (20–60B)	Low (8B)
Protocol Examples	HTTP, FTP, SMTP, POP	DNS, SNMP, TFTP, DHCP

	State	Description
	CLOSED	No connection exists
	LISTEN	Waiting for SYN
	SYN-SENT	Sent SYN, waiting for ACK
	SYN-RCVD	Received SYN, sent ACK
	ESTABLISHED	Connection established
	FIN-WAIT-1	Sent FIN, waiting for ACK
	FIN-WAIT-2	Received ACK for FIN
	CLOSE-WAIT	Received FIN, sent ACK
	CLOSING	Both sides sent FIN
	LAST-ACK	Sent FIN, waiting for final ACK
TIME-WAIT		Final ACK sent, waiting for 2MSL

GATE CSE BATCH KEY MIGHLIGHTS:

- 300+ HOURS OF RECORDED CONTENT
- 900+ HOURS OF LIVE CONTENT
- SKILL ASSESSMENT CONTESTS
- 6 MONTHS OF 24/7 ONE-ON-ONE AI DOUBT ASSISTANCE
- SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

- ENGINEERING MATHEMATICS
- GENERAL APTITUDE
- DISCRETE MATHEMATICS
- DIGITAL LOGIC
- COMPUTER ORGANIZATION AND ARCHITECTURE
- C PROGRAMMING
- DATA STRUCTURES
- ALGORITHMS
- THEORY OF COMPUTATION
- COMPILER DESIGN
- OPERATING SYSTEM
- DATABASE MANAGEMENT SYSTEM
- COMPUTER NETWORKS

LEARNING BENEFIT:

- GUIDANCE FROM EXPERT MENTORS
- COMPREHENSIVE GATE SYLLABUS COVERAGE
- EXCLUSIVE ACCESS TO E-STUDY MATERIALS
- ONLINE DOUBT-SOLVING WITH AI
- QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

TO EXCEL IN GATE
AND ACHIEVE YOUR DREAM IIT OR PSU!

GATE फरें

Multiple Access Control in Networking

Data Link Layer:

- Divided into two sublayers:
 - O Logical Link Control (LLC) Error control, flow control.
 - Media Access Control (MAC) Access control.
- Types of communication link:
 - O Point-to-Point
 - O Broadcast Link

Access Control:

- Ensures fair access to the transmission medium.
- Required in broadcast networks to avoid collisions.
- Collision causes data corruption → requires control.

Multiple Access Protocols:

- Random Access ALOHA, CSMA, CSMA/CD, CSMA/CA
- Controlled Access Reservation, Polling, Token Passing
- 3. Channelized Access FDMA, TDMA, CDMA

ALOHA:

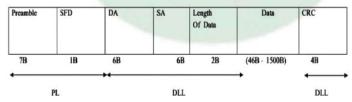
Pure Aloha	Slotted Aloha		
Any station transmits the data at any time.	Any station can transmit the data at the beginning of any time slot.		
Vulnerable time in which collision may occur = $2 * T_f(T_f - Transmission time for single frame)$	Vulnerable time in which collision may occur = T_f		
Throughput of pure aloha = $G * e^{-2G}$	Throughput of slotted Aloha = $G * e^{-G}$		
Maximum throughput $s_{max} = 18.4\% \text{ (When } G = 1/2\text{)}$	Maximum throughput $s_{max} = 36.8\%$ (When $G = 1$)		
The main advantage of pure aloha is it simplicity in implementation	The main advantage of slotted aloha is that it reduces the number of collisions to Half and double the throughput of pure aloha		

CSMA (Carrier Sense Multiple Access):

- Station **senses** channel before transmitting.
- Still collision possible due to propagation delay.
- Types:
 - 1. **1-persistent:** Continuously senses, sends immediately.
 - 2. **Non-persistent:** Waits random time if busy.

