OPERATING
SYSTEM

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Introduction and Background of OS
Threads & Multithreading

Process Concepts

CPU Scheduling

Synchronization

Deadlock

Memory Management

Virtual Memory

File Systems

Disk Scheduling

vV VV V VYV VYV V V VY V

Page No:- 01 %

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Introduction and Background of OS

1. What is OS ?

OS is a software that acts as a bridge between user
and hardware, managing resources efficiently.
It provides tools for application development and
controls system operations like a government.

Goals of OS

Functions of OS

Easy-to-use
environment for
users

Manages processes (creation,
scheduling, etc.)

Efficient resource
usage (Resource

Handles memory allocation &
deallocation

Allocator)
Modularity (easy Allocates resources like CPU,
to maintain I/O, memory

system structure)

Abstraction (hides

Manages file system

hardware (read/write/access control)
complexity)

Simplifies Ensures protection & security of
debugging for data & system

developers

Types of Os

)\

[[

Multi programeead / multitasking os

Batch os

N
l
Real time os Distributed os

Dual Mode Operations

s User mode/ non-privileged mode

o

® Duzl modes

» Kernel mode/ Privileged mode/ Monitor

mode

é

Purpose:

e Prevent user programs from directly
accessing hardware

e Protect OS & system resources from
unauthorized access

Mode Bit:

e A special bit used by the CPU to track
current mode

e Mode Bit = 0 — Kernel Mode

e Mode Bit = T — User Mode
Kernel Mode:

e OS runs in this mode

e Has full access to hardware & system
instructions

e Can execute privileged operations like:
I/O control
Memory management
Context switching
Interrupt handling
e Kernal mode is non preemptive (Atomic)

Page No:- 02

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

GATE ¢

User Mode:
e User applications run here
e Cannot perform direct hardware operations
e If such actions are needed, control is

transferred to kernel via system calls
e User mode is preemptive (non Atomic)

User Process

User process execuling == Call Systern call Return from system call User mode
| | Mode bit =1
l:'ran‘l:cu:le Return Mode bit = 1 Kernat Mode

Mode Bit =0

S

Execute System call

Note:

As per Von Neumann architecture, all
secondary storage devices are part of I/P | O/P
devices.

Page No:- 03

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Threads & Multithreading Types I’ i
i

A thread is a smaller, lightweight version of a :

prOCGSS Based on the n:mher of Threads

=% Single thread process

e |In multithreading, all threads of the same . et
process share: :
Memory (address space)

Based on Level

User-level threads

Kernel-level threads

Kernel-Level Threads

These threads are managed at
kernel level.

These threads are recognized
by the kernel.

They are implemented as
independent threads.

Files
Signals and their handlers User-Level
Threads
° But every thread has its own: These threads are
Stack (used for function calls) managed at user
Unique thread ID level.
CPU information (like registers and stack These threads are
pointer) not recognized by
e Scheduling details (like thread state and the kernel.
priority) They are
Like a process , thread is also a unit of cpu implemented as
utilization . dependent threads.
All user-level

It is a Schedulable Unit .

. . . threads of a process
It is an Active Entity.

can run on one
processor only, and
one at a time.

Benefits of Threads

Kernel-level threads can run
on different processors at the
same time (multiprocessing).

Blocking one user-
e Faster response to users level thread blocks

the entire process.

Blocking one kernel-level
thread doesn't affect other
threads of the process.

e Quick context switching between threads These threads have

less context.

These threads have more
context.

e Better use of multiple processors (parallel

Scheduling is done
work)

by the thread
libraries.

Scheduling is done by the OS.

e Higher system throughput (more work

i) No hardware
done in less time)

support required.

Hardware support is required.

Implementation is

e Cost-effective (less overhead than .
easy and simple.

Implementation is complicated
and difficult.

processes)

e Efficient sharing of resources like memory
and files

Page No:- 04

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Multithreading Models
1. Many-to-One Model

O Many user-level threads (ULTs) are mapped
to a single kernel thread (KLT).

O Drawback: If one thread makes a blocking
system call — entire process is blocked.

O Not suitable for multiprocessors (only one
thread can access kernel at a time).

2. One-to-One Model
O Each ULT maps to one KLT.
O Allows better concurrency (multiple
threads run in parallel on

multiprocessors).

O Drawback: Creating many threads
incurs overhead — limited by OS.

3. Many-to-Many Model

O Many ULTs are mapped to many
KLTs.

O OS creates required number of kernel
threads dynamically.

O Advantage: Flexibility + concurrency
+ avoids blocking problem.

Thread Libraries
e Provide API to create and manage threads.

e Implementation Types:

O User-level library — Managed in
user space (fast, but blocking issues).

O Kernel-level library — Supported by
OS (slower, but better concurrency).

e Examples:

O Pthreads (POSIX threads) — C/C++
standard

O Java Threads — built into JVM

O Green Threads — User-level threads,
scheduled by a runtime library

Disadvantages of Multithreading

1. Blocking

O If one thread blocks, entire process
may block (especially in many-to-one
model).

O CPU may stay idle.
2. Security Issues
O Threads share same memory —
higher risk of data corruption or
unauthorized access.
3. Overhead
O Maintaining Thread Control Block

(TCB) for each thread increases
overhead.

Page No:- 05

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

PROCESS CONCEPTS

Program Versus Process

Program
e A program is just a set of instructions written
in some programming language.

e Itis a passive entity stored on disk (file,
executable).

e Example: notepad.exe, chrome.exe, ora C
code file.

e |t doesn't do anything until it is executed.

Process
e A process is a program in execution.

e |tis an active entity with:

O Program counter (which instruction
to execute next)

O Registers, Stack, Heap, and allocated
memory

O State (ready, running, waiting)

e Example: If you open Chrome 3 times, there
are 3 processes running but only 1 program
(chrome.exe).

Process as an Abstract Data Type (ADT)

A process can be thought of as an Abstract Data Type
(ADT) because it has data (attributes) and operations
defined on it.

Process (what makes a process in memory):
e Process attributes (PCB — Process Control
Block)

e Run-time Stack (function calls, return
addresses, local variables)

e Dynamic Data (heap, variables created at
runtime)

e Static Data (global variables)
e Code Section (instructions to execute)
Process Attributes (stored in PCB):
1. Process ldentification Information (PID,
parent process ID)

2. Priority (for scheduling)

3. Process State Information (new, ready,
running, waiting, terminated)

4. Program Counter (next instruction address)

5. Memory Limits (address space assigned to
process)

6. List of Files (files used by process)
7. List of Open Devices (I/O devices allocated)
8. Protection Information (access rights,
permissions)
Process Control Block (PCB)
e Each process has its own PCB.
e All PCBs are stored in main memory.
e Implemented using a doubly linked list.
e PCB acts as the "identity card” of a process

for the Operating System.

Context of a Process
The context means the current status/info of a
process.
It includes:
e Process attributes (from PCB)

Page No:- 06

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

e Stack information (function calls, return
values, etc.)
Process State Transition Diagram

Event
Occurs

F E'y

\ :" Main Memory

i " Dispatch i :
| it 1Releasa
I New g m Ready | II B I: :I Exit
i o Timeout |

i 1 1 ot Event |

| | 1 |

i . i Oceur et

| | Activate ! !

i Roady [i Blacked 1

| | Suspend | i

Event
Dccur

Activate

|

Blocked |4—

' Suspend
| Secondary Memory |

Process States and Memory Location
1. Ready, Running, or Waiting (Blocked) State

O The process is in main memory
(RAM).

O This allows the CPU or I/O devices to
access it quickly.

2. Suspend Ready or Suspend Blocked (Wait)
State

O The process is moved to secondary
memory (disk).

O This happens when there isn't

enough space in main memory or the

OS decides to temporarily pause the
process.

Number of Processes in Each State

e Ready State — Many processes can wait in
main memory for CPU.

e Waiting (Blocked) State — Many processes
can wait for I/O or events.

e Suspend Ready & Suspend Wait — Many
processes can be kept in secondary storage.

e Running State — Only ONE process runs on
the CPU at a time (per core).

