

5/IE und

CSE

DISCRETE MATHES

ENROLL NOW

TO EXCEL IN GATE

AND ACHIEVE YOUR DREAM IIT OR PSU!

ENROLL NOW

GATE फरें

В

GRAPH THEORY

GRAPH

- Let **G(V, E)** be the graph:
- O V = set of vertices
- O **E** = edge set

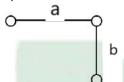
Each edge must be associated with an unordered pair of vertices.

- O|V| = number of vertices = **order of graph**
- O |E| = number of edges = size of graph
 - Adjacent Vertices: Two vertices are adjacent if they have a common edge.

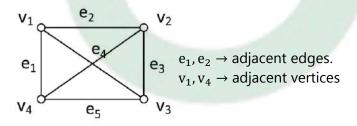
 $v_1 \bullet a b v_2$ Example: If, then $\mathbf{v_1}$ and $\mathbf{v_2}$ are adjacent vertices.

• **Adjacent Edges :** Two edges are adjacent if they share a **common vertex.**

Example:



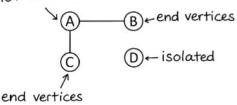
a, b →adjacent edges.



• **End Vertices :** Unordered pair of vertices at the end of an **edge**.

Example: b & c are end vertices

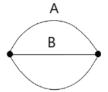
not an end vertices



Types of Edges

1. Parallel Edge :Two edges connecting the same pair of vertices:

Example:

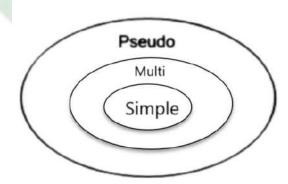


here, A & B are parallel edges

Self Loop: An edge that connects a vertex to itself.Example: Q - loop back to QQ

Graph Type	Self Loop	Multi-edge(Parallel edges)
Simple Graph	×	×
Multi Graph	×	✓
Pseudo Graph	√	√

• Graph Types:



• **Degree (or Valency):** The degree of a vertex is the **number of edges incident** to it.

Note: A **loop** is counted **twice** in the degree of a vertex.

GATE फरें

 Theorem 1: Maximum degree of a vertex in a simple graph with n vertices is ≤ n-1.

$$\sum d(v_i) = 2|E|$$

where,|E| = number of edges $|V_i|$ = vertices

Hand Shaking Lemma: Sum of all degrees = 2 * sum of all edges.

Theorem 2: vertices with odd degree is always even.

• $\sum_{\text{odd}} d(v) = \text{even}$

Note: The number of vertices with odd degree is even.

• **Theorem 3:** Max degrees in a given graph G is denoted as Δ(G) & Min degree is denoted as δ(G).

$\delta(G) \le 2e/n \le \Delta(G) \le n-1$

where, $\Delta(G)$ = Maximum degree in graph G $\delta(G)$ = Minimum degree in graph G e = Number of edges n = Number of vertices

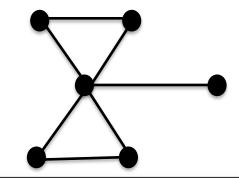
Theorem 4: Maximum degree in a simple graph:
 Δ(G)≤(n-1)

where n = number of vertices.

• **Theorem 5:** Maximum number of edges possible in a simple graph:

$$e \le [n(n-1)]/2$$

- O Maximum number of simple graphs:2^{[n(n-1)]/2}
- O Number of graphs with e edges: n(n-1)/2Ce
- A degree sequence is a list of the degrees of all vertices in a graph, arranged in non-increasing (↓) or non-decreasing (↑) order.
- Graphical Sequence: A graphical sequence is a degree sequence that corresponds to a simple graph.
- eq: 5, 2, 2, 2, 1.

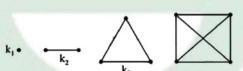


Note: If at any point a negative value appears X Not a Graphical Sequence → No Simple Graph exists.

- Havel-Hakimi Algorithm: It is used to determine whether a degree sequence of positive integers is graphical.
- Some Important Terms:
- O **Distance:** Length or shortest path between two vertices.
- O **Eccentricity(e(v)):**The farthest distance between a vertex **v** and any other vertex in the graph.
- O **Radius:** The **smallest** eccentricity among all vertices in the graph.
- O **Diameter:** The **largest** eccentricity among all vertices in the graph.
- O **Length of Path:** The number of edges involved in the path between two vertices.
- O Inequality Relation: $rad(G) \le dia(G) \le 2 \cdot rad(G)$

TYPES OF SIMPLE GRAPH

1. Complete Graph $(K_n : n \ge 1)$:



$$\Sigma d(v_1) = n * (n-1)$$

- O **Degree Sequence**: Degree of every vertex is n 1.
- O No. of edges = [n*(n-1)]/2
- O Degree of vertices = $\delta(G) = 2e/n = \Delta(G) = n-1$

GATE फरें

2. Regular Graph(K- Regular): Each vertices has some degree and that is of K.

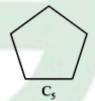
$$\delta(G) = 2e/n = \Delta(G)$$

Note - Every K_n is regular (True) and vice - versa not True.

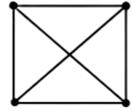
Null Graph → 0 Regular graph

Null Graph: Null Graph having No edges.
 Example - (N_n: n ≥ 1)

- **4.** Cycle Graph (C_n : n ≥ 3): A cycle graph is a graph in which:
- Each vertex has degree 2.
- Every C_n is a **regular graph**
- Number of edges = number of vertices = n.
- **Degree Sequence :** 2, 2, 2, 2, 2...2
- $|n| = |e| \otimes \delta(G) = 2e/n = \Delta(G) = 2$



5. Wheel Graph ($W_n : n \ge 4$):



W

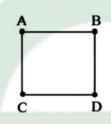
- A Graph(G) is Wheel Graph (W_n) then e = 2*(n-1)
 - → True {vice versa not True}
- **Degree Sequence:** {n-1, 3, 3, 3,....3}(with n-1 threes)
- **Degree** (middle vertices) = n-1

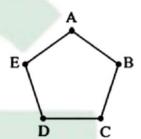
6. Bipartite Graph(L(G)): A graph is **bipartite if** its vertex set V can be partitioned into two disjoint sets V1 and V2, such that **every edge** connects a vertex in V1 to a vertex in V2.

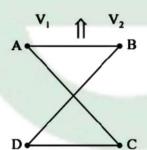
Adjacent **edges should not be** in the **same partitions**.

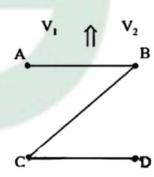
Note:

- A graph containing an **odd-length cycle** is **not bipartite**.
- A complete graph K_n is **never bipartite**. $(n \ge 3)$
- **Maximum edges** occur when each partitions contain n/2 vertices (almost).
- Bipartite graphs do not contain **odd length cycle.**









∴C4 is a bipartite graph

Now adding *E* in either of the sets violates the property of bipartite graph

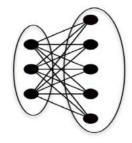
 \therefore C₅ is not a bipartite graph

GATE फरें

Theorem 6: Maximum number of edges in a bipartite graph: e≤[n²/4]

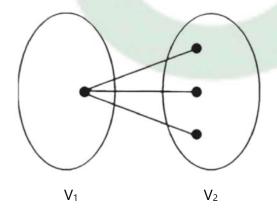
7. Complete bipartite graph $(K_{m,n})$:

- $O |V_1| = m, |V_2| = n$
- O Each vertex in V_1 is connected to **every** vertex in V_2
- O Total number of vertices = m+n
- O Total number of edges = m·n
- O Maximum degree $\Delta(K_{m,n}) = \max(m,n)$
- O Minimum degree $\delta(K_{m,n}) = \min(m,n)$



8. Star Graph (K_{1,n-1}):

- $|V_1|=1$, $|V_2|=n-1$
- Total vertices = n
- Total edges = n−1
- Maximum degree Δ(K1,n−1) = n−1
- Minimum degree $\delta(K1, n-1) = 1$
- There is 1 central vertex.
- It is connected to **n-1** outer (leaf) vertices.



