
https://www.geeksforgeeks.org/courses/category/gate#cse

 Introduction and Background of OS
 Threads & Multithreading
 Process Concepts
 CPU Scheduling
 Synchronization
 Deadlock
 Memory Management
 Virtual Memory
 File Systems
 Disk Scheduling

Page No:- 01

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Introduction and Background of OS
1. What is OS ?

OS is a software that acts as a bridge between user
and hardware, managing resources efficiently.
 It provides tools for application development and
controls system operations like a government.

Goals of OS Functions of OS

Easy-to-use
environment for
users

Manages processes (creation,
scheduling, etc.)

Efficient resource
usage (Resource
Allocator)

Handles memory allocation &
deallocation

Modularity (easy
to maintain
system structure)

Allocates resources like CPU,
I/O, memory

Abstraction (hides
hardware
complexity)

Manages file system
(read/write/access control)

Simplifies
debugging for
developers

Ensures protection & security of
data & system

Dual Mode Operations

Purpose:

● Prevent user programs from directly
accessing hardware

● Protect OS & system resources from
unauthorized access

Mode Bit:

● A special bit used by the CPU to track
current mode

● Mode Bit = 0 → Kernel Mode

● Mode Bit = 1 → User Mode

Kernel Mode:

● OS runs in this mode

● Has full access to hardware & system
instructions

● Can execute privileged operations like:
I/O control
 Memory management
 Context switching
 Interrupt handling

● Kernal mode is non preemptive (Atomic)

Page No:- 02

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

User Mode:

● User applications run here

● Cannot perform direct hardware operations

● If such actions are needed, control is
transferred to kernel via system calls

● User mode is preemptive (non Atomic)

Note:
As per Von Neumann architecture, all

secondary storage devices are part of I/P | O/P
devices.

Page No:- 03

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Threads & Multithreading

A thread is a smaller, lightweight version of a
process

● In multithreading, all threads of the same
process share:

 Memory (address space)
 Files
Signals and their handlers

● But every thread has its own:
 Stack (used for function calls)
Unique thread ID
CPU information (like registers and stack
pointer)

● Scheduling details (like thread state and
priority)
Like a process , thread is also a unit of cpu
utilization .

It is a Schedulable Unit .
It is an Active Entity.

Benefits of Threads

● Faster response to users

● Quick context switching between threads

● Better use of multiple processors (parallel
work)

● Higher system throughput (more work
done in less time)

● Cost-effective (less overhead than
processes)

● Efficient sharing of resources like memory
and files

User-Level
Threads

Kernel-Level Threads

These threads are
managed at user
level.

These threads are managed at
kernel level.

These threads are
not recognized by
the kernel.

These threads are recognized
by the kernel.

They are
implemented as
dependent threads.

They are implemented as
independent threads.

All user-level
threads of a process
can run on one
processor only, and
one at a time.

Kernel-level threads can run
on different processors at the
same time (multiprocessing).

Blocking one user-
level thread blocks
the entire process.

Blocking one kernel-level
thread doesn’t affect other
threads of the process.

These threads have
less context.

These threads have more
context.

Scheduling is done
by the thread
libraries.

Scheduling is done by the OS.

No hardware
support required.

Hardware support is required.

Implementation is
easy and simple.

Implementation is complicated
and difficult.

Page No:- 04

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Multithreading Models
1. Many-to-One Model

○ Many user-level threads (ULTs) are mapped
to a single kernel thread (KLT).

○ Drawback: If one thread makes a blocking
system call → entire process is blocked.

○ Not suitable for multiprocessors (only one
thread can access kernel at a time).

2. One-to-One Model

○ Each ULT maps to one KLT.

○ Allows better concurrency (multiple
threads run in parallel on
multiprocessors).

○ Drawback: Creating many threads
incurs overhead → limited by OS.

3. Many-to-Many Model

○ Many ULTs are mapped to many
KLTs.

○ OS creates required number of kernel
threads dynamically.

○ Advantage: Flexibility + concurrency
+ avoids blocking problem.

Thread Libraries
● Provide API to create and manage threads.

● Implementation Types:

○ User-level library → Managed in
user space (fast, but blocking issues).

○ Kernel-level library → Supported by
OS (slower, but better concurrency).

● Examples:

○ Pthreads (POSIX threads) – C/C++
standard

○ Java Threads – built into JVM

○ Green Threads – User-level threads,
scheduled by a runtime library

Disadvantages of Multithreading

1. Blocking

○ If one thread blocks, entire process
may block (especially in many-to-one
model).

○ CPU may stay idle.

2. Security Issues

○ Threads share same memory →
higher risk of data corruption or
unauthorized access.

3. Overhead

○ Maintaining Thread Control Block
(TCB) for each thread increases
overhead.

Page No:- 05

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

PROCESS CONCEPTS

Program Versus Process

Program
● A program is just a set of instructions written

in some programming language.

● It is a passive entity stored on disk (file,
executable).

● Example: notepad.exe, chrome.exe, or a C
code file.

● It doesn’t do anything until it is executed.

Process
● A process is a program in execution.

● It is an active entity with:

○ Program counter (which instruction
to execute next)

○ Registers, Stack, Heap, and allocated
memory

○ State (ready, running, waiting)

● Example: If you open Chrome 3 times, there
are 3 processes running but only 1 program
(chrome.exe).

Process as an Abstract Data Type (ADT)
A process can be thought of as an Abstract Data Type
(ADT) because it has data (attributes) and operations
defined on it.

Process (what makes a process in memory):
● Process attributes (PCB – Process Control

Block)

● Run-time Stack (function calls, return
addresses, local variables)

● Dynamic Data (heap, variables created at
runtime)

● Static Data (global variables)

● Code Section (instructions to execute)

Process Attributes (stored in PCB):
1. Process Identification Information (PID,

parent process ID)

2. Priority (for scheduling)

3. Process State Information (new, ready,
running, waiting, terminated)

4. Program Counter (next instruction address)

5. Memory Limits (address space assigned to
process)

6. List of Files (files used by process)

7. List of Open Devices (I/O devices allocated)

8. Protection Information (access rights,
permissions)

Process Control Block (PCB)
● Each process has its own PCB.

● All PCBs are stored in main memory.

● Implemented using a doubly linked list.

● PCB acts as the “identity card” of a process
for the Operating System.

Context of a Process
The context means the current status/info of a
process.
 It includes:

● Process attributes (from PCB)

Page No:- 06

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

● Stack information (function calls, return
values, etc.)

Process State Transition Diagram

Process States and Memory Location
1. Ready, Running, or Waiting (Blocked) State

○ The process is in main memory
(RAM).

○ This allows the CPU or I/O devices to
access it quickly.