Schedulers in Operating System
The OS uses different types of schedulers to
manage processes efficiently.
1. Long-Term Scheduler (Job Scheduler)
e Main Role — Decides which new processes
should be admitted into the system.

e Where it Works — From secondary storage
(job pool) to main memory.

e Controls — The degree of
multiprogramming (how many processes are
in memory at once).

e Goal — Maintain a good balance between:

O CPU-bound processes (need more
CPU time)

O 1/0-bound processes (spend more
time waiting for 1/0)

e State Transition — Responsible for New —
Ready state.

Page No:- 07

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

2. Medium-Term Scheduler (Swapper)

e Main Role — Performs swap-out (move
process from main memory to secondary
memory) and swap-in (bring process back to
main memory).

e Why Needed — To reduce the degree of
multiprogramming (when too many
processes are loaded).

e State Transitions —
O Ready = Suspend Ready
O Block = Suspend Block

In short: It suspends and resumes processes to
balance load and improve performance.

3. Short-Term Scheduler (CPU Scheduler)
e Main Role — Chooses which process from
Ready Queue will get the CPU next.

e Execution — Runs very frequently
(milliseconds).

e State Transition — Ready — Run

In short: It is responsible for CPU allocation and
ensures fair and fast execution.

Dispatcher in OS
e The dispatcher is the component that
actually gives CPU control to the process
chosen by the short-term scheduler.

e Its main job is to perform a context switch.

Context Switching means:
1. Saving the current process state (its
registers, program counter, etc.) into its PCB
(Process Control Block).

2. Loading the new process state from its PCB
into the CPU.

3. Starting execution of the new process.

In short:
e Scheduler — decides which process should
run.

e Dispatcher — actually switches CPU to that
process.

Page No:- 08

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

CPU scheduling

Cpu scheduling is needed when the CPU must
decide which process should run next.
It occurs in these cases:

1. New process enters Ready state

O A new job comes into the Ready
queue — scheduler must decide if it
should get CPU.

2. Wait — Ready transition

O A process waiting for I/0O finishes its
I/O — moves to Ready — scheduler
decides.

3. Run — Wait transition

O A running process requests I/0 —
CPU becomes free — another
process must be scheduled.

4. Run — Ready transition (time slice over)

O In Round Robin, after every g
second’s (time quantum), the running
process is stopped and moved back
to Ready — scheduler picks another.

5. Priority scheduling

O If a Ready process has higher
priority than the one currently
running, the CPU is given to the
higher-priority process
(preemption).

Goals of CPU Scheduling

Maximize CPU utilization.

Minimize the response time and waiting time of the
processes.

1. Arrival Time (AT)

e The time when a process enters the Ready
Queue.
(s Example: If P1 comes at time 0, its AT =
0.

2. Burst Time (BT)

e The total CPU time required by a process
for its execution.
(¢ Example: If P1 needs 5 units, BT = 5.

3. Completion Time (CT)
e The time when a process finishes execution.
(z Example: If P1 finishes at time 7, CT = 7.

4. Turnaround Time (TAT)
e The total time taken from arrival to
completion.

e Formula: TAT= CT-AT
Example: If CT =7 and AT=0—> TAT = 7.

5. Waiting Time (WT)
e The total time spent in Ready Queue,
waiting for CPU.

e Formula: WT=TAT-BT
Example: If TAT =7, BT =5 > WT = 2.

6. Response Time (RT)
e The time from arrival to first CPU
execution.

e Formula: RT=(FirsttimeCPUgiven)-AT

Example: If process arrived at 0 but got CPU at 3 —
RT = 3.

Page No:- 09

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

-

==
GATE CSE BATCH

KEY HiGHLIGHTS:
» 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

e COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENREIT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Scheduling Algorithms
CPU Scheduling Algorithms

1. First Come First Serve (FCFS)
e Type: Non-preemptive

e Rule: Process assigned to CPU in order of
arrival time.

e Tie-breaker: If same arrival time — lower
process ID first.

e No starvation (every process eventually
executes).

e Convoy Effect — a long process delays all
the short ones.
2. Shortest Job First (SJF)
e Type: Non-preemptive
e Rule: Process with shortest burst time first.

e Tie-breaker: If burst time equal — arrival
time decides order.

e [f all burst times equal — behaves like FCFS.
e Minimizes average response time.

e (Can cause starvation (long jobs may wait if
short ones keep coming).

3. Shortest Remaining Time First (SRTF)
e Type: Preemptive

e Rule: At any moment, CPU is given to the
process with the shortest remaining burst
time.

Needs knowledge of burst times in advance.

e |[f all arrival times are same — behaves like
SJF.

e Minimizes average turnaround time.

e Starvation possible (if many short processes
keep arriving, long ones wait forever).

4. Longest Remaining Time First (LRTF)
e Type: Preemptive

e Rule: At any moment, CPU is given to the
process with the longest remaining burst
time.

e Minimizes average response time.

e Free from starvation (long processes always
get preference).

Favors CPU-bound processes — not fair to
short ones.

Priority Scheduling
e Type: Can be Preemptive or Non-preemptive

Rule: CPU is assigned to the process with the
highest priority.

e Preemptive Case: If a higher-priority process
arrives, it preempts the current one.

e Non-preemptive Case: Once a process starts,
it completes; scheduler always picks the
highest priority next.

e [f all processes have the same priority —
behaves like FCFS.

e Advantage: Flexible (supports both
preemptive & non-preemptive).

e Disadvantage: Starvation possible (low-
priority processes may never execute).

Page No:- 10

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

e Solution: Use Aging technique (gradually WT = Waiting Time
increase priority of waiting processes).
e BT = Burst Time

6. Round Robin (RR) Scheduling Advantages:
e Type: Preemptive (FCFS + Time Quantum) e Free from starvation (since waiting time
increases HRR, even long jobs eventually get
e Rule: Each process gets CPU for a time slice CPU).

(quantum q) in cyclic order.
e Balances between short jobs (high HRR

e Effect of q (time quantum): early) and long jobs (HRR grows with wait).
O If qis too small — too many context Disadvantages:
switches (high overhead) but good e Requires recalculation of HRR each time CPU
response time. becomes free (overhead).

O Ifqis too large — behaves like FCFS

(bad response time, but low 8. Multilevel Queue Scheduling (MLQ)
overhead). Type: Can be Preemptive or Non-preemptive
(depends on policy).
e Advantage: Fair (every process gets CPU Rule:
time), good for time-sharing systems. e Ready queue is split into multiple queues,

each with its own scheduling algorithm.
e Disadvantage: Average turnaround time can

be large if g not chosen properly. e Each queue has a fixed priority — higher
priority queues are served first.

—— + Ready Queue

= Example:
ect a process
J, - e System processes — Highest priority (FCFS).
Burst Time Yes Execute till . .
L Camp[etion e Interactive processes — Round Robin.
No l"ﬂ Termination e Batch jobs — FCFS / SJF.
Execute for
Time Quantum

[Time Quantum Expires

Process
Executed Yes
Completely?

7. Highest Response Ratio Scheduling (HRRN /
HRSN)
Type: Non-preemptive
Rule: Process with the highest response ratio is
selected.

HRR=WT+BT

Page No:- 11

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Advantages:
e Separates processes by category (system vs

user) — good workload management.
e Easy to implement.

Disadvantages:
e Rigid: once a process is assigned to a queue,
it cannot move to another.
e May cause starvation of lower-priority
queues.

7. Highest Response Ratio Scheduling (HRRN /
HRSN)
Type: Non-preemptive
Rule: Process with the highest response ratio is
selected.
Formula:
HRR=WT+BT
WT = Waiting Time
e BT = Burst Time
Advantages:
e Free from starvation (since waiting time

increases HRR, even long jobs eventually get
CPU).

Balances between short jobs (high HRR
early) and long jobs (HRR grows with wait).

Disadvantages:
e Requires recalculation of HRR each time CPU
becomes free (overhead).

8. Multilevel Queue Scheduling (MLQ)
Type: Can be Preemptive or Non-preemptive
(depends on policy).

Rule:

e Ready queue is split into multiple queues,

each with its own scheduling algorithm.
e Each queue has a fixed priority — higher
priority queues are served first.

Example:

e System processes — Highest priority (FCFS).

e Interactive processes — Round Robin.

e Batch jobs — FCFS / SJF.
Advantages:

e Separates processes by category (system vs
user) — good workload management.

e Easy to implement.
Disadvantages:
e Rigid: once a process is assigned to a queue,
it cannot move to another.
e May cause starvation of lower-priority
queues.