9. Complement Graph (\overline{G}):

- $O \overline{G}$: Edge is **present**
- O (\overline{G}) : Edge is **absent in G**, but **present** in G.
- $O V(G)=V(\overline{G})$
- $O G + \overline{G} = K_n$
- $O e(G)+e(\overline{G})=[n(n-1)]/2$

10. Line Graph(L(G)):

- O Edges of graph G will be **vertices** in graph L(G).
- O **Degree** of line graph of a complete graph K_n : $d(L(K_n))=2(n-2)$

11. Isomorphic Graph:

- O A graph having the same incident property, same number of edges, vertices, and degree as another graph.(Unique Mapping)
- 12. Self-Complement Graph ($G \equiv (\overline{G})$: Isomorphic to its own complement.
- O e(G)+e(\overline{G})=e(K_n)
- O e = $\frac{n(n-1)}{4}$

13. Hypercube (n≥1): n → Bit Signal or n-cube

- O Total vertices = 2ⁿ
- O **Degree** of each vertex = n
- O $e(G_n) = n \cdot 2^{n-1}$
- O e $\overline{G_n} = [2^n(2^n-1)]/2 n \cdot 2^{n-1}$
- O Two vertices are **adjacent** if they differ by 1bit.

GATE फरें

Name	Repeated Vertex (Vertices)	Repeated Edge(s)	Open	Closed
Walk (open)	Yes	Yes	Yes	
Walk (closed)	Yes	Yes		Yes
Trail	Yes	No	Yes	
Circuit	Yes	No		Yes
Path	No	No	Yes	
Cycle	No	No	H by	Yes

Graph

Connected (K=1)

Path is available between all pair of vertices.

Disconnected (K>=2)

Path is unavailabe between at least ⊥ pair of vertices

K→ **No. of Component**

 Every disconnected graph contains a connected subgraph. (K)

Disconnected Connected

- If G is connected, then G¬ is disconnected
- Connected Graph (K = 1)
- $O n-1 \le e \le [n(n-1)]/2$
- O Tree:
- Minimally connected graph
- Acyclic
- Unique path is available between all pairs of vertices
- Disconnected Graph (K > 2)
- O N-k \leq e \leq [(n-k)(n-k+1)]/2
- Max Edges : K=2
- O If $\delta(G)$ ≥(n-1)/2 ⇒ Graph is **Connected** (Vice versa → Not true).

O If G is connected then G¬ may be connected or disconnected

Connected

Conne

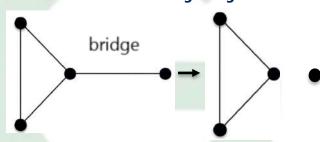
Connected

disconnected

• **Theorem 6:** If G is disconnected, then G¬ is connected.

Example:

- Connected → Disconnected
- Bridge / Cut Edge : Used to make graph disconnected.
- O Involves removal of a single edge



- O If cut-edge exists, it does not belong to a cycle
- \blacksquare Cut Edge Set / Cut Set \rightarrow Set of edges
- Cut Vertex / Articulation Point : Used to make graph disconnected.
 - O Removal of a **single vertex** increases number of components
- O If **no cut vertex** \rightarrow Graph is **Biconnected**.
- **Cut Vertex Set** → Set of vertices

There can be multiple cut sets or cut vertex sets of different sizes.

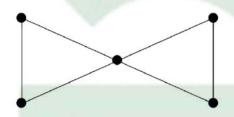
- Edge-Connectivity (λ(G))
- O Removal of Minimum number of **edges**.
- $\bigcirc \lambda(G) \leq \delta(G)$
- Vertex-Connectivity (K(G))
- O Removal of Minimum number of **vertices**.
- \bigcirc K(G) $\leq \lambda$ (G)

GATE फरें

Important Inequality Chain:

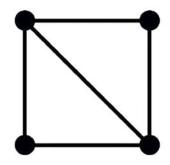
 $K(G) \le \lambda(G) \le \delta(G) \le 2e/n \le \Delta(G) \le n-1$

- For Complete Bipartite Graph (K_{m,n}):
- $O \lambda(Km,n) = min(m,n)$
- O K(Km,n) = min(m,n)
- If a connected graph has a cut point, it also has a cut edge, and vice versa.
- A complete graph does not have any cut vertex.
 Euler Graph: Containing Euler Circuit / Euler
 Cycle
- Closed trail where all edges should be covered exactly once.
- Euler Line / Path: Open trail (start vertex ≠ end vertex) + cover all edges once.
- Graph containing Euler line → Semi-Eulerian
- Euler Graph → Always even degree vertices



Hamiltonian Graph: Containing Hamiltonian Cycle

- Closed path (cycle) where all vertices should be covered once.
- Hamiltonian Path: All vertices covered once + open path (start vertex ≠ end vertex).
- For K_n, No. of different Hamiltonian cycles = [(n-1)!] / 2
- For (K_{m,n}: m = n): No. of different Hamiltonian cycles = n!(n-1)! / 2



 $\delta(G) \ge n/2 \rightarrow Hamiltonian Graph$

Coloring

- Paint
- Colour different to all adjacent vertices.
- Use **minimum** number of colours.
- **Theorem :** Sum of size of minimum vertex cover and size of maximum independent set is equal to number of vertices .
- Proper Coloring:
- O Paint
- O Adjacent vertices should not have the same colour.
- Chromatic Number of Graph (X(G)) → Min colours for proper colouring
- O Null graph: X(G) = 1
- O Tree: X(T) = 2, $n \ge 1$
- Cycle(C_n):
- \blacksquare X(C_n) = 2 if n is even
- \blacksquare X(C_n) = 3 if n is odd
- Wheel Graph(W_n):
- \blacksquare X(Wn) = 3 if n is odd
- \blacksquare X(Wn) = 4 if n is even
- Any Bipartite Graph(K_{m, n}):
- \blacksquare X(G) = 2 (and vice versa)
- $O X(K_{m,n}) = 2$
- $O X(Q_n) = 2$
- Every even-length cycle is always 2-chromatic

A. Chromatic Partitions -

- O Independent Set: Set of non-adjacent vertices
- O Maximal Independent Set (MIS): An independent set where no more vertex can be added.

(Property not about size)

 \bigcirc Independence No. ($\beta(G)$): Number of vertices in largest MIS

 $\beta(G) \ge n / X(G)$

B. Dominance Set:

- Set of vertices D ⊆ V, such that either a vertex or its adjacent vertex belongs to D.
- Minimal Dominating Set (MDS): No more vertex can be removed.
- Domination Number (α(G)): Number of vertices present in smallest MDS.

GATE फरें

Hierarchy:

- Dominance No. → Smallest → Minimal
- Index / No. → Largest → Maximal

Independence Edge Set (Matching Set) \rightarrow Set of non-adjacent edges.

- Maximal Matching Set: No more edges can be added.
- Matching Number : No. of edges in largest MMS.
- $O M(C_n) = M(W_n) = M(K_n) = [n/2]$
- $O M(K_{m,n})=min(m,n)$

Perfect Matching: Every vertex in the graph is connected to exactly one edge.(1-factor or Complete Matching)

- $O K_{n,n} = n!$
- O $K_{2n} = (2n)! / 2^{n*}n!$

Perfect Matching exists → Only if **Number of vertices is even**.

Planarity: Drawing graph on a plane without intersecting its edges.