GATE फरें

- 3. **p-persistent:** It is used if the channel has time slot duration equal to or grater than the propagation time If channel has found ideal then:
 - (i) with probability p , the station sends its frame.
 - (ii) with probability (1-p), the station wait for the beginning of the next time slot and check the line again.


CSMA/CD (with Collision Detection):

- Stops sending when collision is detected.
- Sends jamming signal to inform others.
- Minimum frame size to detect collision L
 ≥2pd +Td (inm) X B

Backoff Algorithm:

- Used in CSMA/CD to wait before retransmitting.
- Backoff time = K×RTT
- K∈[0,2n−1]K \in [0, 2^n 1]

Ethernet (IEEE 802.3):

- Uses CSMA/CD and bus topology.
- Speeds:
 - O 10 Mbps (normal)
 - O 100 Mbps (fast)
 - O 1 Gbps (gigabit)
- Frame format:

- O Preamble: 7B
- O SFD: 1B
- O Destination Address: 6B
- O Source Address: 6B
- O Length: 2B
- O Data: 46–1500B
- O CRC: 4B

Ethernet Frame Fields:

Preamble:

- 7B field contains alternate 0's and 1's.
- It alerts the stations that frame is going to start.

Start Frame Delimiter (SFD):

- It is a 1 byte field which is always set to 10101011.
- Last "11" indicates the end of SFD and marks the beginning of the frame.

Destination Address (DA):

 It is a 6B field that contains the MAC address of the destination for which the data is destined.

Source Address (SA):

• It is a 6B field that contains the MAC address of the source which is sending the data.

Length:

GATE फरें

• It is a 2B field which specifies the length of data field.

Data:

- It is a variable-length field which contains the actual data.
- It is also called the payload field.
- Range of size = (46B 1500B).

Frame Check Sequence (CRC):

• It is a 4B field that contains the CRC code for error detection.

GATE फरें

Types of Packet Switching

1. Datagram Packet Switching

2. Virtual Circuit Packet Switching

Datagram	Virtual Circuit			
Switching	Switching			
No need to make a	Connection is made first,			
connection before	then data is sent.			
sending data.				
Each data packet can	All packets go through the			
go from a different	same fixed route.			
route.				
Packets can reach the	Packets reach in the same			
destination in any	order as sent.			
order.				
Not very reliable –	More reliable – packets are			
packets can get lost.	not usually lost.			
Cheaper method.	More expensive – resources			
	are reserved.			
No resources are	First packet books CPU,			
reserved in advance.	bandwidth, etc. for others.			
Every packet carries	Only the first packet carries			
full address info.	full path info; others carry			
	short info.			
If there is no space,	Packets are never dropped;			
packets can be	they are queued or			
dropped midway.	forwarded.			
Used in IP networks	Used in ATM			
(like the Internet).	(Asynchronous Transfer			
	Mode).			
Works mostly at	Works mostly at Data Link			
Network Layer (Layer	Layer (Layer 2).			
3).				

Routing Algorithm

Routing Algorithm
/ \
Static Dynamic
/ \
Distance Vector Link State
Routing Routing

Types of Routing Algorithms:

1. Static Routing

- The fixed path is set manually.
- It does not change automatically if the network changes.
- Simple but not flexible.

2. **Dynamic Routing**

- Routes are updated automatically based on network conditions.
- Divided into two types:

a) Distance Vector Routing

- Each router shares distance info with its neighbors.
- Works slowly and takes time to adjust if the network changes.

b) Link State Routing

- Each router knows the full map of the network.
- Fast and adjusts quickly to network changes.