Solution — Aging:
e A technique where the priority of a process
increases automatically the longer it waits.
e Prevents starvation by gradually moving low-
priority processes into higher-priority queues.

Page No:- 12

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Process Synchronization

Inter-Process Communication (IPC)
e Definition: IPC is a mechanism that allows
processes to communicate and synchronize
their actions.

e Need for Synchronization: Every
communication must be coordinated.

e Lack of Synchronization leads to:
1. Inconsistency (incorrect results)
2. Data loss

3. Deadlock

2. Synchronization
e Definition: An agreed protocol in IPC to
ensure correct execution without
inconsistency, data loss, or deadlock.

e Concept: Involves orderly sharing of system
resources among processes.

e Shared resource — critical section accessed
by multiple processes.

3. IPC Environment
e Processes interact through shared
resources.

e Synchronization ensures safe and
consistent access.

Types of Processes
Processes are classified as:
e Cooperative Process — Execution of one
process affects or is affected by another
process.

¢ Independent Process — Execution of one
process does not influence or depend on

any other process.

Only cooperative processes require synchronization.

Understanding Synchronization
Synchronization is required to avoid problems such
as race conditions, data inconsistency, deadlocks,
and data loss.

Which type of synchronization should be used?

@ Competitive Synchronization

(.’) Suitable when processes need exclusive
access to a shared resourcs, like in critical
sectionz.

‘\ Co-operative Synchronization

\"——-j) gl Ideal when processes need to cooperate
e and one process s execution affects
anather, like in producer-consumer
scenarios.

To achieve synchronization, certain conditions must
be satisfied: mutual exclusion, progress, and
bounded waiting.

Effective solutions include semaphores, monitors,
mutex locks, and other synchronization mechanisms.

Problems Due to Lack of Synchronization
Lack of synchronization leads to incorrect results,
corrupted or lost data, deadlocks, or indefinite
waiting (starvation).

Example: The Producer-Consumer Problem
demonstrates the need for proper synchronization.

Page No:- 13

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Producer-Consumer Problem

(Bounded Buffer)

Concept
e The producer generates items and places
them into a finite buffer.
e The consumer removes items from the
buffer and uses them.
e IN: Index used by the producer to place the
next item.
e OUT: Index used by the consumer to remove
the next item.
e COUNT: Tracks number of items currently in
the buffer.
Problem: Must ensure producer does not
add to a full buffer, and consumer does not
remove from an empty buffer.
Without synchronization:
#define N 8 // Buffer size
int count = 0; // Initially buffer is empty
intin =0, out =0; //Indices for producer and
consumer
int buffer[N]; // Shared buffer
void producer(void) {
int itemp;
while (true) {
itemp = produce_item();
item
while (count == N);
full (busy waiting)
buffer[in] = itemp;
in=(>Gn+1%N;
circularly
count = count + 1;
count
}
}

// Create new
// Wait if buffer is

// Insert item
// Update index

// Increase item

void consumer(void) {
int itemg;
while (true) {
while (count == 0);
empty (busy waiting)
itemc = buffer[out];
out =(out+ 1) % N;
circularly

// Wait if buffer is

// Remove item
// Update index

count = count - 1;
count
process_item(itemc);
}
}

// Decrease item

// Consume item

Drawbacks of This Solution
e Uses busy waiting — wastes CPU cycles.

e No mutual exclusion — race conditions
possible on shared variables (count, in, out).

e Not efficient for multiprocessor systems.

Correct Solution (Using Synchronization
Tools)

Replace busy waiting with semaphores or
mutex + condition variables.
Ensure:
O Producer waits if buffer is full.
O Consumer waits if buffer is empty.
O Mutual exclusion while accessing
buffer.

Producer-Consumer Problem (Bounded

Buffer)
e COUNT: Shared variable used by producer
and consumer to keep track of items in the
buffer.

e IN: Index where the producer places the next
item.

e OUT: Index where the consumer removes
the next item.

e Buffer size = N (finite).

Conditions to be satisfied
e |f buffer is full, producer must wait.

e [f buffer is empty, consumer must wait.

Uncontrolled Execution (Problem)

Page No:- 14

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

If producer and consumer both access COUNT
simultaneously without synchronization, race
conditions occur.

Example (Producer executes):

TO: Load R1 < COUNT

T1: Increment R1

T2: Store COUNT « R1

Example (Consumer executes at same time):
TO: Load R2 «+ COUNT

T1:. Decrement R2

T2: Store COUNT « R2

A Final value of COUNT may become inconsistent,
since both processes update it concurrently.

This leads to incorrect buffer status, possible data
loss or overwrite.

Daemon Example - Printer Spooler
e Multiple processes may send jobs to the
printer at the same time.

e Without synchronization, one process might
overwrite another’s request in the spooler
directory, leading to lost print jobs.

e This illustrates the need for synchronization
in shared resource management.

Critical Section Problem
e A critical section is a part of the program
where a shared resource (variable, file, or

hardware) is accessed.

e Only one process at a time should execute
in its critical section.

e Every process has the following structure:

do {
Entry Section // Request to enter critical section
Critical Section
Exit Section // Signal that critical section is over
Remainder Section

} while(true);

GATE W¢
Race Condition

e A race condition occurs when multiple
processes access and update shared data
concurrently, and the final outcome depends
on the order of execution.

e Example: Producer-Consumer using shared
COUNT.
Requirements for a Correct
Synchronization Solution

1. Mutual Exclusion

O Only one process can be in the
critical section at a time.

2. Progress

O If no process is in its critical section,
the selection of the next process to
enter must not be postponed
indefinitely.

3. Bounded Waiting

O There must be a limit on how many
times other processes can enter
before a waiting process gets its turn

4. No assumptions related to hardware and the
processor speed: Number of processes.

|. Software-based Solutions

Use only software logic, no hardware support.
Examples:

1. Lock Variables
O Use a shared boolean variable lock.
O Iflock = 0 — section is free.

O Iflock = 1 — section is busy.

Page No:- 15

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

O Problem — Not atomic, leads to
busy waiting + race conditions.

2. Strict Alternation (Dekker’s Algorithm)

O Processes take turns in strict
sequence.

O Problem — Causes unnecessary
blocking (even if section is free).

3. Peterson’s Algorithm

O Uses two variables:

B flag[i] — interest of process i.

B turn — whose turn it is.

O Ensures mutual exclusion + progress
+ bounded waiting.

O Correct software solution, but may

fail on modern CPUs (out-of-order
execution).

Il. Hardware-based Solutions
Leverage atomic machine instructions.

1. TSL (Test-and-Set Lock) Instruction

O Atomic instruction: reads and sets a
lock variable in one step.

O Prevents race conditions.
O Problem — Busy waiting.
2. Test-and-Set Lock (similar idea)

O Continuously checks (test) and then
sets lock atomically.

O Provides mutual exclusion.

O Still suffers from busy waiting.
Ill. Operating System-based Solutions

Implemented inside OS for process
synchronization.

1. Counting Semaphore
O Integer value, can be >1.

O Controls access to multiple instances
of a resource.

O Uses P (wait) and V (signal)
operations.

2. Binary Semaphore (Mutex)
O Value=0or1.
O Equivalent to a lock.

O Ensures only one process enters
critical section at a time.

IV. Programming Language / Compiler Support
Synchronization provided at language level.

1. Monitors

O High-level abstraction for process
synchronization.

O Has shared variables + procedures +
condition variables.

O Compiler ensures mutual exclusion
automatically.

O Examples: Java synchronized, C# lock.

Page No:- 16

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

I. Software Types:
(a) Lock Variables:

Entry Section:

l. Load Ri, m[Lock] (Ri Respective Process Register)
[l. Cmp Ri, #0

1. JNZ to Step (1)

IV. Store m[Lock], #1 V. C.S VI. Store m[Lock], #0

7<l
0 |

CSisfree CSisbusy

P] = R
PZ 'l]
CS P,-1I
Py-1 R, | 0
® | r
P, - TII
Pz 'IV
P2 _V
M_E is not satisfied P -1V

Lock=0,1,1

(%]

We have proved that both the processes P1 and P2
are entering into the critical section at the same time,
Hence mutual exclusion is not satisfied and the
solution is bound to be incorrect.