- $K_5 \rightarrow \text{Non-planar}$ (**Kuratowski's 1st graph**) 1st graph (non-planar with min vertices)
- $K_{3,3} \rightarrow \text{Non-planar}$ (**Kuratowski's 2nd graph**) $\rightarrow 2^{\text{nd}}$ non planar graph with min no. of edges
- **Embedding:** Drawing a graph in the plane. (K_5-e) and $(K_{3,3}-e) \rightarrow$ **Planar**

Drawing Planar Graph Introduces Faces / Regions

- Types:
- O Bounded / Finite / Closed
- O Unbounded / Open / Infinite
- Euler's Formula:
- O n-e+f=2 (for k=1)
- O n-e+f=k+1 (for $k \ge 2$)

where, $n \rightarrow$ number of vertices k = components $e \rightarrow$ number of edges

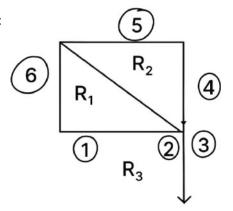
 $f \rightarrow number of faces$

• **Kuratowski's Theorem**: A graph is nonplanar if and only if it contains s subgraph that is homomorphic to either K₅ or K_{3,3}.

Degree of Region Degree of Region = Number of edges involved

→ Every **edge** introduces 2 degrees $deg(R1)+deg(R2)+deg(R3)=12 \rightarrow 2*e \Rightarrow 2*e$

Example:



- deg(R1) = 3
- deg(R2) = 3
- deg(R3) = 6

In planar graphs, deg (Region)≥3 (Region is made by at least 3 edges)

If we have **3 regions** and at least 3 edges:

d(R1)≥3

d(R2)≥3

d(R3)≥3

So, $\sum d(Ri)=3\times3\Rightarrow$ **2e= 3f**

2e=3(2+e-n)

or, 3n-6≥e

 $E \le 3n - 6$

Let's ,5 regions:

 $d(Ri) \ge 5*3$

here, 5 is f

- If graph is planar, then e≤3n-6(Vice-versa not true)
- $O \delta(G) \le 2e/n \le \Delta(G) \le n-1$
- O δ(G)≤2e/n
- O $\delta(G) \leq (6n-12)/n$
- $\bigcirc \delta(G) \leq 5$

If G is planar $\rightarrow \delta(G) \le 5$

Or δ(G)≤5 then G may be planar

Adjacency Matrix (m, m): Primary matrix A of size m×m

- 1if there is a **connection** and otherwise 0.
- X_{ij}=1 indicates a **self-loop.**

Degree of a Vertex: Number of 1s in its corresponding rows or column.
(No self-loop and no multiple edges)

GATE फरें

Note:

- In A², the **principal diagonal elements** represent the **degree** of the corresponding vertex.
- $A^k = [x_{ij}], x_{ij} = \text{number of different paths from vertex i to vertex j of length k.}$
- **Trace Property :** ½ Tr(A³)=Number of triangles in

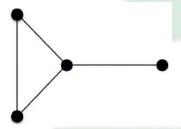
For adjacency matrix, $\lambda_1, \lambda_2, ..., \lambda_n \rightarrow$ Eigen Value

a)
$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = 0$$

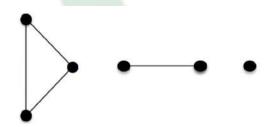
b)
$$\lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 = 2|E(x)|$$

$$c)\lambda_1^3 + \lambda_2^3 + \cdots + \lambda_n^3 = 6 \cdot Tr(x)$$

Note: In an undirected finite graph, at least 2 vertices must have the same degree.
Graph Notation: G=(V,E)

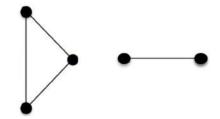


Subgraph: $G_1=(V_1,E_1)$ where: $V_1\subseteq V_2$, $E_1\subseteq E_2$

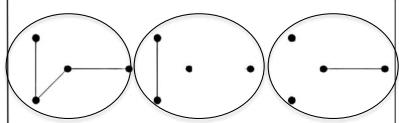


Clique: A complete subgraph

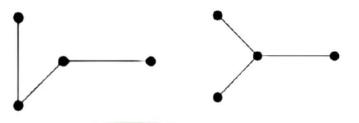
• Clique Number $(\omega(G))$ = largest clique



Spanning Subgraph: A subgraph $G_2=(V_2,E_2)$ where: $V_2=V$



Spanning tree: A minimally connected spanning subgraph (Contains no cycles).



GATE फरें

Propositional Logic

- Fact → Propositional statement

 ∀ Yes
 - **X** No
- Types:
- O Simple
- O Compound
- Connectives
 - 1) Conjunction (Λ) : AND \rightarrow Result is False if any operand is **false**.
 - 2) Disjunction (v) : $OR \rightarrow True$ if at least one operand is **true**
 - 3) Single Implication / Conditional (\rightarrow)
- p → q:
- O If p then q / If p, q / p implies q / q unless p / q whenever p.
- $O p \Rightarrow q$
 - $\mathbf{T} \rightarrow \mathbf{F}$ is the only condition that gives False
 - $p \rightarrow q \equiv \neg p \lor q$
- Variants: $p \rightarrow q$
- O Inverse: $\neg p \rightarrow \neg q$
- O Converse: $q \rightarrow p$
- O Contrapositive: $p \rightarrow q \equiv \neg q \rightarrow \neg p$

4) Double Implication / Biconditional (↔): "if and only if"/ "iff"

p ↔ q is true if both p and q are either T or F (T ↔ T = T || F ↔ F = T)

Properties: These 3 are equivalent if and only if

- A ≡ B
- $A \leftrightarrow B = tautology$
- A, B are having same truth behavior

Truth Table Outcomes:

- If all are true → Tautology / Valid
- If all are false → Contradiction
- If at least one operand is true → **Satisfiable**
- If mix of true and false → **Contingency**

Types of Logical Equivalence:

Type-1: Try to make the statement to false \rightarrow if derived \rightarrow Truth/valid

Type 2: Laws in Propositional Logic

De Morgan's Law

- $\neg(p \land q) \equiv (\neg p \lor \neg q)$
- $\neg (p \lor q) \equiv (\neg p \land \neg q)$

Some other laws:

- Commutative Laws
- $OpVq\equiv qVp$
- $Op\Lambda q \equiv q\Lambda p$
- Associative Laws
- $O p V (q V r) \equiv (p V q) V r$
- $\bigcirc p \land (q \land r) \equiv (p \land q) \land r$
- Distributive Laws
- $O p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- \bigcirc p \land (q \lor r) \equiv (p \land q) \lor (p \land r)
- Identity Laws
- $OpVF \equiv p$
- $Op\Lambda T \equiv p$
- **Domination Laws**
- $OpVT \equiv T$
- Op∧F≡F
- Idempotent Laws
- Op∨p≡p
- $Op\Lambda p \equiv p$
- Inverse Laws
- $OpV \neg p \equiv T$
- $Op \land \neg p \equiv F$
- Absorption Laws
- $O p \lor (p \land q) \equiv p$
- $Op\Lambda(pVq) \equiv p$

Truth Tables for propositional statements

Truth Tables for propositional statements

p	q	¬р	¬q	p	p	p	q	p	¬р	p
				Vq	Λq	\rightarrow q	$\rightarrow p$	\rightarrow q	\rightarrow q	Λz
T	T	F	F	T	T	T	T	T	T	F
T	F	F	T	T	F	F	T	F	T	T
F	T	T	F	T	F	T	F	F	T	F
F	F	T	T	F	F	T	T	T	F	F

Some conversions.

- $p \rightarrow q \cong \neg p \lor q \cong \neg q \rightarrow \neg p$
- $q \rightarrow p \cong \neg q \lor p \cong \neg p \rightarrow \neg (\neg q)$
- $p \leftrightarrow q \cong (p \rightarrow q) \land (q \rightarrow p) \cong \neg p \leftrightarrow \neg q$
- $\neg p \rightarrow q \cong \neg(\neg p) \lor q \cong \neg q \rightarrow \neg(\neg p)$

GATE CSE BATCH KEY MIGHLIGHTS:

- 300+ HOURS OF RECORDED CONTENT
- 900+ HOURS OF LIVE CONTENT
- SKILL ASSESSMENT CONTESTS
- 6 MONTHS OF 24/7 ONE-ON-ONE AI DOUBT ASSISTANCE
- SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

- ENGINEERING MATHEMATICS
- GENERAL APTITUDE
- DISCRETE MATHEMATICS
- DIGITAL LOGIC
- COMPUTER ORGANIZATION AND ARCHITECTURE
- C PROGRAMMING
- DATA STRUCTURES
- ALGORITHMS
- THEORY OF COMPUTATION
- COMPILER DESIGN
- OPERATING SYSTEM
- DATABASE MANAGEMENT SYSTEM
- COMPUTER NETWORKS

LEARNING BENEFIT:

- GUIDANCE FROM EXPERT MENTORS
- COMPREHENSIVE GATE SYLLABUS COVERAGE
- EXCLUSIVE ACCESS TO E-STUDY MATERIALS
- ONLINE DOUBT-SOLVING WITH AI
- QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

TO EXCEL IN GATE
AND ACHIEVE YOUR DREAM IIT OR PSU!