GATE फरें

Distance Vector	Link State Routing
Routing	
Used in 1980s	Used in 1990s
Uses very less bandwidth	Uses more bandwidth
(only sends distance info)	(sends full link info)
Router knows only about its neighbors (local info)	Router knows about the entire network (global info)
Uses Bellman-Ford algorithm	Uses Dijkstra's algorithm
Network traffic is low	Network traffic is high
Slow to update (slow	Fast to update (fast
convergence)	convergence)
Has count to infinity	No such problem
problem	
Can create permanent	May create temporary
loops	loops, but gets fixed
Protocol example: RIP	Protocol example: OSPF
(Routing Information	(Open Shortest Path
Protocol)	First)

Note:

- 1.The maximum Hop count allowed For RIP is 15 and Hop count of 16 is considered as Destination unreachable.
- 2.RIP uses UDP as its transport protocol with the port number 530

IP Support Protocols

1. ARP (Address Resolution Protocol)

Finds MAC address using an IP address.

Used when a device knows the IP but needs the physical address to send data.

2. ICMP Messages (Internet Control Message Protocol)ICMP messages are of two types:

Error-reporting or Feedback Messages
 These are sent when there is a problem in the network.

There are 5 types:

		Error Message Type	Meaning			
		Destination	The packet cannot reach			
		Unreachable	the final destination.			
		Source Quench	Tells the sender to slow			
			down sending packets.			
Time Exceeded		Time Exceeded	Packet took too long and			
			got dropped.			
	Parameter		There's something wrong in			
Problems the pack		Problems	the packet's header (info).			
	15.	Redirection	Suggests a better route for			
			the packet.			

2. Query or Request and Reply Messages
These are used for asking questions or sending
requests and getting replies.

GATE फरें

There are 4 types:

Query Message Type	Meaning
Echo Request and	Used for testing if the
Reply	other device is active.
	(Ping uses this)
Timestamp	Used to check the time
Request and Reply	between two devices.
Address-mask	Asks for the subnet mask
Request and Reply	information.
Router Solicitation	Used by devices to find
and	nearby routers.
Advertisement	
S	

APPLICATION LAYER PROTOCOL

The Application Layer is the topmost layer in the OSI and TCP/IP models. It directly interacts with the end user and provides network services to applications like web browsers, email clients, etc.

There are some Application Layer Protocols

- 1. HTTP
- 2. FTP
- 3. SMTP
- 4. POP3
- 5. IMAP
- 6. DNS

HTTP Protocols-

- 1. HTTP is used to access data on the World Wide Web (www).
- 2. It is a client-server protocol, and works on port number 80 using TCP.

- 3. HTTP is an In-Band protocol both request and data are sent in the same connection.
- 4. HTTP is a stateless protocol, which means it does not remember anything about the user or past requests.
- 5. There are 2 types of HTTP connections:
 - O (i) Non-persistent (1.0)
 - O (ii) Persistent (1.1)

Non-Persistent (1.0)

In Non-persistent HTTP, a new TCP connection is created for each request-response pair.

Steps:

- 1. Client opens a TCP connection and sends a request.
- 2. Server sends the response and closes the connection.
- 3. If a file contains N images (in separate files on same server), then connection must open and close N+1 times.
- → That's why it's called non-persistent the connection doesn't stay open.

Persistent (1.1)

In Persistent HTTP, the TCP connection is kept open for multiple requests.

Key Points:

- 1. The server keeps the connection open even after sending the response.
- 2. The connection is closed only when:
 - O Client asks to close it, or
 - O A timeout occurs.

This makes it faster and more efficient than non-persistent.

GATE फरें

FTP-File Transfer Protocol

FTP is a standard internet protocol used to transfer files between computers using a TCP/IP connection.

- 1. It works on two port numbers:
 - O Port 21 for Control Connection
 - O Port 20 for Data Connection
- 2. FTP uses two connections:
 - O (i) Control Connection (Port 21): for sending commands
 - O (ii) Data Connection (Port 20): for sending actual files
- 3. The control connection remains open during the entire FTP session.
- 4. The data connection is opened and closed for each file transfer.
- 5. When an FTP session starts, control connection opens first.
 - O While it's open, the data connection can be opened/closed many times (for multiple file transfers).
- 6. FTP uses persistent TCP connection for control (i.e., it stays open).
- 7. FTP uses non-persistent TCP connection for data transfer (i.e., opens and closes per file).
- 8. FTP is a connection-oriented protocol.
- 9. FTP is an "Out-of-band" protocol:
 - O Control and data do not go through the same connection.