(b) Strict Alteration or Decker’s Algorithm:
(Process takes ‘Turn’ to enter into C.S)

Process "Py’ code Process ‘P’ code
while (true) while (true)
i 1
non cs () non cs():
while (turn! = 0); while{turn! = 17;
c.8 c.5
turn = 1; turn = 0;
i H

Important Points:

The pre-emption is just a temporary stop and the
process will come back and continue the remaining
execution. If there is any possibility of solution

becoming wrong by taking the pre-emption then
consider the pre-emption. If any solution is having
deadlock the progress is not satisfied.

S, =#1
S, =10

CS |\P3 is not allowed.
¥

{a) Mutual exclusion
but not progress

(c) Peterson’s Algorithm:
(Two Process Solution)
#define N 2

#define TRUE 1

#define FALSE O

int turn; int interested [N];
void enter_Region (int process)
{

1. int other

2. other = 1 — process;

3. interested [process] = TRUE;
4. turn = process;

5. while (turn = = process &8& interested [other] = =
TRUE);

}

CS

void leave_Region(int process)
{

interested [process] = FALSE;
}

initially interested [0] = FALSE;
interested [1] = FALSE

Process

"

603 f.l"
Process

'3 ’ < ?

P, P,

Process

Page No:- 17

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Hardware Type
(a) TSL Instruction Set:
(Test and Set Lock):

TSL Register Flag:

Copies the current value of flag into register and
stores the value of '1" into flag in a single atomic
cycle without any pre-emption.

Entry Selection:
1. TSL Ri, m[flag]
2.CmpRi, O

3. JMP to step (1)
4.cs

5. Store miflag], 0

Hag
0 I
CS1s free CS 1s busy
Algorithm Bounded
M.E. Progress Waiting

1. Lock Variable X v X
2. Strictalteration or
Decker's Algorithm Y % Y
3. Peterson's
Algorithm v v Y
4. TSL Instruction v v X

OS Type

Semaphore is of two types:
Semaphore
(Oor 1)

Binary
Semaphore

(- 0 70)
Counting
Semaphore

1. Counting Semaphore
e (Can take non-negative integer values.

e Used to control access to a resource that has
multiple instances.

e Example: If a printer pool has 5 printers, the
counting semaphore is initialized to 5. Each
process requesting a printer decreases the
value, and releasing increases it.

2. Binary Semaphore (Mutex)
e Can take only 0 or 1 as its value.

e Used to implement mutual exclusion
(M.E.), ensuring that only one process
accesses the critical section.

(a) Counting Semaphore:
Down (Semaphore s)
{
s.value = s.value - 1;
if (s.value < 0)
{
Block the process and place its PCB
suspended list ();
}
}
Up (Semaphore s)
{
s.value = s.value + 1; if (s.value 0)
{
Select a process from suspended list
and wakeup ();

Page No:- 18

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

-

==
GATE CSE BATCH

KEY HiGHLIGHTS:
» 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENREIT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

}
}
Binary Semaphore:
Down (Semaphore S) Up (Semaphore 8)
4 {
if (Svalue == 1) if (Suspended Tist is empry)
Svalie=1;
else clse

select a process
fiom suspended list
and wakeup (J;

{
block the process
and place its PCD
m the suspended list ()

|
i
i
|
I
|
I
!
Svalie =0, ;
i
I
|
I
|
|
L
|
]
|
1
\

i H

Notes on Semaphores (Counting & Binary)
e Each semaphore has its own suspended
(waiting) list.

e Down (P) and Up (V) operations are
atomic — OS ensures no interrupts.

e If multiple processes are waiting, one
process wakes up per Up operation
(chosen in FIFO order — ensures bounded
waiting).

e If processes remain in the suspended list
with no chance to wake up, they may enter
deadlock.

Classical Problems of IPC
Producer consumer with semaphore:

DulEl

mn

w| =[n]=< =

[
.

=1 O Lh Bl kD e

Buffer [0.. N-1]

semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;
void producer(void)

{

int item p;

while(true)

{

produce_item (item p);
down(empty);
down(mutex);

buffer [in] = item p;

in = (in + 1) mod N up(mutex); up(full);
}

}

void consumer (void)

{

int item ¢;

while (true)

{

down (full);

down (mutex);

item ¢ = buffer [out];
out = (out + 1)mod N;
up (mutex);

up (empty);
process_item (item c);
}

}

Page No:- 19

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

e mutex — Binary semaphore.

O Ensures mutual exclusion when

producer/consumer accesses buffer.

e empty — Counting semaphore.

O Shows number of empty slots
available in buffer.

e full - Counting semaphore.

O Shows number of filled slots in
buffer.

READERS WRITERS PROBLEM

intrc =0;
semaphore mutex = 1;
semaphore db = 1;
void reader (void)
{

while (true)

{

down (mutex);
rc=rc+1;
if(rc==1)

down (db);

up (mutex);

}

}

void writer (void)
{

while (true)

{

down (db);

D.B

up (db);

}

}

conditions to be followed
1HR-W

2)R-R

3) W-R

HW-W

Semaphores in Readers-Writers Problem
e rc (Readers Count) — Integer variable.

O Tracks number of readers currently
accessing the database.

e mutex — Binary semaphore.

O Ensures mutual exclusion while
updating rc (readers count).

e db — Binary semaphore.

O Ensures mutual exclusion for database
access (between readers & writers).

Page No:- 20

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

define N 5

define LEFT (I+N-1)%N
define RIGHT (1+1)%N

define THINKING 0

define HUNGRY |

define EATING 2

typedel mt semaphore

wnt state [NJ;
semaphore mutex = 1;

* number of philosophers */

/* pumber of T's left neighbowrs */

M ommber of I's nght neighbours */

/* philosopher is thimkmg */

* philosopher 15 trymg to get forks */

/* plulosopher 1s eating */
*semaphores are a special kind of mt */

/* array to keep track of everyone’s state */
/* mutual exclusion for eritical regions */

semaphore s[N]: /* one semaphore per philosopher */
void plulosopher (int 1) /* 12 phulosopher number, from 0 to N -1 */
{ while (TRUE) { /* repeat forever */
Thmk(): /* philosopher 1s thinking */
Take forks(1), /* aequire two forks or block */
Eat(): /* vim-yum spaghetn */
Pw_forks(i); /* put both forks back on table */
H
}
void take forks(int 1) * 1. philosopher munber, fromOto N -1 */
d
downi Lnmitex); /* gnter critical region */
state [i] = HUUNGRY: * record fact that philosopher is hungry */
test1): ® v 1o acquire two forks */
upl&mutex): /* exit enitical regron */
downi &s[1]); * block 1f forks were not acquired */
)
voud put forks(i) /* 1: philosopher number. from Ot N -1 %/
!
downi &mutex): /* ener critical region */
state [1] = THINKING: /* philosopher has fimshed eatng */
tesl{LEFT); ™ see if left neighbour can now eat */
resi{ RIGHT Y, * see 1f left neighbonr can now eat */
npd Smntex); /* exat enitical region */
)
void test(i) /* i philosopher number, from 0 to N -1 */
|
if (state[i] == HUNGRY && state [LEFT] = EATING && state [RIGHT] = EATING) |
state [1] = EATING:
upd &s[1]);
H
]
Made pickmg up left and nght chopsticks an atomic operation £ or, N - | plulosophers but N chopshcks £ .. .both
changes prevent deadlock.
Page No:- 21

GeeksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Monitors (Synchronization)
e Monitor — Language-level construct for
synchronization (compiler-supported).

e A monitor = variables + procedures
combined in a special module.

e External processes cannot access variables
directly, but can call monitor procedures.

e Key property — At any time, only one
process can be active inside the monitor —
ensures mutual exclusion.

Syntax
Monitor example
{
Variables;
Condition variables;
Procedure P1

{

}

Procedure P2
{
}

}

Condition Variables in Monitors
e Declared as: Condition x, y;

e Used for synchronization inside monitors.
e Two main operations:
1. Wait()
B Example: x.wait(); or wait(x);
B Process is suspended and
placed in the block queue of
that condition variable.

2. Signal()

B Example: x.signal(); or
signal(x);

B Wakes up one process
waiting on that condition
variable (if any).

Signal)

' !