GATE फरें

Type 3 (Inference Rule) [Premises → **Conclusion]**

Rule of Inference	Tautology	Name
$p \rightarrow q$	$(b \lor (b \to d)) \to d$	Modus Ponens (Rule of Detachment)
р		
∴ q	(, , (, ,))	Modus Tollens
$p \rightarrow q$	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus Tollens
¬q 		
∴¬р		
$p \rightarrow q$	$((p \to q) \land (q \to r)) \to$	Hypothetical Syllogism (Law of the
$q \rightarrow r$	$(p \rightarrow r)$	Syllogism)
$\therefore p \rightarrow r$		
p V q	$(\neg p \land (p \lor q)) \rightarrow q$	Disjunctive Syllogism
¬p		
∴q		
-		
P	$p \rightarrow (p \lor q)$	Addition
∴ (p ∨ q)	()	er pre
p ∧ q p ∧ q — or —	$(p \land q) \rightarrow p$	Simplification
	**	The second second
∴p ∴q p∨q	$ (p \land q) \rightarrow q $ $ ((p \lor q) \land (\neg p \lor r)) \rightarrow $	Resolution
¬p∨r	(q V r)	
∴ q ∨ r (p ∧ q) → r		
$(p \land q) \rightarrow r$	$[(p \land q) \to r] \to [p \to (q$	Exportation
	\rightarrow r)]	
$\therefore p \to (q \to r)$		

Predicate Logic:

 Predicates are expressions in logic that represent properties, conditions, or relationships involving one or more variables.

Example : $P(x) \wedge Q(x)$

- **Open Statement** → Can't define truth value directly; it depends on input value(s).
- Domain / Universe / Domain of discourse Set of allowed possible values for open statements.
- Subject + predicate → property
- **Predicate Variable:** $P(x): x^2 \le 100 \rightarrow \text{ where } x \rightarrow 100 \rightarrow \text{ wher$ Predicate Variable.
- O P: "2 is an even number" \rightarrow where P \rightarrow Propositional logic.
- Quantifiers: Tool used to define the truth value in terms of quantity.

• Types:

O Universal Quantifier: ∀ (for all)

O **Existential Quantifier**: ∃ (there exists)

Example:

Universal: $\forall x \ P(x) \rightarrow \text{Every element in domain is}$

true → AND operator

Existential: $\exists x P(x) \rightarrow At \text{ least one value is true} \rightarrow$

OR operator

Negation of Quantifiers:

- $\sim (\forall x P(x)) = \exists x (\sim P(x))$
- $\sim (\exists x P(x)) = \forall x (\sim P(x))$

Implication (with quantifier): $\forall x P(x) \rightarrow \exists x P(x)$

Type 4: Box Method

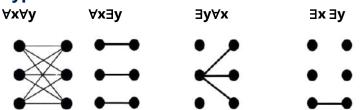
- ∃x→ use '∨'
- ∀x→ use '∧'
- 1. $\forall x [P(x) \land Q(x)] \equiv \forall x P(x) \land \forall x Q(x)$
- 2. $\forall x P(x) \lor \forall x Q(x) \rightarrow \forall x [P(x) \lor Q(x)]$
- 3. $\exists x[P(x)\lor Q(x)] \equiv \exists x P(x)\lor \exists x Q(x)$
- 4. $\exists x [P(x) \land Q(x)] \rightarrow \exists x P(x) \land \exists x Q(x)$
- 5. $\forall x [P(x) \rightarrow Q(x)] \rightarrow \forall x P(x) \rightarrow \forall x Q(x)$
- 6. $\forall x [P(x) \leftrightarrow Q(x)] \rightarrow \forall x P(x) \leftrightarrow \forall x Q(x)$
- 7. $\forall x[P(x)\rightarrow A] \rightarrow \forall x P(x) \rightarrow A$

Predicate Logic

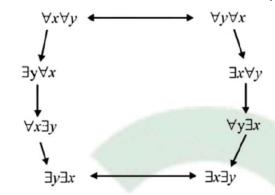
Example:

GATE फरें

Type 5:



(Minimum condition to be true is indicated)



Rule of Inference	Name	
$\forall x P(x)$	Universal instantiation	
$\therefore P(c)$		
(P(c) for an arbitary c) /	Universal	
$(: \forall x P(x))$	generalization	
$(\exists x P(x)) /$	Existential	
(∴ for some element c)	instantiation	
(P(c) for some elemet c)/	Existential	
(∴ ∃xP(x))	generalization	

• Quantifiers with Inference Rules :

Universal Quantifier Rules:

- 1. $\forall x P(x) \rightarrow P(a)$
- 2. $P(a) \rightarrow \forall x P(x) \rightarrow Generalization$

Existential Quantifier Rules:

- 3. $\exists x P(x) \rightarrow P(a) \rightarrow \textbf{Specification}$
- 4. $P(a) \rightarrow \exists x P(x)$

GATE फरें

SET THEORY

SET

- Set: A well-defined collection of distinct objects.
 Example: A = {1, 2, 3}
- Forms:
- O Roster: A = {1, 2, 3, 4}
- O Set Builder: $A = \{x \mid x \in \mathbb{N}, x \le 4\}$
- Important Types:
- O Singleton Set: One element
- O Empty/Null Set: No elements (Ø)
- O Cardinality: No. of elements (|A|)
- Key Properties:
- O Order & repetition don't matter: {1,2} = {2,1} = {1,2,2}
- O $a \in A \rightarrow a$ is an element of set A
- O **Equal Sets**: Same elements \Rightarrow A = B
- O **Subset**: $A \subseteq B$ (all elements of A in B)
- O Proper Subset: $A \subset B$ and $A \neq B$
- O **Power Set**: P(A) = all subsets of A, |P(A)| = 2ⁿ
- **Equal Sets:** Two sets are equal if they have exactly the same elements, regardless of order.
- O **Example:** $A = \{1, 2, 3\}, B = \{3, 2, 1\} \Rightarrow A = B.$
- Subset(A ⊆ B): Every element of A is also in B.
- **Example:** $A = \{1, 2\}, B = \{1, 2, 3\} \Rightarrow A \subseteq B.$
- Proper Subset (A \subset B): A \subseteq B and A \neq B.
- O **Example:** A = {1, 2}, B = {1, 2, 3} \Rightarrow A ⊂ B.
- **Improper Subset:** Every set is an improper subset of itself.
- $\bigcirc A \subseteq A \text{ but } A \not\subset A$
- Power Set P(A): Set of all subsets of A.
- O **Example:** $A = \{1, 2\} \Rightarrow P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
- Power Set Size: |P(A)| = 2ⁿ (n = no. of elements in A)
- Cardinality (|A|): Number of elements in a set.
- **O Example:** A = $\{5, 6, 7\} \Rightarrow |A| = 3$.
- Cartesian Product: A × B = Set of all ordered pairs (a, b).
- O If |A| = m, $|B| = n \Rightarrow |A \times B| = m \times n$

Set Operations

- Union (A U B): All elements in A or B.
- O $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- $O n(A \cup B) = n(A) + n(B) n(A \cap B)$
- Intersection (A \cap B): Common elements. A \cap B = $\{x \mid x \in A \text{ and } x \in B\}$
- Difference (A B): In A, not in B [Note: A B ≠ B A (not symmetric)]. A B = {x | x ∈ A and x ∉ B}

- Complement (A'): Elements in U not in A. A' = {x ∈ U | x ∉ A}
- Symmetric Difference (A ⊕ B): In A or B, not both.A ⊕ B = (A B) ∪ (B A)
- Multisets:
- O Allows Repetition: Example: {1, 2, 2, 3, 3, 3}
- O Operations:
- Union: $max(m_1(x), m_2(x))$
- Intersection: $min(m_1(x), m_2(x))$
- Addition: $m_1(x) + m_2(x)$

Relation:

A set of ordered pairs is a relation.