- O They use separate connections.
- 10. Some protocols (like FTP) send requests and data on different connections, so they are called Out-of-Band.
- 11. Others (like HTTP & SMTP) use the same connection for both request and data they are called In-Band protocols.
- 12. FTP is a stateful protocol it remembers user information during the session.

Transmission Modes In FTP

FTP can transfer files in three modes:

- Stream Mode –
 Data is sent as a continuous stream of bytes.
- Block Mode –
 Data is divided into blocks before sending.
- Compressed Mode –
 Data is compressed before sending to save bandwidth.

File Types in FTP

FTP supports transfer of 3 types of files:

- ASCII File –
 Normal text files (readable characters).
- 2. EBCDIC File File format used by IBM systems.
- 3. Image File –
 Raw binary data (bit-by-bit transfer), also used for software files.

GATE फरें

Data Structure in FTP

While transferring files, FTP understands 3 types of data structures:

- 1. File Structure File is a simple sequence of bytes (normal file).
- Record Structure –
 File is divided into records (like a table row).
- 3. Page Structure File is divided into pages, with each page having its own number.

SMTP (Simple Mail Transfer Protocol)

- 1. SMTP is used to send emails reliably and efficiently.
- 2. Works on TCP Port 25.
- 3. SMTP is a text-based, connection-oriented, and stateless protocol.
- 4. It uses persistent TCP connections, so multiple emails can be sent in one session.
- 5. It is an in-band protocol (data and control share the same connection).
- 6. SMTP is used to push (send) emails from client to server.

Components

- User Agent (UA):
 Creates the email message and envelope.
- Mail Transfer Agent (MTA):
 Transfers the message over the Internet.

Email Flow

- Sender uses SMTP to push email to the receiver's mail server.
- Receiver uses POP3 or IMAP4 to pull/download the email.

Limitations of SMTP

- Can only send 7-bit ASCII text.
- Cannot send images, audio, video, binary files, or non-English text (like Hindi, Japanese, etc.).

Solution-MME

- MIME (Multipurpose Internet Mail Extension) is used with SMTP to send non-text content.
- MIME converts non-ASCII data to ASCII for transmission and back at the receiver side.
- Enables sending of images, audio, video, binary files, and foreign language content via SMTP.

Pull vs Push

- SMTP → Push (Client to Server)
- POP3 / IMAP4 → Pull (Server to Client)

POP3(Post office Protocol version-3)

- Message access protocol used for receiving emails from the mail server.
- 2. It is a pull protocol pulls mails from server to client.
- 3. Works on TCP port 110.
- 4. It is a connection-oriented protocol connection is required for communication.
- 5. Uses persistent TCP connection connection stays open during session.
- 6. State full protocol remembers user info during session.
- 7. In-band protocol both data and control go through the same connection.

GATE फरें

Limitations:

- Cannot preview mail before downloading full mail must be downloaded first.
- Cannot organize emails on the mail server no folder structure support.

IMAP4 (Internet Mail Access Protocol v4)

- 1. IMAP4 is similar to POP3, but it has more features, is more powerful, and a bit complex.
- 2. It allows users to:
 - O Check the email header before downloading.
 - O Search content inside emails before downloading.
 - O Partially download the email.
 - O Create, delete, rename folders on the mail server.
 - O Organize mails in a folder hierarchy (like Inbox, Sent, Spam etc.).
- 3. IMAP4 is a pull protocol (like POP3).
- 4. Works on TCP Port 143.
- 5. It is connection-oriented and stateful.
- 6. Uses persistent TCP connection.
- 7. IMAP is an in-band protocol (data and control share the same connection).