2. Suspend Ready or Suspend Blocked (Wait)
State

○ The process is moved to secondary
memory (disk).

○ This happens when there isn’t
enough space in main memory or the
OS decides to temporarily pause the
process.

Number of Processes in Each State

● Ready State → Many processes can wait in
main memory for CPU.

● Waiting (Blocked) State → Many processes
can wait for I/O or events.

● Suspend Ready & Suspend Wait → Many
processes can be kept in secondary storage.

● Running State → Only ONE process runs on
the CPU at a time (per core).

Schedulers in Operating System
The OS uses different types of schedulers to
manage processes efficiently.
1. Long-Term Scheduler (Job Scheduler)

● Main Role → Decides which new processes
should be admitted into the system.

● Where it Works → From secondary storage
(job pool) to main memory.

● Controls → The degree of
multiprogramming (how many processes are
in memory at once).

● Goal → Maintain a good balance between:

○ CPU-bound processes (need more
CPU time)

○ I/O-bound processes (spend more
time waiting for I/O)

● State Transition → Responsible for New →
Ready state.

Page No:- 07

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

2. Medium-Term Scheduler (Swapper)
● Main Role → Performs swap-out (move

process from main memory to secondary
memory) and swap-in (bring process back to
main memory).

● Why Needed → To reduce the degree of
multiprogramming (when too many
processes are loaded).

● State Transitions →

○ Ready ⇌ Suspend Ready

○ Block ⇌ Suspend Block

In short: It suspends and resumes processes to
balance load and improve performance.

3. Short-Term Scheduler (CPU Scheduler)
● Main Role → Chooses which process from

Ready Queue will get the CPU next.

● Execution → Runs very frequently
(milliseconds).

● State Transition → Ready → Run

In short: It is responsible for CPU allocation and
ensures fair and fast execution.

Dispatcher in OS
● The dispatcher is the component that

actually gives CPU control to the process
chosen by the short-term scheduler.

● Its main job is to perform a context switch.

Context Switching means:
1. Saving the current process state (its

registers, program counter, etc.) into its PCB
(Process Control Block).

2. Loading the new process state from its PCB
into the CPU.

3. Starting execution of the new process.

In short:
● Scheduler → decides which process should

run.

● Dispatcher → actually switches CPU to that
process.

Page No:- 08

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

CPU scheduling
Cpu scheduling is needed when the CPU must
decide which process should run next.
 It occurs in these cases:

1. New process enters Ready state

○ A new job comes into the Ready
queue → scheduler must decide if it
should get CPU.

2. Wait → Ready transition

○ A process waiting for I/O finishes its
I/O → moves to Ready → scheduler
decides.

3. Run → Wait transition

○ A running process requests I/O →
CPU becomes free → another
process must be scheduled.

4. Run → Ready transition (time slice over)

○ In Round Robin, after every q
seconds (time quantum), the running
process is stopped and moved back
to Ready → scheduler picks another.

5. Priority scheduling

○ If a Ready process has higher
priority than the one currently
running, the CPU is given to the
higher-priority process
(preemption).

Goals of CPU Scheduling
Maximize CPU utilization.
 Minimize the response time and waiting time of the
processes.

1. Arrival Time (AT)

● The time when a process enters the Ready
Queue.
👉👉 Example: If P1 comes at time 0, its AT =
0.

2. Burst Time (BT)
● The total CPU time required by a process

for its execution.
👉👉 Example: If P1 needs 5 units, BT = 5.

3. Completion Time (CT)
● The time when a process finishes execution.

👉👉 Example: If P1 finishes at time 7, CT = 7.

4. Turnaround Time (TAT)
● The total time taken from arrival to

completion.

● Formula: TAT= CT−AT

Example: If CT = 7 and AT = 0 → TAT = 7.

5. Waiting Time (WT)
● The total time spent in Ready Queue,

waiting for CPU.

● Formula: WT=TAT−BT
Example: If TAT = 7, BT = 5 → WT = 2.

6. Response Time (RT)
● The time from arrival to first CPU

execution.

● Formula: RT=(FirsttimeCPUgiven)−AT

Example: If process arrived at 0 but got CPU at 3 →
RT = 3.

Page No:- 09

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

https://www.geeksforgeeks.org/courses/category/gate#cse

Scheduling Algorithms
CPU Scheduling Algorithms

1. First Come First Serve (FCFS)
● Type: Non-preemptive

● Rule: Process assigned to CPU in order of
arrival time.

● Tie-breaker: If same arrival time → lower
process ID first.

● No starvation (every process eventually
executes).

● Convoy Effect → a long process delays all
the short ones.

2. Shortest Job First (SJF)
● Type: Non-preemptive

● Rule: Process with shortest burst time first.

● Tie-breaker: If burst time equal → arrival
time decides order.

● If all burst times equal → behaves like FCFS.

● Minimizes average response time.

● Can cause starvation (long jobs may wait if
short ones keep coming).

● Needs knowledge of burst times in advance.

3. Shortest Remaining Time First (SRTF)
● Type: Preemptive

● Rule: At any moment, CPU is given to the
process with the shortest remaining burst
time.

● If all arrival times are same → behaves like
SJF.

● Minimizes average turnaround time.

● Starvation possible (if many short processes
keep arriving, long ones wait forever).

4. Longest Remaining Time First (LRTF)
● Type: Preemptive

● Rule: At any moment, CPU is given to the
process with the longest remaining burst
time.

● Minimizes average response time.

● Free from starvation (long processes always
get preference).

● Favors CPU-bound processes → not fair to
short ones.

Priority Scheduling
● Type: Can be Preemptive or Non-preemptive

● Rule: CPU is assigned to the process with the
highest priority.

● Preemptive Case: If a higher-priority process
arrives, it preempts the current one.

● Non-preemptive Case: Once a process starts,
it completes; scheduler always picks the
highest priority next.

● If all processes have the same priority →
behaves like FCFS.

● Advantage: Flexible (supports both
preemptive & non-preemptive).

● Disadvantage: Starvation possible (low-
priority processes may never execute).

Page No:- 10

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

● Solution: Use Aging technique (gradually
increase priority of waiting processes).

6. Round Robin (RR) Scheduling
● Type: Preemptive (FCFS + Time Quantum)

● Rule: Each process gets CPU for a time slice
(quantum q) in cyclic order.

● Effect of q (time quantum):

○ If q is too small → too many context
switches (high overhead) but good
response time.

○ If q is too large → behaves like FCFS
(bad response time, but low
overhead).

● Advantage: Fair (every process gets CPU
time), good for time-sharing systems.

● Disadvantage: Average turnaround time can
be large if q not chosen properly.