Block quene is Block queuc is
emply nol emply

The signal has no One process will be

effect and the signal resumed from the

will be lost block queue and any
one process will
continue the execution

Concurrent Programming
Sl:a=b+c;

S2:d=e*f;

S3:g=a/d;

S4:h=g*i;

Read set = {b, ¢, e, f a, d, g, i}
Write set = {a, d, g, h}

Precedence graph
S1, S2 can execute concurrently

Any two statements Si and Sj can be executed
concurrently or parallel if they are following the
conditions.

(RS W(S)) =¢

(2) W(SI) R (S)) = o
)W) W(S) =¢

The real concurrent programming is possible only
on the multiprocessor system.

Concurrent has 3 different meanings
o They can execute concurrently or parallel
o They don’t have any dependency Anyone can start
first [for single processor this will be applicable]

Page No:- 22

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Deadlock — Concept
e Definition:
A deadlock is a situation in which a set of
processes are blocked because each process
is holding a resource and waiting for another
resource that is already held by some other
process in the set.

e Example:
O System has 2 disk drives.

O Process P1 holds one disk and needs
the second disk.

O Process P2 holds the second disk
and needs the first disk.

O Both are waiting for each other —
deadlock occurs.

System Model
e Resources:

1. Types of resources — R1, R2, .., Rm

2. Examples: CPU cycles, memory space,
I/O devices

3. Each resource type Ri has Wi
instances

e Resource Utilization by a Process:

1. Request — Process requests a
resource

2. Use — Process uses the resource

3. Release — Process releases the
resource

Deadlock Characteristics (Coffman’s
Conditions)

Deadlock can occur in a system only if all the
following 4 conditions hold simultaneously:

1. Mutual Exclusion
e Only one process at a time can use a
resource.

e If another process requests the same
resource, it must wait until the resource is

released.
Example:
e A printer can be used by only one process at
a time.

2. Hold and Wait
e A process is holding at least one resource
and waiting to acquire additional
resources that are currently held by other

processes.
Example:
e Process P1 holds a printer and requests a
disk.

e Process P2 holds the disk and requests the
printer.

3. No Preemption
e A resource cannot be forcibly taken from a
process.

e |t can be released only voluntarily by the
process holding it, after completing its task.

Example:
e CPU registers or I/0 devices cannot be
forcibly taken back.

Page No:- 23

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

4. Circular Wait
e A set of processes {P1, P2, ..., Pn} are waiting
for resources in such a way that:

O P1 — waiting for a resource held by
P2

O P2 — waiting for a resource held by
P3

O ..

O Pn — waiting for a resource held by
P1

This forms a circular chain of waiting, leading to
deadlock.

Resource 1
Assigned to Waiting for
Process 1 Process 2
Waiting for Assigned to
Resource 2

Note: If all the deadlock characteristics
simultaneously exist in the system, then the system is
in deadlock.

Deadlock Prevention

& Deadlock prevention ensures that the system
never enters a deadlock state.

(7 This is done by denying at least one of the four
necessary conditions (Coffman’s conditions).

1. Mutual Exclusion
e Cannot be prevented because:

O Some resources are inherently non-
sharable (e.g., printer, tape drive).

O Only sharable resources (like read-only
files) allow multiple processes
simultaneously.

2. Hold and Wait
Deadlock can be prevented by ensuring processes
do not hold resources while waiting for others.

Strategies:
1. All-at-once allocation — A process must
request all resources at the beginning of
execution.

O Prevents hold and wait.

O Leads to low resource utilization and
possible starvation.

2. Release-before-request — A process must
release all currently held resources before
requesting new ones.

O Prevents deadlock.
O Can cause starvation and extra

overhead due to repeated
release/reacquire.

Page No:- 24

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

3. No Preemption
Allow resources to be forcibly taken away
(preempted) if needed.

e If process P1 requests a resource held by P2:

O If P2 is executing, then P1 must wait.

O If P2 is waiting, then its resources can
be preempted and given to P1.

Works well for CPU and memory.
Not suitable for non-preemptible resources (e.g.,
printer).

4. Circular Wait
Prevented by ordering resources and forcing
processes to request them in a fixed order.

Algorithm:
1. Assign a unique number to each resource
type.

2. A process must request resources in
increasing (or decreasing) order of
numbering.

Breaks circular wait.
Not always flexible for real systems.

Page No:- 25

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Memory

Introduction

e In a multiprogramming system, the task of
dividing memory among various processes is
called memory management.

e The responsibility of the Memory
Management Unit (MMU) is to utilize
memory efficiently and minimize both
internal and external fragmentation.

Logical vs Physical Address

e The address generated by CPU is called the
logical address.

e The address perceived by the memory unit
is called physical address.

Memory Management Unit

e A hardware device that maps virtual
addresses to physical addresses is called the
Memory Management Unit (MMU).

e |n the MMU scheme, the value stored in the
relocation register is added to every address
generated by a user process before it is sent
to memory.

e The user program works with logical (virtual)
addresses; it never directly accesses or sees
the actual physical addresses.

Loading
It is defined as bringing the program from the
secondary to the main memory.
It is classified into three types:
(i) Absolute Loading
A given program is always loaded into the same
memory location whenever it is loaded for
execution.
(ii) Relocatable Loading
e A given program can be loaded into any
desired memory location each time it is
loaded for execution
e The compiler must generate relative (logical)
addresses for the program.

(iii) Dynamic Loading
e Aroutine is not loaded into memory until it
is called, which allows for better memory-
space utilization (unused routines are never
loaded and their loading is postponed until
execution time).

e Itis useful when large amounts of code are
required for handling infrequently occurring
cases.

e No special support from the operating
system is needed; it is implemented through
the program'’s design.

e Address translation is handled by the
hardware.

Linking

Linking is the process of collecting and combining
various pieces of code and data into a single file that
can be loaded into memory and executed. Linking
can be performed at compile time, load time, or run
time.

Linking is classified into two types:

Linking

Static Linking Dynamic Linking

Page No:- 26

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

1. Static Linking

Static linkers take as input a collection of relocatable
object files along with command-line arguments,
and generate a fully linked executable file. This
executable file can then be loaded into memory and
run directly.

2. Dynamic Linking

Dynamic linking involves shared libraries, which are
object modules that can be loaded at run time at
arbitrary memory addresses and linked with the
program in memory. This allows for efficient
memory usage and code reuse across multiple
programs.

Address Binding

Address binding is the process of associating
program instructions and data with actual physical
memory locations.

Address binding can occur at three different stages:

1. Compile-Time Binding
e If the memory location is known in advance,
absolute code can be generated.

e However, if the starting memory location
changes, the code must be recompiled.

2. Load-Time Binding
e If the memory location is not known at
compile time, the compiler must generate
relocatable code.

e The actual addresses are then determined
when the program is loaded into memory.

3. Execution-Time Binding
e Address binding is delayed until run time,
which allows a process to be moved in
memory during its execution (e.g. for
swapping or dynamic relocation).

e This requires hardware support for address
mapping, typically using base and limit
registers.

Contiguous (CG)

Program is stored at only one
This approach is centralized.
1. Multiprogramming with Fixed Task

(MFT)

2. Multiprogramming with Variable
Task (MVT)

3. Overlays

4. Buddy System (Dynamic Merging)

Contiguous Memory Allocation

Two schemes:
1. Fixed Partitioning (Static)

Fixed Partitioning (Static)

register.

the number of partitions.

small.

Memory Management Techniques

/\.

Non-contiguous (NCG)

Program is not centralized,

it is distributed in memory

as per availability.

1. Paging

2. Segmentation

3. Segmented paging

4. Virtual memory
(Demand paging)

2. Variable Partitioning (Dynamic)

e Memory is divided into a fixed number of

partitions (equal/unequal sizes).

e Each partition is associated with a limit

e Degree of multiprogramming is limited to

e A process may not fit if partition size is too

e Problem: Internal Fragmentation occurs.

Page No:- 27

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

-

==
GATE CSE BATCH

KEY HiGHLIGHTS:
» 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

e COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENREIT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Variable Partitioning (Dynamic)
e Initially, memory is a single large continuous
free block.

e When a process arrives, a hole of exact
required size is allocated.

e No Internal Fragmentation.
e Problem: External Fragmentation occurs.
e Requires Compaction (overhead).

Dynamic Partition Allocation Methods
When more than one partition can accommodate a
process, the following strategies are used:
e First Fit:
Allocate the first free block (from the
beginning of memory) that is large enough.