POP3 VS IMAP4-Key Differences

♦ POP3	♦ IMAP4			
Mails can only be	Mails can be accessed			
accessed from one	from multiple devices.			
device.				
Emails are downloaded	Emails stay on the server			
and deleted from the	and sync across devices.			
server.				
Users cannot organize	Users can organize mails			
mails on the server.	in folders on the server.			
No support for syncing	Supports syncing			
changes.	changes on all devices.			
It is one-way (client to	It is two-way (changes			
server).	reflect both sides).			

DNS – Domain Name System

- 1. DNS is used to translate domain names (like www.google.com) into IP addresses.
- 2. It is used in both LAN and WAN environments to track computers, services, and resources.
- 3. DNS is an Application Layer protocol.
- 4. It uses UDP port 53 by default, and TCP port 53 for large transfers (e.g., zone transfers).
- It is a pull protocol client sends query, server replies.
- 6. DNS follows a client-server architecture.
- 7. It uses a distributed database to store data in the form of resource records.
- 8. DNS is a stateless protocol it does not remember previous queries.

GATE CSE BATCH KEY MIGHLIGHTS:

- 300+ HOURS OF RECORDED CONTENT
- 900+ HOURS OF LIVE CONTENT
- SKILL ASSESSMENT CONTESTS
- 6 MONTHS OF 24/7 ONE-ON-ONE AI DOUBT ASSISTANCE
- SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

- ENGINEERING MATHEMATICS
- GENERAL APTITUDE
- DISCRETE MATHEMATICS
- DIGITAL LOGIC
- COMPUTER ORGANIZATION AND ARCHITECTURE
- C PROGRAMMING
- DATA STRUCTURES
- ALGORITHMS
- THEORY OF COMPUTATION
- COMPILER DESIGN
- OPERATING SYSTEM
- DATABASE MANAGEMENT SYSTEM
- COMPUTER NETWORKS

LEARNING BENEFIT:

- GUIDANCE FROM EXPERT MENTORS
- COMPREHENSIVE GATE SYLLABUS COVERAGE
- EXCLUSIVE ACCESS TO E-STUDY MATERIALS
- ONLINE DOUBT-SOLVING WITH AI
- QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

TO EXCEL IN GATE
AND ACHIEVE YOUR DREAM IIT OR PSU!

GATE फरें

Types of DNS Severs

- Root Server First-level server, points to TLD servers.
- 2. TLD (Top Level Domain) Server Handles domains like .com, .org, .in, etc.
- 3. Authoritative DNS Server Stores the actual IP address of a domain name.
- 4. Local DNS Resolver Found in client-side networks, stores cached queries.

Main Services of DNS

- Name Translation Converts domain names into IP addresses.
- Host Aliasing Maps multiple domain names to the same IP address.
- Mail Aliasing Handles email routing using MX records.
- Load Balancing Distributes incoming traffic across multiple servers.

GATE फरें

Comparison	Table of	Application	<u>Layer</u>
Protocols.			

Comparison lable of Application Layer Protocols							
Feature	DNS	НТТР		SMTP	РОР	IMAP	FTP
Stateful / Stateless	Stateless	Stateless		Stateless	Stateful	Stateful	Stateful
Transport Protocol Used	UDP	ТСР		ТСР	ТСР	ТСР	ТСР
Connectionless/ Oriented	Connectionless	ConnectionI s	es	Connection -oriented	Connection -oriented	Connection -oriented	Connection -oriented
Persistent / Nonpersistent	Non-persistent	HTTP 1.0: Non- persistent HTTP 1.1: Persistent	1	Persistent	Persistent	Persistent	Control: Persistent Data: Non- persistent
Push / Pull	-	-\		Push	Pull	Pull	Can't
Port Number Used	53	80		25	110	143	20 (Data), 21 (Control)
In-band / Out-of- band	In-band	In-band	1	In-band	In-band	In-band	Out-of- band

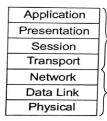
GATE फरें

<u>Standard Port Numbers and Transport</u> <u>Protocols of Application Layer Services:</u>