7. Highest Response Ratio Scheduling (HRRN /
HRSN)
Type: Non-preemptive
Rule: Process with the highest response ratio is
selected.
:
HRR=WT+BT

WT = Waiting Time

● BT = Burst Time

 Advantages:
● Free from starvation (since waiting time

increases HRR, even long jobs eventually get
CPU).

● Balances between short jobs (high HRR
early) and long jobs (HRR grows with wait).

 Disadvantages:
● Requires recalculation of HRR each time CPU

becomes free (overhead).

8. Multilevel Queue Scheduling (MLQ)
Type: Can be Preemptive or Non-preemptive
(depends on policy).
Rule:

● Ready queue is split into multiple queues,
each with its own scheduling algorithm.

● Each queue has a fixed priority → higher
priority queues are served first.

Example:
● System processes → Highest priority (FCFS).

● Interactive processes → Round Robin.

● Batch jobs → FCFS / SJF.

Page No:- 11

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Advantages:
● Separates processes by category (system vs

user) → good workload management.

● Easy to implement.

 Disadvantages:
● Rigid: once a process is assigned to a queue,

it cannot move to another.

● May cause starvation of lower-priority
queues.

7. Highest Response Ratio Scheduling (HRRN /
HRSN)
Type: Non-preemptive
Rule: Process with the highest response ratio is
selected.
Formula:

HRR=WT+BT
WT = Waiting Time

● BT = Burst Time

 Advantages:
● Free from starvation (since waiting time

increases HRR, even long jobs eventually get
CPU).

● Balances between short jobs (high HRR
early) and long jobs (HRR grows with wait).

 Disadvantages:
● Requires recalculation of HRR each time CPU

becomes free (overhead).

8. Multilevel Queue Scheduling (MLQ)
Type: Can be Preemptive or Non-preemptive
(depends on policy).
Rule:

● Ready queue is split into multiple queues,
each with its own scheduling algorithm.

● Each queue has a fixed priority → higher
priority queues are served first.

Example:
● System processes → Highest priority (FCFS).

● Interactive processes → Round Robin.

● Batch jobs → FCFS / SJF.

 Advantages:
● Separates processes by category (system vs

user) → good workload management.

● Easy to implement.

 Disadvantages:
● Rigid: once a process is assigned to a queue,

it cannot move to another.

● May cause starvation of lower-priority
queues.

 Solution → Aging:
● A technique where the priority of a process

increases automatically the longer it waits.

● Prevents starvation by gradually moving low-
priority processes into higher-priority queues.

Page No:- 12

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Process Synchronization
Inter-Process Communication (IPC)

● Definition: IPC is a mechanism that allows
processes to communicate and synchronize
their actions.

● Need for Synchronization: Every
communication must be coordinated.

● Lack of Synchronization leads to:

1. Inconsistency (incorrect results)

2. Data loss

3. Deadlock

2. Synchronization
● Definition: An agreed protocol in IPC to

ensure correct execution without
inconsistency, data loss, or deadlock.

● Concept: Involves orderly sharing of system
resources among processes.

● Shared resource → critical section accessed
by multiple processes.

3. IPC Environment
● Processes interact through shared

resources.

● Synchronization ensures safe and
consistent access.

Types of Processes
Processes are classified as:

● Cooperative Process – Execution of one
process affects or is affected by another
process.

● Independent Process – Execution of one
process does not influence or depend on

any other process.

Only cooperative processes require synchronization.

Understanding Synchronization
Synchronization is required to avoid problems such
as race conditions, data inconsistency, deadlocks,
and data loss.

To achieve synchronization, certain conditions must
be satisfied: mutual exclusion, progress, and
bounded waiting.
 Effective solutions include semaphores, monitors,
mutex locks, and other synchronization mechanisms.

Problems Due to Lack of Synchronization
Lack of synchronization leads to incorrect results,
corrupted or lost data, deadlocks, or indefinite
waiting (starvation).
Example: The Producer–Consumer Problem
demonstrates the need for proper synchronization.

Page No:- 13

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Producer–Consumer Problem
(Bounded Buffer)
Concept

● The producer generates items and places
them into a finite buffer.

● The consumer removes items from the
buffer and uses them.

● IN: Index used by the producer to place the
next item.

● OUT: Index used by the consumer to remove
the next item.

● COUNT: Tracks number of items currently in
the buffer.
Problem: Must ensure producer does not
add to a full buffer, and consumer does not
remove from an empty buffer.

Without synchronization:
#define N 8 // Buffer size
int count = 0; // Initially buffer is empty
int in = 0, out = 0; // Indices for producer and
consumer
int buffer[N]; // Shared buffer

void producer(void) {
 int itemp;
 while (true) {

 itemp = produce_item(); // Create new
item
 while (count == N); // Wait if buffer is
full (busy waiting)

 buffer[in] = itemp; // Insert item
 in = (in + 1) % N; // Update index
circularly

 count = count + 1; // Increase item
count
 }
}

void consumer(void) {
 int itemc;
 while (true) {
 while (count == 0); // Wait if buffer is
empty (busy waiting)

 itemc = buffer[out]; // Remove item
 out = (out + 1) % N; // Update index
circularly

 count = count - 1; // Decrease item
count

 process_item(itemc); // Consume item
 }
}

Drawbacks of This Solution
● Uses busy waiting → wastes CPU cycles.

● No mutual exclusion → race conditions
possible on shared variables (count, in, out).

● Not efficient for multiprocessor systems.

Correct Solution (Using Synchronization
Tools)

Replace busy waiting with semaphores or
mutex + condition variables.
Ensure:

○ Producer waits if buffer is full.
○ Consumer waits if buffer is empty.
○ Mutual exclusion while accessing

buffer.

Producer–Consumer Problem (Bounded
Buffer)

● COUNT: Shared variable used by producer
and consumer to keep track of items in the
buffer.

● IN: Index where the producer places the next
item.

● OUT: Index where the consumer removes
the next item.

● Buffer size = N (finite).

Conditions to be satisfied
● If buffer is full, producer must wait.

● If buffer is empty, consumer must wait.

Uncontrolled Execution (Problem)

Page No:- 14

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

If producer and consumer both access COUNT
simultaneously without synchronization, race
conditions occur.
Example (Producer executes):
T0: Load R1 ← COUNT
T1: Increment R1
T2: Store COUNT ← R1

Example (Consumer executes at same time):
T0: Load R2 ← COUNT
T1: Decrement R2
T2: Store COUNT ← R2

⚠ Final value of COUNT may become inconsistent,
since both processes update it concurrently.
This leads to incorrect buffer status, possible data
loss or overwrite.

Daemon Example – Printer Spooler
● Multiple processes may send jobs to the

printer at the same time.

● Without synchronization, one process might
overwrite another’s request in the spooler
directory, leading to lost print jobs.

● This illustrates the need for synchronization
in shared resource management.