- If |A|=n, then **number of subsets** = 2ⁿ
- If |A|=m, |B|=n, then **number of subsets** = 2^{mn}
- O Total number of **relations** = total number of **subsets** of $A \times B = 2^{mn}$
- If |A| = m, $|A \times A| = m^2$, total number of **relations** = 2^{m^2}
- **Inverse relation**: For a relation R the inverse of the relation is given by R⁻¹.
- O $R^{-1} = \{ (y, x) (x, y) \in R \}$

Properties of Relations

- Reflexive: ∀a∈A, (a,a) ∈ R {Diagonal of matrix must be present}
- **Symmetric**: $\forall a \ \forall b, (a,b) \in R \rightarrow (b,a) \in R$
- **Irreflexive**: ∀a∈A, (a,a)∉R {Diagonal of matrix must be absent}

Irreflexive is not opposite to Reflexive

- Transitive: ∀a,∀b,∀c∈A, {(a,b), (b,c)∈R → (a,c)∈R}
 (Use directed graph: if R = R⁻¹ → transitive)
- **Anti-symmetric**: $\forall a, \forall b \in A, \{(a,b) \in R \land (b,a) \in R \rightarrow a=b\}$
- Asymmetric: ∀a,∀b∈A, {(a,b)∈R → (b,a)∉R} for all a
 ≠ b
- A relation is a partial order if

(Reflexive + Antisymmetric + Transitive)

• A relation is an equivalence if

(Reflexive + symmetric +Transitive)

GATE फरें

Type of Relation	No. of Relatives possible	Union	Intersection
Reflexive	2^{n^2-n}	✓	✓
Irreflexive	2^{n^2-n}	✓	√
Symmetric	2 ⁿ . 2 ^{n(n-1)/2}	√	✓
Anti-	2 ⁿ . 3 ^{n(n-1)/2}	×	<
symmetric			
Asymmetric	3 ^{n(n-1)/2}	×	√
Transitive	-	×	✓

- No. of relation : **Reflexive + Irreflexive =** 0
- No. of relation : Irreflexive + Symmetric = $2^{n(n-1)/2}$
- No. of relation : **Reflexive + Symmetric** = $2^{n(n-1)/2}$

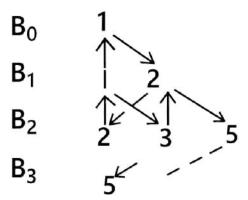
Type of Relation	Flipping	Same Element	
Symmetric	✓	√	
Asymmetric	×	×	
Anti-Symmetric	×	√	

- If R is Reflexive & Symmetric then R is **not Transitive.**
- If R₁, R₂ is Anti-symmetric and Asymmetric
- O then R₁∩R₂ are also Anti-symmetric and Asymmetric.
- O but R₁UR₂ are not Anti-symmetric and Asymmetric.
- Equivalence Relations & Partial Order: Instead of $z \times z$, we also can take $z^2 \times z^2$ (ordered pairs).
- Equivalence Relation:

An equivalence relation = Reflexive + Symmetric + Transitive

- O If R is an equivalence relation (EQR), then it creates a **partition** (on equal classes) on a set. **Example:**
- a+b is even:
- Odd + Odd = Even → 1st Partition
- Even + Even = Even → 2ndPartition
- Odd + Even = Odd
- $R_2 = \{(a,b) | a \equiv b \pmod{4}\} \Rightarrow 4 \text{ partitions}$
- **Bell Number (B_n):** Total number of different partitions of a set of size n.

Total number of equivalence relations (EQR)



- Partial Order Relation (POR): Reflexive + Antisymmetric + Transitive
- O Some elements are **comparable**
- O If all elements are comparable, then:
- O It becomes a Total Order Relation (TOR) or Linear Order or Chain Order
- O Let $R \rightarrow RAT \rightarrow POR$
- If all elements are R→ RAT→TOR (Comparable) then:
- O **YES** ⇒ Linear Order
- O **NO** ⇒ Only Partial Order

Where, $R \rightarrow Relation$

RAT \rightarrow Reflexive, Antisymmetric, Transitive TOR \rightarrow Total Order Relation

• If the **Relation** is **RAT** (Reflexive, Antisymmetric, Transitive), then the structure becomes a **Partial**

Order Set (Poset).

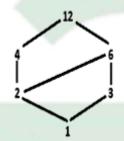
- Hasse Diagram: A Hasse diagram is a simplified graphical representation of a partially ordered set (poset).
- Steps to Construct a Hasse Diagram:
- 1. Vertices:
- O Create one vertex for each element in the set AA.
- 2. Edges:
- O Draw an edge between two elements x and y **only if** x covers y (or vice versa).
- O Do not include:
- **Self-loops** (reflexive pairs).
- **Edges implied by transitivity**.
- Covering Relation (in Poset): Let (A,≤) be a poset.
- O An element y covers x if: x<y and no z∈ A such that x<z<y

GATE फरें

- O The set of all such pairs (x,y) forms the **covering** relation.
- Key Points:
- O Hasse Diagram shows only covering relations.
- O Reflexive + Transitive **Closure** of covering relation gives back the original poset.
- O Hasse Diagram of a totally ordered set (**toset**) is a chain.
- Hasse Diagram of Power Set[P(A), ⊆]:Forms a hypercube of dimension n, where |A|=n.
- (D₁₂, 1) Hasse Diagram : Remove self-loop and apply transitivity.

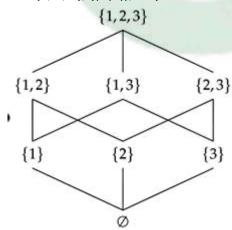
For example, $(a \rightarrow b)$

where a \rightarrow lower, b \rightarrow higher



Hasse Diagram

• $A = \{1, 2, 3\}, \{(P(A)), \subseteq \}$



- Total edge = 12 $e = n * 2^{n-1}$ here n = 3,
 - e = 12
- Maximum (Maximal) Element: An element is maximal if no other element is greater than it in the poset.

- It is **not necessarily** comparable to all other elements.
- Greatest (Maximum) Element: $a \le x$ for all elements of A, $x \in A$

⇒ x is **Greatest Element (G.E.)**

- O If G.E. exists \Rightarrow it is **unique**
- Minimal Element: An element is minimal if no other element is smaller than it in the poset.
 Not necessarily the least.
- Least (Minimum) Element: x≤a for all elements
 of A, x,a∈A

 \Rightarrow x is **Least Element (L.E.)**

- O If L.E. exists \Rightarrow it is **unique**
- Key Points:
- O Every finite, non-empty lattice has at least one minimal and one maximal element.
- O Greatest/Least elements, if they exist, are unique.
- O If greatest/least elements exist, they are also the only maximal/minimal elements, respectively.
- Bounds in Posets
- **Upper Bound:** For a poset [A,R] and B ⊆ A: B
- O Upper Bound of $B=\{x\in A|\forall b\in B,b\leq x\}$
- O x is Upper Bound of B
- Least Upper Bound (LUB / Join / Supremum):
 Least element among all upper bounds of a,b∈A.
 Denoted by avb.
- O Conditions:
- a≤avb.b≤avba
- ∀x ∈ Upper Bound of {a,b}⇒a∨b≤x
- O If no such least exists, lub does not exist.
- Lower Bound: For a poset [A,R] and B \subseteq A:
- O Lower Bound of $B=\{x\in A|\forall b\in B, x\leq b\}$
- O x is Lower Bound of B
- Greatest Lower Bound (GLB / Meet / Infimum):
 Greatest element among all lower bounds of a,b∈A.
 Denoted by a∧b.
- O Conditions:
- a∧b≤a,a∧b ≤ b
- ∀d∈Lower Bound of {a,b}⇒d≤a∧b
- O If no such element exists, glb does not exist.