O Fast but may lead to external
fragmentation at the beginning.

e Next Fit:
Similar to First Fit, but scanning begins from
the last allocated position, not from the
start.

O Reduces search time compared to
First Fit.

e Best Fit:
Scans the entire memory to find the
smallest free block that can accommodate
the process.

O Minimizes leftover space but
increases search time, can lead to
many small fragments.

e Worst Fit:
Scans the entire memory to find the
largest free block.

O Leaves large leftover space, may help
reduce external fragmentation.

Non-Contiguous Memory Allocation
Paging

e Definition:
The technique of mapping CPU-generated
logical addresses to physical addresses
using a page table.

Key Concepts
1. Division of Memory:

O Logical address space — divided into
equal-size pages.

O Physical address space — divided
into equal-size frames.

O Page size = Frame size.
2. Process Mapping:

O When a process is created, it is
divided into pages.

O A Page Table is maintained in main
memory for each process.

O Base address of the page table is
stored in the PCB (Process Control
Block).

Page No:- 28

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Page Table:
e Number of entries = number of pages in
logical address space.

e Each entry stores the frame number where
the corresponding page is placed.

e Page table is also called the Address
Translation Table.
Fragmentation in Paging

e External Fragmentation: Does not occur.

e Internal Fragmentation: May occur in the
last page only.

e Maximum Internal Fragmentation = [p /2],
where p = page size.

Logical Address Physical Address
13 bits ! 12 bits
K3 10 { (Pl RPN . K
{5 | & |

— [page mumber

if want [
to 0
acess 1
page 2
number 3
3 4
5
6
T
<}

'
|
0
1
2

%
age Map Table (Pm7) |frame number | Physical memory
Or Page table in binary

(VT —

0
contains
2"words

2101

I~

Paging with TLB (Translation Lookaside Buffer)
e Translation Lookaside Buffer (TLB):

O A hardware cache implemented
using associative registers.

O Stores recently/frequently used
(Page No. — Frame No.) mappings.

O Access time of TLB (¢) « main
memory access time.

O Purpose: Reduces effective memory
access time (EAT).

Working

1. CPU generates logical address — TLB is
checked.

2. TLB Hit: Frame number is found in TLB —
Only 1 memory access required.

3. TLB Miss: Page table in main memory is

accessed — 2 memory accesses required
(one for page table, one for data).

Formula for Effective Memory Access Time (EAT)
Let:
e ¢ = TLB access time

e m = Main memory access time

e Xx=TLBhitratio(0<x<1)

EMAT=x({c +m+ {1 —x)1-(c+ 2m)
I | { I

vy v

I TLB | MR 1 MR for PT
access for 1 MR for actual page
actual page

Page No:- 29

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Multilevel Paging
e Asingle-level page table may be very large
— requires huge contiguous memory.
e To reduce this overhead, multilevel paging is
used.
Concept
e The page table itself is divided into pages.
e Page tables of all levels are kept in memory.

e Address Translation:

O Level-1 Page Table entries —
pointers to Level-2 Page Table.

O Level-2 Page Table entries —
pointers to Level-3 Page Table.

O ..andsoon.

O Last-level Page Table entries —
actual frame numbers of data pages.

Every Page Table Entry (PTE) contains a frame
number.
Performance with TLB

o let:
O p = TLB hit ratio
O c = TLB access time
O m = Main memory access time

O n = number of levels in paging

EMAT=p(c+m)+(1-p)(c+(n+1)m)
Explanation of Formula
e On TLB Hit — 1 memory access (to get data)
+ TLB access time.

e On TLB Miss — Need to access all n page
tables + 1 data access = (n+1) memory
accesses + TLB access time.

Page No:- 30

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Inverted Paging
Concept
e Unlike normal paging (which maps pages —
frames), inverted paging maps frames —
pages.

e Only one global page table (inverted page
table) is maintained instead of separate page
tables for each process.

Structure
e Number of entries in the inverted page table
= number of frames in physical memory.

e Each entry contains:

O Process Identifier (PID) — identifies
which process owns the page.

O Page Number — which logical page
of that process is stored.

e This tells: “Which page of which process is
currently stored in which frame.”

Virbum! Addrens

Sze of Physical Memecry= 24m frames

Inverted PageTable

GATE Wd
Advantages

e Saves memory space (since only one page
table is maintained, size = number of
frames).

Disadvantages
e Lookup time increases (must search the
whole inverted table).

e More complex to implement (extra mapping
required).

Address Translation
1. CPU generates <Process ID, Page Number,
Offset>.

2. The system searches the Inverted Page
Table for a matching entry.

3. If found — frame number is obtained —
physical address = <Frame Number, Offset>.

4. If not found — Page Fault occurs.

To reduce lookup time, a hash table is usually used
with the inverted page table.
Segmentation
Concept
e Paging divides a process into equal-sized
pages, which does not match the user’s
logical view of a program.

e Segmentation divides a process into
variable-length segments, based on logical
units such as:

O functions, arrays, stack, code, data,
etc.
Segment Table
e A segment table is maintained per process.

e Number of entries = number of segments in
the process.

e Each entry contains:

Page No:- 31

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

O Base — starting physical address of
the segment.

O Limit — length of the segment.

Fragmentation
e Internal Fragmentation — does not occur
(since segments are variable length).

e External Fragmentation — usually avoided
using compaction, but in general
segmentation does suffer external
fragmentation (unlike paging).

(Some books note "no internal
fragmentation, but external fragmentation
exists.”)

Address Translation

e Logical address = <segment number,
offset>

e Using the segment table:

O Check if offset < limit — if yes, valid.

O Physical address = base + offset.

O If offset = limit — segmentation fault.

Segmented Paging
Concept
e In pure segmentation, entire large
segments must be loaded into memory —
overhead.

e To reduce this, paging is applied inside
each segment.

® Thus, each segment is divided into pages,
and these pages are loaded into memory
frames.

Logical View of Segmentation

segmianl 0

Sagment Number >
(’J segment 2

segment. 0 segment 7
base address | Limit
0 500 500
segment 3 ; Y 49
1500 400
3 4600 200
sepment 4 4 3800 00
Segment Table
Logical Address Space
Legment 3
Physical Address Space
Structure
e For each segment, a Page Table is
maintained.

e Number of entries in a segment’s page table
= number of pages in that segment.

e Logical address structure:

(Segment No.,Page No.,Offset)\langle
\text{Segment No.}, \text{Page No.},
\text{Offset} \rangle(Segment No.,Page
No.,Offset)

Page No:- 32

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Address Translation
1. Segment Number — used to locate the
segment’s Page Table.

2. Page Number — used as index into that
Page Table to find the Frame Number.

3. Offset — combined with Frame Number to
form the Physical Address.

Physical Address=(Frame No.,Offset)
Performance
e Lookup time increases (need to access:
Segment Table + Page Table + Memory).
e TLB can be used to speed up access.
Fragmentation
e Suffers only from Internal Fragmentation

(since pages are fixed size).

e No External Fragmentation (same as

paging).
Segment table (for process)
.| seement | page table
limit hase
- X yes
Physical
logical I no Memory
address ", P m

memory trap

s = segment number

C+)<_

s0 = logical offset in segment

p = page page table (for segment)
po = ofiset in page]
f= frame o f |po s
-
|
L |

Virtual Memory (VM) Concept
e Virtual memory provides an illusion to the
programmer that a program larger than the
available physical memory can be executed.

e |t allows address space sharing by multiple
processes, improving system utilization and
flexibility.

Virtual Memory Implementation
Virtual memory can be implemented using:
1. Demand Paging — Only the required pages
of a process are loaded into memory on
demand.

2. Demand Segmentation — Only the required
segments of a process are loaded into
memory on demand.

Demand Paging
e Definition: Loading the required pages from
secondary memory (disk) into main
memory only when they are demanded by
the CPU is called Demand Paging.

e Page Fault:

O If the CPU refers to a page not
present in main memory, a page
fault occurs.

O The OS is then signaled about the
fault, locates the required page in
secondary storage, and loads it into a
free memory frame.

O If all frames are full, a page
replacement algorithm (like FIFO,
LRU, Optimal) is used to decide
which page to replace.

O The page table entries are updated
accordingly.