Critical Section Problem
● A critical section is a part of the program

where a shared resource (variable, file, or
hardware) is accessed.

● Only one process at a time should execute
in its critical section.

● Every process has the following structure:

do {
 Entry Section // Request to enter critical section
 Critical Section
 Exit Section // Signal that critical section is over
 Remainder Section
} while(true);

Race Condition
● A race condition occurs when multiple

processes access and update shared data
concurrently, and the final outcome depends
on the order of execution.

● Example: Producer–Consumer using shared
COUNT.

Requirements for a Correct

Synchronization Solution

1. Mutual Exclusion

○ Only one process can be in the
critical section at a time.

2. Progress

○ If no process is in its critical section,
the selection of the next process to
enter must not be postponed
indefinitely.

3. Bounded Waiting

○ There must be a limit on how many
times other processes can enter
before a waiting process gets its turn

4. No assumptions related to hardware and the
processor speed: Number of processes.

I. Software-based Solutions

Use only software logic, no hardware support.

Examples:

1. Lock Variables

○ Use a shared boolean variable lock.

○ If lock = 0 → section is free.

○ If lock = 1 → section is busy.

Page No:- 15

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

○ Problem → Not atomic, leads to
busy waiting + race conditions.

2. Strict Alternation (Dekker’s Algorithm)

○ Processes take turns in strict
sequence.

○ Problem → Causes unnecessary
blocking (even if section is free).

3. Peterson’s Algorithm

○ Uses two variables:

■ flag[i] → interest of process i.

■ turn → whose turn it is.

○ Ensures mutual exclusion + progress
+ bounded waiting.

○ Correct software solution, but may
fail on modern CPUs (out-of-order
execution).

II. Hardware-based Solutions

Leverage atomic machine instructions.

1. TSL (Test-and-Set Lock) Instruction

○ Atomic instruction: reads and sets a
lock variable in one step.

○ Prevents race conditions.

○ Problem → Busy waiting.

2. Test-and-Set Lock (similar idea)

○ Continuously checks (test) and then
sets lock atomically.

○ Provides mutual exclusion.

○ Still suffers from busy waiting.

III. Operating System-based Solutions
Implemented inside OS for process
synchronization.

1. Counting Semaphore

○ Integer value, can be >1.

○ Controls access to multiple instances
of a resource.

○ Uses P (wait) and V (signal)
operations.

2. Binary Semaphore (Mutex)

○ Value = 0 or 1.

○ Equivalent to a lock.

○ Ensures only one process enters
critical section at a time.

IV. Programming Language / Compiler Support
Synchronization provided at language level.

1. Monitors

○ High-level abstraction for process
synchronization.

○ Has shared variables + procedures +
condition variables.

○ Compiler ensures mutual exclusion
automatically.

○ Examples: Java synchronized, C# lock.

Page No:- 16

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

I. Software Types:
(a) Lock Variables:

Entry Section:
I. Load Ri, m[Lock] (Ri Respective Process Register)
II. Cmp Ri, #0
III. JNZ to Step (I)
IV. Store m[Lock], #1 V. C.S VI. Store m[Lock], #0

We have proved that both the processes P1 and P2
are entering into the critical section at the same time,
Hence mutual exclusion is not satisfied and the
solution is bound to be incorrect.

(b) Strict Alteration or Decker’s Algorithm:
(Process takes ‘Turn’ to enter into C.S)

Important Points:
The pre-emption is just a temporary stop and the
process will come back and continue the remaining
execution. If there is any possibility of solution

becoming wrong by taking the pre-emption then
consider the pre-emption. If any solution is having
deadlock the progress is not satisfied.

(c) Peterson’s Algorithm:
(Two Process Solution)
#define N 2
#define TRUE 1
#define FALSE 0
int turn; int interested [N];
void enter_Region (int process)
{
1. int other
2. other = 1 – process;
3. interested [process] = TRUE;
4. turn = process;
5. while (turn = = process && interested [other] = =
TRUE);
}
C.S
void leave_Region(int process)
{
interested [process] = FALSE;
}
initially interested [0] = FALSE;
interested [1] = FALSE

Page No:- 17

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Hardware Type
(a) TSL Instruction Set:
(Test and Set Lock):

TSL Register Flag:
Copies the current value of flag into register and
stores the value of ‘1’ into flag in a single atomic
cycle without any pre-emption.

Entry Selection:
1. TSL Ri, m[flag]
2. Cmp Ri, 0
3. JMP to step (1)
4. c.s
5. Store m[flag], 0

Algorithm M.E. Progress Bounded
Waiting

1. Lock Variable × ✓ ×

2. Strictalteration or
Decker's Algorithm ✓ × ✓

3. Peterson's
Algorithm ✓ ✓ ✓

4. TSL Instruction ✓ ✓ ×

OS Type
Semaphore is of two types:

1. Counting Semaphore
● Can take non-negative integer values.

● Used to control access to a resource that has
multiple instances.

● Example: If a printer pool has 5 printers, the
counting semaphore is initialized to 5. Each
process requesting a printer decreases the
value, and releasing increases it.

2. Binary Semaphore (Mutex)
● Can take only 0 or 1 as its value.

● Used to implement mutual exclusion
(M.E.), ensuring that only one process
accesses the critical section.

(a) Counting Semaphore:
Down (Semaphore s)
{
s.value = s.value – 1;
 if (s.value < 0)
{
Block the process and place its PCB
suspended list ();
}

}
Up (Semaphore s)

{
s.value = s.value + 1; if (s.value 0)
{

Select a process from suspended list
and wakeup ();

Page No:- 18

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

https://www.geeksforgeeks.org/courses/category/gate#cse

}
 }

Notes on Semaphores (Counting & Binary)
● Each semaphore has its own suspended

(waiting) list.

● Down (P) and Up (V) operations are
atomic → OS ensures no interrupts.

● If multiple processes are waiting, one
process wakes up per Up operation
(chosen in FIFO order → ensures bounded
waiting).

● If processes remain in the suspended list
with no chance to wake up, they may enter
deadlock.

Classical Problems of IPC
Producer consumer with semaphore:

semaphore mutex = 1;
semaphore empty = N;
 semaphore full = 0;
void producer(void)
{
int item p;
while(true)

{
 produce_item (item p);
down(empty);
down(mutex);
buffer [in] = item p;
 in = (in + 1) mod N up(mutex); up(full);
 }
 }
void consumer (void)
 {
 int item c;
while (true)

{
 down (full);
down (mutex);
item c = buffer [out];
out = (out + 1)mod N;
up (mutex);
 up (empty);
process_item (item c);
}
}

Page No:- 19

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

● mutex → Binary semaphore.

○ Ensures mutual exclusion when
producer/consumer accesses buffer.