Application	Port Number	Transport Protocol
DNS	53	UDP
HTTP	80	ТСР
FTP	20 (Data connection) 21 (Control)	ТСР
SMTP	25	ТСР
POP	110	ТСР
SNMP	161, 162	UDP
IFTP	69	UDP
IMAP	143	ТСР
Teinet	23	ТСР
DHCP	67 (DHCP Server) 63 (DHCP Client)	UDP

Common Commands Used in Application Layer Protocols

Port Number	Transport Protocol
53	UDP
80	TCP
20 (Data connection) 21 (Control)	ТСР
25	ТСР
110	ТСР
161, 162	UDP
69	UDP
143	ТСР
23	ТСР
67 (DHCP Server) 68 (DHCP Client)	UDP
	53 80 20 (Data connection) 21 (Control) 25 110 161, 162 69 143 23 67 (DHCP Server)


GATE फरें

OSI AND TCP/IP PROTOCOLS STACK

OSI Model

- 1. OSI stands for Open Systems Interconnection.
- 2. It was developed by ISO in 1984.
- 3. It is a standard model to divide a communication system into 7 layers.
- 4. Each layer has similar types of functions and communicates with the layer above and below it.
- OSI model is mainly used as a reference for designing protocols and devices to ensure compatibility and communication between systems.

7 Layers of OSI Model (Top to Bottom)

Host Layers: Used whenever a message passes from or to a user

Media Layers: Used whenever any message passes through the host device

Physical Layer

- It is the 1st layer of the OSI model.
- It works at hardware level only.
- It sends bits (0s and 1s) over the network using physical medium.
- Deals with hardware like cables, switches, etc.
- Connects devices with physical media (like fiber, copper wire).
- Controls things like voltage, data speed, distance, and connection type.

Data Link Layer

- Works at Layer 2 of OSI model.
- Transfers frames from one node (hop) to the next.
- Converts:
 - O Bits ↔ Packets (Frames)
- Uses Layer 1 (Physical Layer) to send bit stream.

Main Functions:

- Framing Breaks bit stream into frames.
- Error Control Detects and handles errors in transmission.
- Flow Control Manages data speed to prevent overflow.
- Access Control Controls which device can use the link.
- Physical Addressing Adds MAC address to identify devices.

Parts of Data Link Layer:

- LLC (Logical Link Control)
 - \rightarrow Flow control, Error control, Synchronization
- MAC (Media Access Control)
 - → Framing, Physical addressing, Access control

GATE फरें

Network Layer

- Works at Layer 3 of the OSI model.
- Delivers packets from source to destination across networks.
- Hides routing details from upper layers.

Main Functions:

- Host-to-Host Connectivity Sends data between different devices (hosts).
- Logical Addressing Assigns IP addresses to identify devices.
- Routing Chooses the best path to send data.
- Switching Manages packet switching in the network.
- Fragmentation & Reassembly
 - O Breaks large data into smaller packets.
 - O Reassembles packets at the receiver.
- Congestion Control Avoids overload in the network.

Other Responsibilities:

- Translates logical address → physical address (e.g., IP → MAC).
- Handles packet delivery, error handling, and network traffic issues.

Transport Layer

- Works at Layer 4 of the OSI model.
- Responsible for process-to-process delivery (not just host-to-host).
- Make sure data reaches the right application on the destination device.
- Requests retransmission if packets are missing or corrupted.

- Sends acknowledgement after successful delivery.
 - Main Functions:
- End-to-End Connectivity Delivers data between two devices completely.
- Service Point Addressing Uses port numbers to reach the correct process.
- Flow Control Controls speed to avoid overwhelming receivers.
- Error Control Detects and corrects errors, ensures no data loss/duplication.
- Segmentation & Reassembly
 - O Splits data into smaller parts (segments).
 - O Rejoins segments at the receiver.
- Congestion Control Prevents overload in the network.
- Connection Control Supports both connection-oriented (TCP) and connectionless (UDP) communication.
- Multiplexing & Demultiplexing Allows multiple applications to use the network at the same time.