Page No:- 33

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

e Page Fault Service Time:

O The total time required to handle a
page fault (detect, fetch the page,
and update tables) is called the Page
Fault Service Time.

o Secondary Memory
PO

2] |
i

os

2] Jo

& o -
-+ - 3 P3

° P3| £ 5

15 P1

CPU

Page Table

Main Memory

Performance of Virtual Memory
Let:
e S = Page Fault Service Time

e M = Main Memory Access Time
e P = Page Fault Rate, where 0<P<10

Effective Memory Access Time (EMAT)

Since every memory access can either be a hit (page
is in main memory) or a miss (page fault occurs):
EMAT=PxS+(1-P)M

Demand Paging with TLB

Assume, TLB hit ratio = 'h’

TLB access time = ‘¢’

Page fault service time = 'S’

Main memory access time = ‘M’

Page fault rate = 'P" where 0 <P <1

The effective memory access time is formulated as
EMAT =h(c+ m) + (1-h)(c+ (P xS+ (1-P) x M))

Page Replacement Algorithms

GATE B3
1. FIFO (First-In, First-Out)

e When a page fault occurs and all the
memory frames are full, FIFO algorithm
replaces the oldest page to allocate the page
referred by the CPU.

e ltisimplemented using a queue or time-
stamp on pages.

e Sometimes, even after increasing the
number of frames, the page fault rate
increases.

O This situation is called Belady's
Anomaly.

2. LRU (Least Recently Used)
e LRU algorithm replaces the page that has
not been used for the longest period (least
recently used page).

e |tisimplemented using a stack or counter.

3. Optimal
e Optimal algorithm replaces the page that will
not be used for the longest period in future.
e For a fixed number of frames, Optimal
algorithm gives the least page fault rate.
e It cannot be implemented in real-time as it
requires knowledge of future references.

Least Recently Used (LRU)

e Replace the page that has not been used for
the longest period of time.

e Performance of LRU is closer to Optimal as it
is practical approximation.

e C(Criteria: Time of Reference.
Most Recently Used (MRU)
e Replace the page that is used most recently.

e Criteria: Time of Reference.

Page No:- 34

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Counting Algorithms

e Least Frequently Used (LFU): Replace the
page with the smallest count.

e Most Frequently Used (MFU): Replace the
page with the largest count.

e Implementation is expensive.
Variants of LRU (LRU Approximation)

e Approximation and not exactly LRU, they
approximate to the behavior of LRU (i.e., they
work like LRU).

e Reference bit (R):

O 1 — Page is referred at least once
during the current epoch (a period of

time).

O 0 — Page is not referred so far
during the current epoch.

e Second Chance / Clock Algorithm:
O It degenerates to FIFO.
O Criteria is Reference bit.

e Enhanced Second Chance / Not Recently
Used:

O Criteria is Reference Bit and
Modify/Dirty Bit.

O Modify Bit:
B 1 — Page is modified.

B 0 — Pageis clean.

Thrashing
e Definition:
Thrashing is a phenomenon in which a
process spends more time in page faults and

CPU Utilization

=~
=]

@
[=]
T

w
=]
T

s
=)

[¥1}
=]

[
o
T

—
(=]
T

page replacement than in actual execution.

Cause:

O When CPU utilization is low, the OS
increases the degree of
multiprogramming (adds more
processes).

O After a certain point, there aren't
enough frames to handle all processes
— page faults increase heavily.

O CPU remains idle as it keeps waiting
for pages to be swapped in/out.

Effect:

O System throughput decreases
drastically.

O High paging activity dominates,

reducing actual work done.
Graphical Behavior:

O Initially, as multiprogramming
increases — CPU utilization increases.

O After a threshold, more
multiprogramming = less CPU
utilization due to thrashing.

Thrashing Effect

]
[}
I
I
I
]
]
]
I
I
]
]
]
]
I
I
]
I
]
I
I
Il
I
]
]
I
I
]
]
]
I
I
I
L

=== Thrashing Paint
rashing starts

2 7 6 8 10

Degree of Multiprogramming

Page No:- 35

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Working Set Model
e Definition:

The working set is the set of unique pages
that a process has referred to in the last A
memory references (where A is the window
size).
Think of it as a sliding window: within that
window, all the distinct pages form the
process’s working set.

e Conditions:

O If A < total number of frames —
The OS can bring in more processes
into memory (higher degree of
multiprogramming is possible).

O If A > total number of frames —
The process does not have enough
frames to hold its working set.
In this case, the OS should use the
mid-term scheduler to suspend some
processes to avoid thrashing.

e Purpose / Use:

O Helps the OS determine the
minimum number of frames a
process needs to execute efficiently.

O Controls CPU utilization and prevents
thrashing.

O Balances the degree of
multiprogramming by monitoring
working set sizes.

Page No:- 36

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

FILE SYSTEM
File

e Afile is a collection of logically related
information/records, stored on secondary
storage (like hard disk).

File Attributes
Every file has some properties called attributes:

« File Name « File Type « File Size .

Location

« Creation Date - Last Modified Date -
Permissions « Owner/Author

« Password

File Context
e File data is stored in File Control Block
(FCB), which keeps file-related information
(metadata).

e Files can be of different types/formats, e.g.:
.doc, .txt, .pdf, .exe
.obj, .png, .apk, .xls/.xlIsx
Jpg. .mp3, .mp4, .avi/.flv
.mkv/.3gp, .c/.cpp, .java, .xml/.html

Operations on File

Common operations that can be performed on files:
Create, open, write, read, delete, save
save as, close, copy, paste, move, rename
send/share, print

Access Methods (ways to access data in Files):
e Sequential Access:
Data is accessed in a fixed order or linear
order, one record after another, from
beginning to end (e.g., magnetic tape).

e Random Access (Direct Access):
Any part of the file can be accessed directly

without following a sequence (e.g., hard
disk).

Note: To organize files properly, they are stored
inside directories (folders).

2. Linked (Non-Contiguous) Allocation

Disk Space Allocations Methods:

1. Contiguous Allocation
e File blocks are stored together in a
continuous manner on disk.
e File is described using:
O Starting block address
O Size (number of blocks)

e Supports both sequential and random
access.

e Suffers from external fragmentation and
difficulty in expanding size

e Random location can be calculated using:
Starting Block Address + Offset

Directory
file start length
count] 2
tr 14 3
mail 19 -]
list 28 4
f 6 2

e File blocks are stored anywhere on disk,
each block contains a pointer to next block.
e File is described using:
O Starting block address
O Ending block address
e No external fragmentation, can easily grow
file size.
e Supports only sequential access, random
access is slow.

Page No:- 37

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Directory

file start end
jeep 9 25

]

OO

3. Indexed Allocation

e Each file has a separate index block (i-
node).

e Index block stores addresses of all disk
blocks used by the file.

e No external fragmentation and supports
direct/random access.

e If afile is very large, one index block may be
insufficient.

e If afile is very small, using a whole index
block may waste space.

Directory

file index block
jeep 19

[Jes[Jze[Je2[]

UNIX I-NODE IMPLEMENTATION

Every file is represented by an i-node (index node).

e i-node stores metadata of file:
O File size, location, owner, date &
time, permissions
e |t contains multiple pointers to data blocks:

Pointers in i-node:

e Direct Pointers — directly point to data
blocks of the file.

e Single Indirect Pointer — points to a block
which contains more pointers to data blocks.

e Double Indirect Pointer — points to a
block, which points to another block of
pointers.

e Triple Indirect Pointer — 3-level pointer
chain for very large files.

Note : UNIX i-node allows efficient storage for small
files using direct pointers and supports very large
files using multiple levels of indirect pointers

without external fragmentation.

[T11]

Single Indirect | Double Indirect ‘ Triple Indirect

2e2?

ﬁ???

I— Direct Block —I

HENEEREEEEEEEEEEEEEE
64466 6650 0444 S48
Maximum possible size of a file (using UNIX i-node):

DB.‘s'izf. DBSE:L

4n X(DB.‘v'izr.-
DBA 7' DBA

P+ ny % (5m-)?) % DBsiey

(g +ny =

Where:

®* np = number of direct pointers

®* ni = number of single-indirect pointers
* n2 = number of double-indirect pointers
® n: =number of triple-indirect pointers
® DBsize = size of disk block

* DpBA = bits required to store a block address

Each pointer is assumed to point to a valid data block.