● empty → Counting semaphore.

○ Shows number of empty slots
available in buffer.

● full → Counting semaphore.

○ Shows number of filled slots in
buffer.

READERS WRITERS PROBLEM

int rc = 0;
 semaphore mutex = 1;
semaphore db = 1;
 void reader (void)
 {
while (true)
 {
 down (mutex);
 rc = rc + 1;
 if (rc = = 1)
 down (db);
 up (mutex);
 }

}
void writer (void)
 {
while (true)
{
down (db);
D.B
up (db);
}
}

 conditions to be followed
1) R - W
2) R – R
3) W – R
4) W – W

Semaphores in Readers–Writers Problem
● rc (Readers Count) → Integer variable.

○ Tracks number of readers currently
accessing the database.

● mutex → Binary semaphore.

○ Ensures mutual exclusion while
updating rc (readers count).

● db → Binary semaphore.

○ Ensures mutual exclusion for database
access (between readers & writers).

Page No:- 20

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Page No:- 21

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Monitors (Synchronization)
● Monitor → Language-level construct for

synchronization (compiler-supported).

● A monitor = variables + procedures
combined in a special module.

● External processes cannot access variables
directly, but can call monitor procedures.

● Key property → At any time, only one
process can be active inside the monitor →
ensures mutual exclusion.
Syntax

Monitor example
 {
 Variables;
Condition variables;
Procedure P1
 {
 }
Procedure P2

{
}

}

Condition Variables in Monitors
● Declared as: Condition x, y;

● Used for synchronization inside monitors.

● Two main operations:

1. Wait()

■ Example: x.wait(); or wait(x);

■ Process is suspended and
placed in the block queue of
that condition variable.

2. Signal()

■ Example: x.signal(); or
signal(x);

■ Wakes up one process
waiting on that condition
variable (if any).

 Concurrent Programming
S1: a = b + c ;
 S2: d = e * f ;
 S3: g = a / d ;
S4: h = g * i ;
Read set = {b, c, e, f, a, d, g, i}
 Write set = {a, d, g, h}

Precedence graph
S1, S2 can execute concurrently

 Any two statements Si and Sj can be executed
concurrently or parallel if they are following the
conditions.
(1) R(Si) W (Sj) = ϕ
(2) W(Si) R (Sj) = ϕ
(3) W(Si) W (Sj) = ϕ
The real concurrent programming is possible only

on the multiprocessor system.
 Concurrent has 3 different meanings
o They can execute concurrently or parallel
o They don’t have any dependency Anyone can start
first [for single processor this will be applicable]

Page No:- 22

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Deadlock – Concept
● Definition:

A deadlock is a situation in which a set of
processes are blocked because each process
is holding a resource and waiting for another
resource that is already held by some other
process in the set.

● Example:

○ System has 2 disk drives.

○ Process P1 holds one disk and needs
the second disk.

○ Process P2 holds the second disk
and needs the first disk.

○ Both are waiting for each other →
deadlock occurs.

System Model
● Resources:

1. Types of resources → R1, R2, …, Rm

2. Examples: CPU cycles, memory space,
I/O devices

3. Each resource type Ri has Wi
instances

● Resource Utilization by a Process:

1. Request → Process requests a
resource

2. Use → Process uses the resource

3. Release → Process releases the
resource

Deadlock Characteristics (Coffman’s
Conditions)

Deadlock can occur in a system only if all the
following 4 conditions hold simultaneously:

1. Mutual Exclusion
● Only one process at a time can use a

resource.

● If another process requests the same
resource, it must wait until the resource is
released.

Example:
● A printer can be used by only one process at

a time.

2. Hold and Wait
● A process is holding at least one resource

and waiting to acquire additional
resources that are currently held by other
processes.

Example:
● Process P1 holds a printer and requests a

disk.

● Process P2 holds the disk and requests the
printer.

3. No Preemption
● A resource cannot be forcibly taken from a

process.

● It can be released only voluntarily by the
process holding it, after completing its task.

Example:
● CPU registers or I/O devices cannot be

forcibly taken back.

Page No:- 23

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

4. Circular Wait
● A set of processes {P1, P2, …, Pn} are waiting

for resources in such a way that:

○ P1 → waiting for a resource held by
P2

○ P2 → waiting for a resource held by
P3

○ …

○ Pn → waiting for a resource held by
P1

This forms a circular chain of waiting, leading to
deadlock.

Note: If all the deadlock characteristics
simultaneously exist in the system, then the system is
in deadlock.

Deadlock Prevention
👉👉 Deadlock prevention ensures that the system
never enters a deadlock state.
👉👉 This is done by denying at least one of the four
necessary conditions (Coffman’s conditions).

1. Mutual Exclusion
● Cannot be prevented because:

○ Some resources are inherently non-
sharable (e.g., printer, tape drive).

○ Only sharable resources (like read-only
files) allow multiple processes
simultaneously.

2. Hold and Wait
Deadlock can be prevented by ensuring processes
do not hold resources while waiting for others.

Strategies:

1. All-at-once allocation → A process must
request all resources at the beginning of
execution.

○ Prevents hold and wait.

○ Leads to low resource utilization and
possible starvation.

2. Release-before-request → A process must
release all currently held resources before
requesting new ones.

○ Prevents deadlock.

○ Can cause starvation and extra
overhead due to repeated
release/reacquire.

Page No:- 24

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

3. No Preemption
Allow resources to be forcibly taken away
(preempted) if needed.

● If process P1 requests a resource held by P2:

○ If P2 is executing, then P1 must wait.

○ If P2 is waiting, then its resources can
be preempted and given to P1.

 Works well for CPU and memory.
 Not suitable for non-preemptible resources (e.g.,
printer).

4. Circular Wait
Prevented by ordering resources and forcing
processes to request them in a fixed order.

Algorithm:
1. Assign a unique number to each resource

type.

2. A process must request resources in
increasing (or decreasing) order of
numbering.

Breaks circular wait.
Not always flexible for real systems.

Page No:- 25

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Memory
Introduction

● In a multiprogramming system, the task of
dividing memory among various processes is
called memory management.

● The responsibility of the Memory
Management Unit (MMU) is to utilize
memory efficiently and minimize both
internal and external fragmentation.

Logical vs Physical Address

● The address generated by CPU is called the
logical address.

● The address perceived by the memory unit
is called physical address.

Memory Management Unit

● A hardware device that maps virtual
addresses to physical addresses is called the
Memory Management Unit (MMU).

● In the MMU scheme, the value stored in the
relocation register is added to every address
generated by a user process before it is sent
to memory.

● The user program works with logical (virtual)
addresses; it never directly accesses or sees
the actual physical addresses.