Session Layer

- Layer 5 of OSI model.
- Acts as a network dialog controller.
- Starts, manages, and ends communication sessions between devices.
- Only authorized users can join the session.
- Helps in restarting communication smoothly after interruption.

GATE फरें

Main Functions:

- Authentication & Authorization Confirms who can join the session.
- Synchronization (Checkpoints) Saves session state, so data can resume from the last point if failure occurs.
- Dialog Control Decides who sends/receives and for how long.

Presentation Layer

- Layer 6 of OSI model.
- Acts as a translator between application and network.
- Handles protocol conversion and graphics/audio format handling.
- Ensures smooth communication between different systems/platforms.

Main Functions:

- Character Translation Converts data formats from sender to receiver.
- Encryption / Decryption Secures data during transfer.
- Compression Reduces data size for fast transmission.

Application Layer

- Layer 7 of OSI model Topmost layer.
- Directly interacts with the user and applications.

Main Functions:

- Provides network services to users (e.g., email, file transfer, web browsing).
- Supports applications like Mail services, File sharing, etc.
- Gives access to network-based apps (e.g., browser, FTP client).
- Represents what the user sees or uses.

Examples of Services:

- Email (SMTP, POP3, IMAP)
- Web browsing (HTTP, HTTPS)
- File transfer (FTP)
- Remote access (Telnet)

GATE फरें

OSI LAYER PROTOCOLS

OSI Layer Protocols

Layer	Protocols	
Application	NNTP, SIP, SSI, DNS, FTP, Gopher, HTTP, NFS, NTP, SMTP, DHCP, SNMP, Telnet, Netconf	
Presentation	MIME, XDR, TLS, SSL	
Session	Named Pipes, NetBIOS, SAP, SIP, L2TP, PPTP	
Transport	TCP, UDP, SCTP, DCCP	
Network	IP (IPv4, IPv6), ICMP, IPsec, IGMP, IPX, AppleTalk	
Data Link	ATM, SDLC, HDLC, ARP, CSLIP, SLIP, PLIP, IEEE 802.3, Frame Relay, ITU-T G.hn, PPP, X. 25	
Physical	EIATIA-232, EIA/TIA-449, ITU-T V-Series, I.430, I.431, IEEE 802.3, SONET/SDH, PON, OTN, DSL, IEEE 802.1, IEEE 802.15, IEEE 802.16, IEEE 1394, ITU-T G.hn PHY, USB, Bluetooth	

GATE फरें

TCP/IP Model

There are 5 layers of the TCP/IP model.

- 1. Physical Layer
- 2. Data Link Layer
- 3. Network Layer
- 4. Transport Layer
- 5. Application Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP/IP Model

Application Layer

Application Layer

Internet Layer

Network Access Layer

Physical Layer

- Lowest layer of TCP/IP model.
- Deals with actual transmission of raw bits over physical media (cables, wireless signals).
- Defines electrical and mechanical specifications like voltage, cable type, connectors.

 Examples: Ethernet cables, Fiber optics, Radio waves.

Data Link Layer

- Provides node-to-node data transfer.
- Frames data packets from the Network layer into frames for transmission.
- Handles error detection and correction on the link.
- Uses MAC addresses to identify devices on the same physical network.
- Examples: Ethernet, Wi-Fi (802.11), PPP.

Network Layer (Internet Layer)

- Responsible for logical addressing and routing.
- Delivers packets from source to destination across multiple networks (routing).
- Main protocol: IP (IPv4, IPv6).
- Also uses ARP, RARP for address mapping and ICMP for error reporting.
- Handles fragmentation and reassembly of packets.