Poset	lub(a, b)	glb(a, b)
[D _n ,I]	LCM(a, b)	GCD(a, b)
[P(A),⊆]	x∪y	x∩y

GATE फरें

- If **G.E.** = **L.E.** for all elements, it's possible; but lub/glb are related to subsets, not the whole set, and they are unique if they exist.
- Examples in Common Posets
- Join Semi-Lattice: A poset where every pair of elements has a least upper bound (lub).
- Meet Semi-Lattice: A poset where every pair of elements has a greatest lower bound (glb).
- (A, R) → Poset For every pair, if lub and glb exist
 → Lattice → (A, R)

LATTICE

- A **lattice** is a poset in which every pair of elements has both glb & lub.
 - i.e., Lattice is both join semi lattice & meet semi lattice.
 - A lattice L is denoted as (L, Λ, V)
- A lattice L is denoted as (L, Λ, V)
- O It is not needed that every lattice has greatest and least element.
- O Every finite lattice has least and greatest elements.

Properties of Lattice:

- O a Λ a=a Idempotent O ava=a Idempotent O avb=bva Commutative O a_{\lamb}=b_{\lamb}a Commutative O av(bvc)=(avb)vc Associative $O(a \wedge (b \wedge c) = (a \wedge b) \wedge c$ Associative O $av(a \wedge b) = a$ Absorption law $O a \wedge (a \vee b) = a$ Absorption law
- O a≤b⇔avb=b∧a=a
- O If a≤b and c≤d then:
- avc≤bvd
- a∧c≤b∧d
- **Sublattice:** If A is a lattice, B is called sublattice of A if:
- O B itself is a lattice.
- O lub of any two elements of B is same as lub of the two elements in A.

In the above figure B is a subset of A and B is a lattice still B is not a sublattice of A. Because:

- In A, glb(2,3) = 4
- In B, glb(2,3) = 5

⇒Not equal ⇒ Not sublattice

- A **sublattice** of a complemented lattice **need not** be complemented.
- A **sublattice** of a bounded lattice **is** a bounded lattice.

TYPES OF LATTICE:

- 1. **Bounded Lattice:** A lattice with **greatest** and **least** element is called a **bounded lattice**.
 - Every **finite lattice** is always bounded lattice.
- O G.E. = 1 O L.E. = 0
- Complement Lattice: A complemented lattice is a bounded lattice in which every element has at least one complement.
- O If a + b = 1 and $a \cdot b = 0$ then, a & b are complements of each other.
- O An element b is said to be the complement of a **iff**:
- glb(a, b) = least element (0)
- lub(a, b) = greatest element (1)
- 3. **Distributive Lattice:** A lattice is called **distributive** if the following laws hold:
- O $av(b \land c) = (avb) \land (avc)$
- O $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ (D₁₂, 1) \rightarrow Bounded but not **complemented** but **distributive**
- O If L is a **bounded distributive lattice**, then the **complement (if it exists) is unique**. However, the **converse is not true**.

GATE फरें

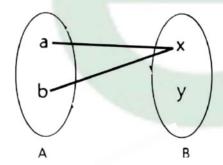
- 4. **Boolean Algebra:** A **Boolean algebra** is a lattice that is both **distributive** and **complemented**.
- In Boolean algebra, every element has exactly one complement.
 - Any lattice containing diamond or pentagon \rightarrow Not distributive (see notes)

Examples:

- [D_n:1] is a distributive lattice for any n (since distributive properties hold for LCM and GCD).
- [D_n:1] is a Boolean lattice iff n is a square-free number.
- $[P(S); \subseteq]$ is a **Boolean lattice**.
- Every Boolean lattice with 2ⁿ elements is
 isomorphic to the lattice (P(S);⊆), where S is a set
 with n elements.
- Such Boolean lattices form a hypercube Q_n.

FUNCTION/MAPPING/TRANSFORMATION/ASSIGN MENT

- A function f : A→B assigns exactly one element of B to each element of A.
 - O A: Domain
- O B: Co-domain



- O x: image
 - O a, b: preimage
- O Range: Set of images of all the elements of A.
- O Range ≠ Co-domain
 - (Range need not to be equal to co-domain).

Note:

- **Not allowed:** mapping from a single element of X to **multiple** elements of Y.
- Allowed: multiple elements of X mapping to a single element of Y.
- Total number of function = (n(B))^{n(A)}

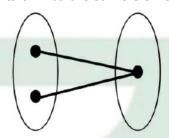
If A and B are two sets with |A| = n,|B| = m
 then number of functions possible from A to B = mⁿ

Types of Functions:

1. One-One (Injective)

Let $f:A \rightarrow B$ If f(a) = f(b), then a = bor If $a \neq b$, then $f(a) \neq f(b)$ then it's one-one.

- It f: A \rightarrow B is one-one then $|A| \le |B|$.
- If f|A| = m and f|B| = n.
 Then, total number of one-one functions (injective):_mP_n
- If m = n = k, then number of one : one function =
 - Note: Not one-one: Mapping two different elements of A to the same element in B



Not 1:1

- Onto (Surjective): A function is onto if Range =Co-domain. (Right side must be fully covered)
- If $f: A \rightarrow B$ is onto then $|A| \ge |B|$ If |A|=m, |B|=n, then

Number of onto function = $\sum_{i=0}^{n} (-1)^{i} {^{n}C_{i}(n-i)^{m}}$

- If m = n = k, then number of one : one function = k!
- Inclusion-Exclusion Principle → Works for both
 m→different, n→identical cases

$$S(m, n) = 1/(n!) \sum_{i=0}^{n} (-1)^{i} {}^{n}C_{i}(n-i)^{m} = onto/(n!)$$

GATE फरें

3. One-One Correspondence:

A function $f:A \rightarrow B$ is called a bijective function if and only if:

- f is one-one (injective), and
- f is onto (surjective).

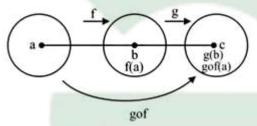
Therefore, **Bijection = Injection + Surjection**

- If a function is bijective then the n(A) = n(B)
- If |A|=|B|,then total number of bijective functions
 n!
- If f: A → A is a function and A is a finite set then A is one-one
 ⇔ A is onto

4.Composition of Functions:

Let f:A \rightarrow B, g:B \rightarrow C, Then g \circ f:A \rightarrow C (g \circ f)(x)=g(f(x))

- A is the **domain** of qof
- C is the **codomain** of gof



Properties:

- i) If f and g are one:one \rightarrow Then gof is one:one
- ii) If f and g are onto → Then g∘f is onto
- iii) If g∘f is one:one → Then f is one:one
- iv) If $g \circ f$ is one:one \rightarrow It does **not** mean g is one:one.
- v) If $g \circ f$ is onto \rightarrow Then g is onto
- vi) If f & g are bijection →Then gof is bijection

Inverse of a Function : A function $f: A \rightarrow B$ is **invertible** if its inverse relation f^{-1} is also a function from $B \rightarrow A$.

A function is invertible if and only if it is a bijection.

- If a function is **not a bijection**, its inverse does **not exist** as a function.
- However, we can still find the **inverse image** of a subset of the codomain.