Loading
It is defined as bringing the program from the
secondary to the main memory.
It is classified into three types:
(i) Absolute Loading

A given program is always loaded into the same
memory location whenever it is loaded for
execution.

(ii) Relocatable Loading
● A given program can be loaded into any

desired memory location each time it is
loaded for execution

● The compiler must generate relative (logical)
addresses for the program.

(iii) Dynamic Loading
● A routine is not loaded into memory until it

is called, which allows for better memory-
space utilization (unused routines are never
loaded and their loading is postponed until
execution time).

● It is useful when large amounts of code are
required for handling infrequently occurring
cases.

● No special support from the operating
system is needed; it is implemented through
the program’s design.

● Address translation is handled by the
hardware.

Linking

Linking is the process of collecting and combining
various pieces of code and data into a single file that
can be loaded into memory and executed. Linking
can be performed at compile time, load time, or run
time.
Linking is classified into two types:

Page No:- 26

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

1. Static Linking
Static linkers take as input a collection of relocatable
object files along with command-line arguments,
and generate a fully linked executable file. This
executable file can then be loaded into memory and
run directly.

2. Dynamic Linking
Dynamic linking involves shared libraries, which are
object modules that can be loaded at run time at
arbitrary memory addresses and linked with the
program in memory. This allows for efficient
memory usage and code reuse across multiple
programs.

Address Binding
Address binding is the process of associating
program instructions and data with actual physical
memory locations.
Address binding can occur at three different stages:

1. Compile-Time Binding
● If the memory location is known in advance,

absolute code can be generated.

● However, if the starting memory location
changes, the code must be recompiled.

2. Load-Time Binding
● If the memory location is not known at

compile time, the compiler must generate
relocatable code.

● The actual addresses are then determined
when the program is loaded into memory.

3. Execution-Time Binding
● Address binding is delayed until run time,

which allows a process to be moved in
memory during its execution (e.g., for
swapping or dynamic relocation).

● This requires hardware support for address
mapping, typically using base and limit
registers.

Contiguous Memory Allocation

Two schemes:
1. Fixed Partitioning (Static)

2. Variable Partitioning (Dynamic)

Fixed Partitioning (Static)
● Memory is divided into a fixed number of

partitions (equal/unequal sizes).

● Each partition is associated with a limit
register.

● Degree of multiprogramming is limited to
the number of partitions.

● A process may not fit if partition size is too
small.

● Problem: Internal Fragmentation occurs.

Page No:- 27

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

https://www.geeksforgeeks.org/courses/category/gate#cse

Variable Partitioning (Dynamic)
● Initially, memory is a single large continuous

free block.

● When a process arrives, a hole of exact
required size is allocated.

● No Internal Fragmentation.

● Problem: External Fragmentation occurs.

● Requires Compaction (overhead).

Dynamic Partition Allocation Methods
When more than one partition can accommodate a
process, the following strategies are used:

● First Fit:
Allocate the first free block (from the

beginning of memory) that is large enough.

○ Fast, but may lead to external
fragmentation at the beginning.

● Next Fit:
Similar to First Fit, but scanning begins from

the last allocated position, not from the
start.

○ Reduces search time compared to
First Fit.

● Best Fit:
Scans the entire memory to find the
smallest free block that can accommodate
the process.

○ Minimizes leftover space but
increases search time; can lead to
many small fragments.

● Worst Fit:
Scans the entire memory to find the
largest free block.

○ Leaves large leftover space, may help
reduce external fragmentation.

Non-Contiguous Memory Allocation
Paging

● Definition:
The technique of mapping CPU-generated
logical addresses to physical addresses
using a page table.

Key Concepts
1. Division of Memory:

○ Logical address space → divided into
equal-size pages.

○ Physical address space → divided
into equal-size frames.

○ Page size = Frame size.

2. Process Mapping:

○ When a process is created, it is
divided into pages.

○ A Page Table is maintained in main
memory for each process.

○ Base address of the page table is
stored in the PCB (Process Control
Block).

Page No:- 28

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Page Table:
● Number of entries = number of pages in

logical address space.

● Each entry stores the frame number where
the corresponding page is placed.

● Page table is also called the Address
Translation Table.
Fragmentation in Paging

● External Fragmentation: Does not occur.

● Internal Fragmentation: May occur in the
last page only.

● Maximum Internal Fragmentation = ⌈ p / 2 ⌉,
where p = page size.

Paging with TLB (Translation Lookaside Buffer)
● Translation Lookaside Buffer (TLB):

○ A hardware cache implemented
using associative registers.

○ Stores recently/frequently used
(Page No. → Frame No.) mappings.

○ Access time of TLB (c) ≪ main
memory access time.

○ Purpose: Reduces effective memory
access time (EAT).

Working

1. CPU generates logical address → TLB is
checked.

2. TLB Hit: Frame number is found in TLB →
Only 1 memory access required.

3. TLB Miss: Page table in main memory is
accessed → 2 memory accesses required
(one for page table, one for data).

Formula for Effective Memory Access Time (EAT)
Let:

● c = TLB access time

● m = Main memory access time

● x = TLB hit ratio (0 ≤ x ≤ 1)

Page No:- 29

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Multilevel Paging
● A single-level page table may be very large

→ requires huge contiguous memory.

● To reduce this overhead, multilevel paging is
used.

Concept
● The page table itself is divided into pages.

● Page tables of all levels are kept in memory.

● Address Translation:

○ Level-1 Page Table entries →
pointers to Level-2 Page Table.

○ Level-2 Page Table entries →
pointers to Level-3 Page Table.

○ … and so on.

○ Last-level Page Table entries →
actual frame numbers of data pages.

Every Page Table Entry (PTE) contains a frame
number.
Performance with TLB

● Let:

○ p = TLB hit ratio

○ c = TLB access time

○ m = Main memory access time

○ n = number of levels in paging

EMAT=p(c+m)+(1−p)(c+(n+1)m)
Explanation of Formula

● On TLB Hit → 1 memory access (to get data)
+ TLB access time.

● On TLB Miss → Need to access all n page
tables + 1 data access = (n+1) memory
accesses + TLB access time.

Page No:- 30

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Inverted Paging
Concept

● Unlike normal paging (which maps pages →
frames), inverted paging maps frames →
pages.

● Only one global page table (inverted page
table) is maintained instead of separate page
tables for each process.

Structure
● Number of entries in the inverted page table

= number of frames in physical memory.

● Each entry contains:

○ Process Identifier (PID) → identifies
which process owns the page.

○ Page Number → which logical page
of that process is stored.

● This tells: “Which page of which process is
currently stored in which frame.”

Advantages
● Saves memory space (since only one page

table is maintained, size = number of
frames).

Disadvantages
● Lookup time increases (must search the

whole inverted table).

● More complex to implement (extra mapping
required).