Total size of file system = (number of blocks) x (block size)

* Disk Block Address = DBA bits

* |If DBA bits are used to identify all blocks = total number of blocks = 2°DBA

Total size of file system = (Disk Block Size) x 2(DBA i bits)

Page No:- 38

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

Disk Free Space Management

When a file is deleted, its disk blocks become free.
The OS must keep a record of all such free blocks,
so that it can re-use them when new files are
created.

To manage this free space efficiently, two main
techniques are used:

1. Free List Approach (Linked List of Free

Blocks)
e Stores addresses of all free disk blocks in a
linked list.

e Each free block contains a pointer to the
next free block.

e Easy to allocate a block (just take the first
address from the list).

e Useful when free space is scattered
randomly.

e But needs extra pointers stored on disk —
takes up space.

2. Bit Map (Bit Vector) Approach
e Uses a bitmap array where each block is
represented by 1 bit:
O 0 — free block
O 1 — occupied block

e Compact in memory (uses very little space).

e Fast to find the next free block by scanning
bits.

e Requires a continuous region in memory to
store the bitmap.

Disk Scheduling

e When several processes want to access the
hard disk at the same time, their read/write
requests are placed in a waiting queue. Disk
scheduling is the process by which the
operating system chooses the order in
which these waiting requests are sent to the
disk.

e Disk scheduling decides which disk request
should be processed next to make disk
access faster and efficient.

Goal of Disk Scheduling
e Increase throughput (number of I/0 requests
served).
Reduce average seek time of the disk.
Give fair chances to all I/O requests.

Disk Scheduling Algorithms

1. FCFS (First Come First Serve)

— The requests are served in the same order they
arrive.

— Simple but can cause long head movements.

2. SSTF (Shortest Seek Time First)

— The request closest to the current head
position is served first.

— Faster than FCFS, but some requests may wait
too long (starvation).

3. SCAN (Elevator Algorithm)

— The head moves in one direction, serving all
requests on the way.

— When it reaches the end, it reverses direction
and continues.

— Like a lift that goes up and down.

4. LOOK

— Same as SCAN, but the head only goes till the
last request in that direction.

— Does not go to the physical end of the disk.

5. C-SCAN (Circular SCAN)

— The head moves in one direction, serves
requests, and when it reaches the end,

Page No:- 39

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

OPERATING SYSTEM

6. C-LOOK

not to the physical end of the disk.

it jJumps to the start without serving on the way back.
— Like a lift that only goes up, then comes down empty.

— Same as C-SCAN, but head only goes till the last request,

Algorithm Working Style Advantages Disadvantages Hint

FCFS Serve requests in arrival | Very simple, fair (no High seek time, slow | Jo pehle aaya, wahi
order starvation) pehle serve hoga

SSTF Pick request with Less arm movement, Far requests may Sobse paas waale
shortest seek time good throughput starve ko serve karo
(nearest)

SCAN Head goes in one No starvation, good Needs direction bit, | Lift ki tarah upar-
direction then reverses | for all loads overhead neeche jaata hai
(elevator)

C-SCAN Moves in one direction | Uniform wait time Implementation Ek hi direction mein
only, then jumps to start complex ghoomta rahe

LOOK Like SCAN but stops at | Avoids extra Slightly complex Jahan last request
last request only movement, efficient ho, bas wahin tak

jao

Page No:- 40

GeeksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#cse

-

==
GATE CSE BATCH

KEY HiGHLIGHTS:
» 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

e COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENREIT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#cse

STAR MENTOR CS/DA

KHALEEL SIR CHANDAN SIR
ALGORITHM & OS DIGITAL LOGIC
29 YEARS OF TEACHING EXPERIENCE GATE AIR 23 & 26 / EX-ISRO
SATISH SIR MALLESHAM SIR
DISCRETE MATHEMATICS M.TECH FROM IIT BOMBAY
BE in IT from MUMBAI UNIVERSITY AIR - 114, 119, 210 in GATE
(CRACKED GATE 8 TIMES)

14+ YEARS EXPERIENCE

VIJAY SIR PARTH SIR
DBMS & COA
M. TECH FROM NIT o
il IIT BANGALORE ALUMNUS

FORMER ASSISTANT PROFESSOR

= SAKSHI MA'AM SHAILENDER SIR
- ENGINEERING MATHEMATICS C PROGRAMMING & DATA STRUCTURE
IIT ROORKEE ALUMNUS M.TECH in Computer Science

15+ YEARS EXPERIENCE

AVINASH SIR AJAY SIR

APTITUDE PH.D. IN COMPUTER SCIENCE
10+ YEARS OF TEACHING EXPERIENCE 12+ YEARS EXPERIENCE

	Benefits of Threads
	Multithreading Models
	Thread Libraries
	Disadvantages of Multithreading
	Program
	Process

	Process as an Abstract Data Type (ADT)
	Process (what makes a process in memory):
	Process Attributes (stored in PCB):
	Process Control Block (PCB)
	Context of a Process
	Number of Processes in Each State

	Schedulers in Operating System
	1. Long-Term Scheduler (Job Scheduler)
	2. Medium-Term Scheduler (Swapper)
	3. Short-Term Scheduler (CPU Scheduler)

	Dispatcher in OS
	Context Switching means:
	1. Arrival Time (AT)
	2. Burst Time (BT)
	3. Completion Time (CT)
	4. Turnaround Time (TAT)
	5. Waiting Time (WT)
	6. Response Time (RT)

	CPU Scheduling Algorithms
	1. First Come First Serve (FCFS)
	2. Shortest Job First (SJF)
	3. Shortest Remaining Time First (SRTF)
	4. Longest Remaining Time First (LRTF)

	Priority Scheduling
	6. Round Robin (RR) Scheduling
	8. Multilevel Queue Scheduling (MLQ)
	8. Multilevel Queue Scheduling (MLQ)
	Inter-Process Communication (IPC)
	2. Synchronization
	3. IPC Environment
	Types of Processes
	Understanding Synchronization
	Problems Due to Lack of Synchronization

	Producer–Consumer Problem (Bounded Buffer)
	Concept
	Drawbacks of This Solution
	Correct Solution (Using Synchronization Tools)
	Producer–Consumer Problem (Bounded Buffer)
	Uncontrolled Execution (Problem)
	Daemon Example – Printer Spooler
	Critical Section Problem
	Race Condition
	Requirements for a Correct
	Synchronization Solution
	I. Software-based Solutions
	II. Hardware-based Solutions
	III. Operating System-based Solutions
	IV. Programming Language / Compiler Support
	1. Counting Semaphore
	2. Binary Semaphore (Mutex)
	Classical Problems of IPC
	Semaphores in Readers–Writers Problem
	Condition Variables in Monitors

	Deadlock – Concept
	System Model
	Deadlock Characteristics (Coffman’s Conditions)
	1. Mutual Exclusion
	2. Hold and Wait
	3. No Preemption
	4. Circular Wait

	Deadlock Prevention
	1. Mutual Exclusion
	2. Hold and Wait
	Strategies:

	3. No Preemption
	4. Circular Wait
	Algorithm:
	Linking
	1. Static Linking
	2. Dynamic Linking

	Address Binding
	1. Compile-Time Binding
	2. Load-Time Binding
	3. Execution-Time Binding

	Fixed Partitioning (Static)
	Variable Partitioning (Dynamic)

	Dynamic Partition Allocation Methods

	Non-Contiguous Memory Allocation
	Paging
	Key Concepts
	Fragmentation in Paging
	Working
	Formula for Effective Memory Access Time (EAT)
	Concept

	Inverted Paging
	Concept
	Structure
	Advantages
	Disadvantages
	Address Translation
	Concept
	Segment Table
	Fragmentation
	Address Translation

	Segmented Paging
	Concept
	Structure
	Address Translation
	Fragmentation
	Virtual Memory (VM) Concept
	Virtual Memory Implementation
	Demand Paging
	Effective Memory Access Time (EMAT)
	Page Replacement Algorithms
	1. FIFO (First-In, First-Out)
	2. LRU (Least Recently Used)
	3. Optimal

	Thrashing
	Working Set Model
	1. Contiguous Allocation
	2. Linked (Non–Contiguous) Allocation
	3. Indexed Allocation
	1. Free List Approach (Linked List of Free Blocks)
	2. Bit Map (Bit Vector) Approach

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