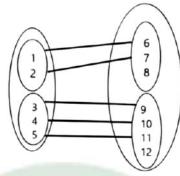
Let $f: A \rightarrow B$ be a function and $S \subseteq B$. Then, $f^{-1}(S) = \{a \in A | f(a) \in S\}$

- If f:A→B and S,T⊆A:
- O f(SUT) = f(S)Uf(T)
- $O f(S \cap T) \subseteq f(S) \cap f(T)$
- \bigcirc f(S \cap T)=f(S) \cap f(T) \Longrightarrow only if f is bijective

• If **f**:**A**→**B** and **S**,**T**⊆**A**:

- $O f^{-1}(SUT) = f^{-1}(S)Uf^{-1}(T)$
- $O f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$
- O $f^{-1}(S^{-}) = \neg (f^{-1}(S))$

Inverse of Elements:



- $f^{-1}\{6, 7, 8\} = \{1, 2\}$
- $f^{-1}{9, 10, 11, 12} = {3, 4, 5}$
- Identity Function: A mapping I_A:A→A is called an identity function if:
- $O I_A = \{(x,x) | x \in A\}$
- Constant Function: A function f:A→B is called a constant function if:
- O $f(x) = c \forall x \in A$

That is, every element of domain A maps to the same single constant c∈B.

 Partial Function: A function f:A→B is called partial if it is defined only for some elements of A.
 The set where f is defined is called its domain of definition.

GROUP THEORY

- Binary operation: A binary operation * on a non-empty set A is defined if:
 ∀a,b∈A, (a*b)∈A
 i.e., the result of the operation on any two elements of A must also lie in A (Closure property).
- **Semigroup:** A set with a binary operation (*)\ is a **semigroup** if:
 - (i) Closure
 - (ii) Associativity
- Monoid: A semigroup(A, *) is a monoid if:
 - (i) Closure
 - (ii) Associativity
 - (iii) Identity

GATE फरें

- Group: A monoid(A, *) is a group if:
 - (i) Closure
 - (ii) Associativity
 - (iii) Identity
 - (iv) Inverse

Additional Notes:

- O Every finite group has a well-defined order = number of elements.
- O If |G| = 2, then $a^{-1} = a$ for all $a \in G$.
- O $(0, 1, ..., m-1, \bigoplus_m)$ is a group
- O $S_n = \{k < n \mid gcd(k, n) = 1\}$, then (S_n, \bigoplus_n) is a group.
- **Abelian Group:** A group is **Abelian** if *,is commutative: a*b = b*a

• Properties of Groups:

- O Left Cancellation: $ab = ac \Rightarrow b = c$
- O Right Cancellation:ba = $ca \Rightarrow b = c$
- O $(ab)^{-1} = b^{-1} * a^{-1}$
- O If G is Abelian \Leftrightarrow (ab)⁻¹ = b⁻¹ *a⁻¹
- O Identity: $a^0 = e$
- Subgroup: H will be a subgroup of G if:
- O H⊆G
- O H should be a group.
- O Identity element must be in every subgroup.
- O Lagrange's Theorem: The order (number of elements) of any subgroup of a finite group must divide the order of the group. (converse holds only in Abelian groups)
- O If are subgroups, then is a subgroup, need not be
- O If and finite, closure alone is sufficient to prove subgroup
- O Every group of composite order has a non-trivial subgroup

Theorem: If H is a subgroup of G, then |G|/|H|.

• Cyclic Groups:

- O G is cyclic if $\exists a \in G$ such that every element in G is a^n for some $n \in Z$.
- O a is called a generator.
- O a⁻¹ is also a generator.
- O All subgroups of cyclic group are cyclic.
- O No. of generators of cyclic group of order n : Φ (n)
- O Order of $a^m = n / (gcd(n, m))$
- O Number of subgroups = Number of divisors of |G|.
- O Subgroup of order is generated by a^{n/d}.
- **Cyclic Subgroup:** For $a \in G$, the smallest subgroup containing $a: \langle a \rangle = \{a^{n} \mid n \in Z\}$
- O <a> is a cyclic subgroup with order equal to order of a

- O If H is subgroup and contains, then <a> ⊆H
- O Every a∈**G** forms a cyclic subgroup <a> ⇒ used to define generating sets.
- Homomorphism: Let (G,*) and (G',⊕) be two groups.
- O A function f: $G \rightarrow G'$ is a **homomorphism** if:
- \blacksquare f(a*b)=f(a) \oplus f(b), \forall a,b \in G
- Isomorphism: If f: G → G' is a Objective homomorphism, then:
- O f is called an **isomorphism**
- O Denoted as G≅G'

Key Properties

- O $\mathbf{f}(e_1)=e_2$, where e_1,e_2 are identity elements of G and G'
- O $f(a^{-1}) = (f(a))^{-1}, \forall a \in G$
- Order of an Element: Order of a∈G: smallest n>0
 such that aⁿ = e
- O order(a) = order(a^{-1})
- O If $a^{-1} = b$, then $a^{-n} = b^{n}$.

Notes:

- O Every group of prime order is cyclic, and every element except identity is a generator.
- O Every cyclic group is abelian.
- O A group is cyclic ⇔ it cannot be expressed as a union of two proper subgroups.
- O **Direct product:** If $(G, *), (H, \bigoplus)$, then $(G \times H, .)$ where $(g_1, h_1).(g_2, h_2) = (g_1*g_2, h_1 \bigoplus h_2)$.
- O Every group of order≤5 is abelian.
- O Unique group exists for orders 1, 2, and 3.
- O **Exponential:** By taking the exponential of any element, if it generates all the elements, then it is a **cyclic group**.
- O Subgroup of a cyclic group is also **cyclic**.

GATE फरें

COMBINATORICS

- Inclusion Exclusion Principle
- O A1UA2UA3U···UA_n = $\sum A_i \sum A_i \cap A_j + \sum A_i \cap A_j \cap A_k \cdots + (-1)^{r+1} \sum A_{i1} \cap A_{i2} \cap \cdots \cap A_{ir}$.
- O **Use cases**: Counting, no. divisible by given numbers (like 8, etc.)
- **Derangements(Dn):** No element appears in its original position.

 $D_n = n![1/(2!)-1/(3!)+1/(4!)+....+(-1)^n 1/(n!)]$

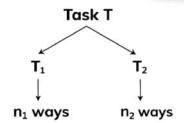
• Pigeonhole Concept:

If you have n holes and (n+1) pigeons, \rightarrow then at least one hole contains more than one (actually \geq 2) pigeon.

- Extended Pigeonhole Principle: If N objects are distributed into k boxes, then at least one box contains at least $\left\lceil \frac{N}{\nu} \right\rceil$ objects.
- Euler's φ-Function (φ(n)):
- $\bigcirc \phi(n) = \text{Total number of relative prime numbers}$ which are less than n.
- O If **gcd(a, b)** = **1**, then a and b are **relatively prime** /coprime.

Example: $\phi(12) = \phi(3) \times \phi(4)$ = 2 × 2 = **4**

- $O \phi(p) = p 1$
- Formula for Euler's Totient Function:
- O If $n=p_1 \times p_2 \times p_3$... (prime factorized), Then: $\phi(n) = n(1-1/p_1)(1-1/p_2)(1-1/p_3)...\phi(n)$
- Product Rule / Sum Rule:



- Product Rule:
- O Task **T** is divided into T_1 and T_2 .
- O If T_1 can be done in n_1 ways and for each of those T_2 can be done in n_2 ways:
- \bigcirc Total = $n_1 \times n_2$
- Sum Rule:
- O If **T**₁ and **T**₂ are **independent** (don't occur simultaneously):
- \bigcirc Total = $n_1 + n_2$.

- Permutation(Order Mattters):
- O Without repetition: P(n, r) = n! / (n r)!
- O With repetition: n^r
- Combination(Order Doesn't Matter):
- O Without repetition: C(n, r) = n! / [r!(n r)!]
- O With repetition: C(n + r 1, r) = (n + r 1)! / [r!(n 1)!]
- Generating Function

Binomial theorem: The **Binomial theorem** provides a formula for expanding expressions of the form:(a+b)ⁿ

General Formula: $(x + y)^n = \sum_{k=0}^n {}^nC_k x^{(n-k)}y^k$

where: ${}^{n}C_{k} = n!/[r!*(n-r)!]$ is binomial coefficient. n is a non-negative integer.

the expansion has (n + 1) terms.