Address Translation
1. CPU generates <Process ID, Page Number,

Offset>.

2. The system searches the Inverted Page
Table for a matching entry.

3. If found → frame number is obtained →
physical address = <Frame Number, Offset>.

4. If not found → Page Fault occurs.

 To reduce lookup time, a hash table is usually used
with the inverted page table.
Segmentation
Concept

● Paging divides a process into equal-sized
pages, which does not match the user’s
logical view of a program.

● Segmentation divides a process into
variable-length segments, based on logical
units such as:

○ functions, arrays, stack, code, data,
etc.
Segment Table

● A segment table is maintained per process.

● Number of entries = number of segments in
the process.

● Each entry contains:

Page No:- 31

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

○ Base → starting physical address of
the segment.

○ Limit → length of the segment.

Fragmentation
● Internal Fragmentation → does not occur

(since segments are variable length).

● External Fragmentation → usually avoided
using compaction, but in general
segmentation does suffer external
fragmentation (unlike paging).
 (Some books note "no internal
fragmentation, but external fragmentation
exists.")

Address Translation
● Logical address = <segment number,

offset>

● Using the segment table:

○ Check if offset < limit → if yes, valid.

○ Physical address = base + offset.

○ If offset ≥ limit → segmentation fault.

Segmented Paging
Concept

● In pure segmentation, entire large
segments must be loaded into memory →
overhead.

● To reduce this, paging is applied inside
each segment.

● Thus, each segment is divided into pages,
and these pages are loaded into memory
frames.

Structure
● For each segment, a Page Table is

maintained.

● Number of entries in a segment’s page table
= number of pages in that segment.

● Logical address structure:
⟨Segment No.,Page No.,Offset⟩\langle
\text{Segment No.}, \text{Page No.},
\text{Offset} \rangle⟨Segment No.,Page
No.,Offset⟩

Page No:- 32

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Address Translation
1. Segment Number → used to locate the

segment’s Page Table.

2. Page Number → used as index into that
Page Table to find the Frame Number.

3. Offset → combined with Frame Number to
form the Physical Address.

Physical Address=⟨Frame No.,Offset⟩

Performance
● Lookup time increases (need to access:

Segment Table + Page Table + Memory).

● TLB can be used to speed up access.

Fragmentation
● Suffers only from Internal Fragmentation

(since pages are fixed size).

● No External Fragmentation (same as
paging).

Virtual Memory (VM) Concept
● Virtual memory provides an illusion to the

programmer that a program larger than the
available physical memory can be executed.

● It allows address space sharing by multiple
processes, improving system utilization and
flexibility.

Virtual Memory Implementation
Virtual memory can be implemented using:

1. Demand Paging – Only the required pages
of a process are loaded into memory on
demand.

2. Demand Segmentation – Only the required
segments of a process are loaded into
memory on demand.

Demand Paging
● Definition: Loading the required pages from

secondary memory (disk) into main
memory only when they are demanded by
the CPU is called Demand Paging.

● Page Fault:

○ If the CPU refers to a page not
present in main memory, a page
fault occurs.

○ The OS is then signaled about the
fault, locates the required page in
secondary storage, and loads it into a
free memory frame.

○ If all frames are full, a page
replacement algorithm (like FIFO,
LRU, Optimal) is used to decide
which page to replace.

○ The page table entries are updated
accordingly.

Page No:- 33

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

● Page Fault Service Time:

○ The total time required to handle a
page fault (detect, fetch the page,
and update tables) is called the Page
Fault Service Time.

Performance of Virtual Memory
Let:

● S = Page Fault Service Time

● M = Main Memory Access Time

● P = Page Fault Rate, where 0≤P≤10

Effective Memory Access Time (EMAT)
Since every memory access can either be a hit (page
is in main memory) or a miss (page fault occurs):
EMAT=P×S+(1−P)M

Demand Paging with TLB

Assume, TLB hit ratio = ‘h’
TLB access time = ‘c’
Page fault service time = ‘S’
 Main memory access time = ‘M’
Page fault rate = ‘P’ where 0 ≤ P ≤ 1
The effective memory access time is formulated as
EMAT = h(c + m) + (1 – h)(c + (P × S + (1– P) × M))

Page Replacement Algorithms

1. FIFO (First-In, First-Out)
● When a page fault occurs and all the

memory frames are full, FIFO algorithm
replaces the oldest page to allocate the page
referred by the CPU.

● It is implemented using a queue or time-
stamp on pages.

● Sometimes, even after increasing the
number of frames, the page fault rate
increases.

○ This situation is called Belady's
Anomaly.

2. LRU (Least Recently Used)
● LRU algorithm replaces the page that has

not been used for the longest period (least
recently used page).

● It is implemented using a stack or counter.

3. Optimal
● Optimal algorithm replaces the page that will

not be used for the longest period in future.
● For a fixed number of frames, Optimal

algorithm gives the least page fault rate.
● It cannot be implemented in real-time as it

requires knowledge of future references.

Least Recently Used (LRU)

● Replace the page that has not been used for
the longest period of time.

● Performance of LRU is closer to Optimal as it
is practical approximation.

● Criteria: Time of Reference.

Most Recently Used (MRU)

● Replace the page that is used most recently.

● Criteria: Time of Reference.

Page No:- 34

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Counting Algorithms

● Least Frequently Used (LFU): Replace the
page with the smallest count.

● Most Frequently Used (MFU): Replace the
page with the largest count.

● Implementation is expensive.

Variants of LRU (LRU Approximation)

● Approximation and not exactly LRU, they
approximate to the behavior of LRU (i.e., they
work like LRU).

● Reference bit (R):

○ 1 → Page is referred at least once
during the current epoch (a period of
time).

○ 0 → Page is not referred so far
during the current epoch.

● Second Chance / Clock Algorithm:

○ It degenerates to FIFO.

○ Criteria is Reference bit.

● Enhanced Second Chance / Not Recently
Used:

○ Criteria is Reference Bit and
Modify/Dirty Bit.

○ Modify Bit:

■ 1 → Page is modified.

■ 0 → Page is clean.
Thrashing

● Definition:
Thrashing is a phenomenon in which a
process spends more time in page faults and

page replacement than in actual execution.

● Cause:

○ When CPU utilization is low, the OS
increases the degree of
multiprogramming (adds more
processes).

○ After a certain point, there aren’t
enough frames to handle all processes
→ page faults increase heavily.

○ CPU remains idle as it keeps waiting
for pages to be swapped in/out.

● Effect:

○ System throughput decreases
drastically.

○ High paging activity dominates,
reducing actual work done.

● Graphical Behavior:

○ Initially, as multiprogramming
increases → CPU utilization increases.

○ After a threshold, more
multiprogramming = less CPU
utilization due to thrashing.