Transport Layer

- Provides end-to-end communication between applications on hosts.
- Ensures reliable or unreliable data delivery depending on protocol.
- Main protocols:
 - O TCP (Transmission Control Protocol): reliable, connection-oriented, error-checked.

GATE फरें

- O UDP (User Datagram Protocol): faster, connectionless, no guarantee.
- Performs flow control, error control, segmentation and reassembly.

Application Layer

- Highest layer, directly interacts with user applications.
- Provides services like email, file transfer, remote login, web browsing.
- Supports many protocols:
 - O HTTP, FTP, SMTP, DNS, Telnet, POP3, IMAP, SNMP.
- Responsible for data formatting, encryption, and session management as needed.

Comparison between the OSI Model and TCP/IP Model

Parameter	OSI Model	TCP/IP Model	
Full Form	Open Systems Interconnection	Transmission Control Protocol/Internet Protocol	
Layers	7 layers	4 layers	
Usage	Low usage	Mostly used	
Approach	Vertical approach	Horizontal approach	
Delivery	Guaranteed delivery of data	Delivery not guaranteed	
Replacement	Easy to replace tools and change	Harder to replace tools	
Reliability	Less reliable	More reliable	
Protocol Example	Various protocols for each layer	Common protocols like HTTP, FTP, TCP, UDP	
Error Handling	Built into Data Link & Transport layers	Built into protocols like TCP	
Connection Orientation	Both connection- oriented and connectionless at Transport	TCP (connection- oriented), UDP (connectionless)	

GATE CSE BATCH KEY MIGHLIGHTS:

- 300+ HOURS OF RECORDED CONTENT
- 900+ HOURS OF LIVE CONTENT
- SKILL ASSESSMENT CONTESTS
- 6 MONTHS OF 24/7 ONE-ON-ONE AI DOUBT ASSISTANCE
- SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

- ENGINEERING MATHEMATICS
- GENERAL APTITUDE
- DISCRETE MATHEMATICS
- DIGITAL LOGIC
- COMPUTER ORGANIZATION AND ARCHITECTURE
- C PROGRAMMING
- DATA STRUCTURES
- ALGORITHMS
- THEORY OF COMPUTATION
- COMPILER DESIGN
- OPERATING SYSTEM
- DATABASE MANAGEMENT SYSTEM
- COMPUTER NETWORKS

LEARNING BENEFIT:

- GUIDANCE FROM EXPERT MENTORS
- COMPREHENSIVE GATE SYLLABUS COVERAGE
- EXCLUSIVE ACCESS TO E-STUDY MATERIALS
- ONLINE DOUBT-SOLVING WITH AI
- QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

TO EXCEL IN GATE
AND ACHIEVE YOUR DREAM IIT OR PSU!

STAR MENTOR CS/DA

KHALEEL SIR

ALGORITHM & OS

29 YEARS OF TEACHING EXPERIENCE

CHANDAN SIR
DIGITAL LOGIC
GATE AIR 23 & 26 / EX-ISRO

SATISH SIR
DISCRETE MATHEMATICS
BE IN IT from MUMBAI UNIVERSITY

MALLESHAM SIR
M.TECH FROM IIT BOMBAY
AIR - 114, 119, 210 in GATE
(CRACKED GATE 8 TIMES)
14+ YEARS EXPERIENCE

VIJAY SIR
DBMS & COA
M. TECH FROM NIT
14+ YEARS EXPERIENCE

PARTH SIR

DA

IIIT BANGALORE ALUMNUS
FORMER ASSISTANT PROFESSOR

SAKSHI MA'AM
ENGINEERING MATHEMATICS
IIT ROORKEE ALUMNUS

SHAILENDER SIR
C PROGRAMMING & DATA STRUCTURE
M.TECH in Computer Science
15+ YEARS EXPERIENCE

AVINASH SIR
APTITUDE

10+ YEARS OF TEACHING EXPERIENCE

AJAY SIR
PH.D. IN COMPUTER SCIENCE
12+ YEARS EXPERIENCE