O **Pascal's Triangle:** Each row gives the coefficients for (a+b)ⁿ:

$$n = 0$$
: 1
 $n = 1$: 1 1
 $n = 2$: 1 2 1 $(a+b)^2$

$$n = 3$$
: 1 3 3 1 $(a+b)^3$
 $n = 4$: 1 4 6 4 1 $(a+b)^4$

- $\bigcirc {}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$
- \bigcirc $^{n}C_{k} = n! / n! * (n-k)!$
- $\bigcirc {}^{-n}C_k = (-1)^k * {}^{n+k-1}C_k$

<a₀, a₁, a₂,.....>

$$G(x) = a_0x^0 + a_1x^1 + a_2x^2 + \dots$$

$$\mathbf{G}(\mathbf{x}) = \sum_{i=0}^{\infty} \mathbf{a_i} * \mathbf{x^i} \qquad \text{or} \qquad \sum_{n=0}^{\infty} \mathbf{a_n} * \mathbf{x^n}$$

Common Expansions

1.
$$(1 + x)^n = {}^nC_0 x^0 + {}^nC_1 x^1 + {}^nC_2 x^2 + ... + {}^nC_n x^n$$

2.
$$(1 + ax)^n = {}^nC_0 (ax)^0 + {}^nC_1 (ax)^1 + ... + {}^nC_n (ax)^n$$

3.
$$(1 + x^m)^n = {}^nC_0x^0 + {}^nC_1x^m + {}^nC_2x^{2m} + ... + {}^nC_nx^{nm}$$
.

• Special Infinite Series

1.
$$1/(1-x) = 1 + x + x^2 + x^3 + ... = \sum x^i$$

2.
$$1/(1-ax) = 1 + ax + a^2x^2 + a^3x^3 + ...$$

3.
$$(1 - x^{n+1})/(1 - x) = 1 + x + x^2 + ... + x^n$$

- 4. $1/(1 + x)^n = \sum_{i=1}^n (-1)^{i+n} C_i x^i$
- Recurrence Relation
- O **Type-1:** $a_n = d * a_{n-1}$

 \rightarrow This is a first-order linear recurrence. Initial condition: a_0

Then, $a^n = d^{n*}a_0$

GATE फरें

O Type - 2: $a_n = a_{n-1} + a_{n-2}$ for n≥2 Initial conditions: $a_1=1, a_2=1, a_0=0$;

Note:

- O For **second-order** recurrence relations:
- **Roots**: R1,R2
- O If **R1≠R2** (distinct real roots):

$$a_n = C_1 R_1^n + C_2 R_2^n$$

O If R1=R2=R(repeated root):

$$a_n = C_1R^n + C_2nR^n$$

- O For **third-order** recurrence relations:
- Roots: R1,R2,R3
- O If all distinct:

$$a_n = C_1 R_1^n + C_2 R_2^n + C_3 R_3^n$$

O If R1=R2≠R3:

$$a_n = C_1 R_1^n + C_2^n R_1^n + C_3 R_3^n$$

O If R1=R2=R3=R:

$$a_n = C_1 R^n + C_2 n R^n + C_3 n^2 R^n$$

- Classification of Recurrence Relations:
- O Homogeneous: $f(n)=a_n-2a_{n-1}$
- \blacksquare If f(n)=0, it's homogeneous.
- O Non-Homogeneous: $f(n) = a_n 2a_{n-1}$
- If $f(n)\neq 0$, it's non-homogeneous.
- O Characteristic Equation: $a_n = a_n^{\#} + a_n^{p}$

where a_n[#] is Homogeneous

a_n^p is Particular

• Particular Solution (for Non-Homogeneous):

Assume form based on f(n):

Type of f(n)	Assume particular solution of the form
Constant A	Α
Linear An	An+B
Quadratic An ²	An ² +Bn+C
Exponential A ⁿ	A ⁿ

a) Consider the nonhomogeneous recurrence relation $a_{n+2} - 10a_{n+1} + 21a_n = f(n), n \ge 0$ Here the homogeneous part of the solution is $a_n^{(h)} = c_1(3^n) + c_2(7^n),$

f(n)	$\mathbf{a}_{\mathrm{n}}^{(\mathbf{p})}$
5	A_0
$3n^2 - 2$	$A_3n^2 + A_2n + A_1$
7(11 ⁿ)	A ₄ (11 ⁿ)
$31(r^n), r \neq 3,7$	A ₅ (r ⁿ)
6(3 ⁿ)	A ₆ n3 ⁿ
$2(3^n) - 8(9^n)$	$A_7 n3^n + A_8 (9^n)$
$4(3^{\rm n}) + 3(7^{\rm n})$	$A_9 n 3^n + A_{10} n 7^n$

b) The homogeneous component of the solution for $a_n + 4a_{n-1} + 4a_{n-2} = f(n), n \ge 2,$

$$a_n^{(h)} = c_1(-2)^n + c_2n(-2)^n$$

where c_1, c_2 denote arbitrary constants. Consequently,

is

- 1. if $f(n) = 5(-2)^n$, then $a_n^{(p)} = An^2(-2)^n$; 2. if $f(n) = 7n(-2)^n$, then $a_n^{(p)} = n^2(-2)^n(A_1n + A_0)$;
- 3. if $f(n) = -11n^2(-2)^n$, then $a_n^{(p)} = n^2(-2)^n(B_2n^2 +$ $B_1n + B_0$). (Here, the constants A, A_0, A_1, B_0, B_1 , and B_2 are determined by substituting a_1 into the given nonhomogeneous recurrence relation.)

GATE CSE BATCH KEY MIGHLIGHTS:

- 300+ HOURS OF RECORDED CONTENT
- 900+ HOURS OF LIVE CONTENT
- SKILL ASSESSMENT CONTESTS
- 6 MONTHS OF 24/7 ONE-ON-ONE AI DOUBT ASSISTANCE
- SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

- ENGINEERING MATHEMATICS
- GENERAL APTITUDE
- DISCRETE MATHEMATICS
- DIGITAL LOGIC
- COMPUTER ORGANIZATION AND ARCHITECTURE
- C PROGRAMMING
- DATA STRUCTURES
- ALGORITHMS
- THEORY OF COMPUTATION
- COMPILER DESIGN
- OPERATING SYSTEM
- DATABASE MANAGEMENT SYSTEM
- COMPUTER NETWORKS

LEARNING BENEFIT:

- GUIDANCE FROM EXPERT MENTORS
- COMPREHENSIVE GATE SYLLABUS COVERAGE
- EXCLUSIVE ACCESS TO E-STUDY MATERIALS
- ONLINE DOUBT-SOLVING WITH AI
- QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

TO EXCEL IN GATE
AND ACHIEVE YOUR DREAM IIT OR PSU!

STAR MENTOR CS/DA

KHALEEL SIR **ALGORITHM & OS** 29 YEARS OF TEACHING EXPERIENCE

CHANDAN SIR DIGITAL LOGIC GATE AIR 23 & 26 / EX-ISRO

SATISH SIR **DISCRETE MATHEMATICS BE in IT from MUMBAI UNIVERSITY**

MALLESHAM SIR M.TECH FROM IIT BOMBAY AIR - 114, 119, 210 in GATE (CRACKED GATE 8 TIMES) 14+ YEARS EXPERIENCE

VIJAY SIR DBMS & COA M. TECH FROM NIT 14+ YEARS EXPERIENCE

PARTH SIR DA
IIIT BANGALORE ALUMNUS FORMER ASSISTANT PROFESSOR

SAKSHI MA'AM **ENGINEERING MATHEMATICS IIT ROORKEE ALUMNUS**

SHAILENDER SIR

AVINASH SIR APTITUDE 10+ YEARS OF TEACHING EXPERIENCE

AJAY SIR PH.D. IN COMPUTER SCIENCE 12+ YEARS EXPERIENCE