Page No:- 35

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Working Set Model
● Definition:

The working set is the set of unique pages
that a process has referred to in the last Δ
memory references (where Δ is the window
size).
Think of it as a sliding window: within that
window, all the distinct pages form the
process’s working set.

● Conditions:

○ If Δ < total number of frames →
The OS can bring in more processes
into memory (higher degree of
multiprogramming is possible).

○ If Δ > total number of frames →
The process does not have enough
frames to hold its working set.
In this case, the OS should use the
mid-term scheduler to suspend some
processes to avoid thrashing.

● Purpose / Use:

○ Helps the OS determine the
minimum number of frames a
process needs to execute efficiently.

○ Controls CPU utilization and prevents
thrashing.

○ Balances the degree of
multiprogramming by monitoring
working set sizes.

Page No:- 36

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

FILE SYSTEM
File

● A file is a collection of logically related
information/records, stored on secondary
storage (like hard disk).

File Attributes
 Every file has some properties called attributes:

• File Name • File Type • File Size •
Location

• Creation Date • Last Modified Date •
Permissions • Owner/Author

• Password

File Context
● File data is stored in File Control Block

(FCB), which keeps file-related information
(metadata).

● Files can be of different types/formats, e.g.:
.doc, .txt, .pdf, .exe
.obj, .png, .apk, .xls/.xlsx
.jpg, .mp3, .mp4, .avi/.flv
.mkv/.3gp, .c/.cpp, .java, .xml/.html

Operations on File
Common operations that can be performed on files:

 Create, open, write, read, delete, save
 save as, close, copy, paste, move, rename
 send/share, print

Access Methods (ways to access data in Files):
● Sequential Access:

Data is accessed in a fixed order or linear
order, one record after another, from
beginning to end (e.g., magnetic tape).

● Random Access (Direct Access):
Any part of the file can be accessed directly
without following a sequence (e.g., hard
disk).

Note: To organize files properly, they are stored
inside directories (folders).

Disk Space Allocations Methods:

1. Contiguous Allocation
● File blocks are stored together in a

continuous manner on disk.
● File is described using:

○ Starting block address
○ Size (number of blocks)

● Supports both sequential and random
access.

● Suffers from external fragmentation and
difficulty in expanding size

● Random location can be calculated using:
Starting Block Address + Offset

2. Linked (Non–Contiguous) Allocation
● File blocks are stored anywhere on disk,

each block contains a pointer to next block.
● File is described using:

○ Starting block address
○ Ending block address

● No external fragmentation, can easily grow
file size.

● Supports only sequential access, random
access is slow.

Page No:- 37

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

●

3. Indexed Allocation
● Each file has a separate index block (i-

node).
● Index block stores addresses of all disk

blocks used by the file.
● No external fragmentation and supports

direct/random access.
● If a file is very large, one index block may be

insufficient.
● If a file is very small, using a whole index

block may waste space.

UNIX I-NODE IMPLEMENTATION
Every file is represented by an i-node (index node).

● i-node stores metadata of file:
○ File size, location, owner, date &

time, permissions
● It contains multiple pointers to data blocks:

Pointers in i-node:

● Direct Pointers → directly point to data
blocks of the file.

● Single Indirect Pointer → points to a block
which contains more pointers to data blocks.

● Double Indirect Pointer → points to a
block, which points to another block of
pointers.

● Triple Indirect Pointer → 3-level pointer
chain for very large files.

Note : UNIX i-node allows efficient storage for small
files using direct pointers and supports very large
files using multiple levels of indirect pointers
without external fragmentation.

Page No:- 38

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

Disk Free Space Management

When a file is deleted, its disk blocks become free.
The OS must keep a record of all such free blocks,
so that it can re-use them when new files are
created.
To manage this free space efficiently, two main
techniques are used:

1. Free List Approach (Linked List of Free
Blocks)
● Stores addresses of all free disk blocks in a

linked list.

● Each free block contains a pointer to the
next free block.

● Easy to allocate a block (just take the first
address from the list).

● Useful when free space is scattered
randomly.

● But needs extra pointers stored on disk →
takes up space.

2. Bit Map (Bit Vector) Approach
● Uses a bitmap array where each block is

represented by 1 bit:

○ 0 → free block

○ 1 → occupied block

● Compact in memory (uses very little space).

● Fast to find the next free block by scanning
bits.

● Requires a continuous region in memory to
store the bitmap.

Disk Scheduling
● When several processes want to access the

hard disk at the same time, their read/write
requests are placed in a waiting queue. Disk
scheduling is the process by which the
operating system chooses the order in
which these waiting requests are sent to the
disk.

● Disk scheduling decides which disk request
should be processed next to make disk
access faster and efficient.

Goal of Disk Scheduling
● Increase throughput (number of I/O requests

served).
● Reduce average seek time of the disk.
● Give fair chances to all I/O requests.

Disk Scheduling Algorithms

1. FCFS (First Come First Serve)
→ The requests are served in the same order they
arrive.
→ Simple but can cause long head movements.

2. SSTF (Shortest Seek Time First)
→ The request closest to the current head
position is served first.
→ Faster than FCFS, but some requests may wait
too long (starvation).

3. SCAN (Elevator Algorithm)
→ The head moves in one direction, serving all
requests on the way.
→ When it reaches the end, it reverses direction
and continues.
→ Like a lift that goes up and down.

4. LOOK
→ Same as SCAN, but the head only goes till the
last request in that direction.
→ Does not go to the physical end of the disk.
5. C-SCAN (Circular SCAN)
→ The head moves in one direction, serves
requests, and when it reaches the end,

Page No:- 39

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

 it jumps to the start without serving on the way back.
→ Like a lift that only goes up, then comes down empty.

6. C-LOOK
→ Same as C-SCAN, but head only goes till the last request,

not to the physical end of the disk.

Algorithm Working Style Advantages Disadvantages Hint
FCFS Serve requests in arrival

order
Very simple, fair (no
starvation)

High seek time, slow Jo pehle aaya, wahi
pehle serve hoga

SSTF Pick request with
shortest seek time
(nearest)

Less arm movement,
good throughput

Far requests may
starve

Sobse paas waale
ko serve karo

SCAN Head goes in one
direction then reverses
(elevator)

No starvation, good
for all loads

Needs direction bit,
overhead

Lift ki tarah upar-
neeche jaata hai

C-SCAN Moves in one direction
only, then jumps to start

Uniform wait time Implementation
complex

Ek hi direction mein
ghoomta rahe

LOOK Like SCAN but stops at
last request only

Avoids extra
movement, efficient

Slightly complex Jahan last request
ho, bas wahin tak
jao

Page No:- 40

OPERATING SYSTEM
GATE फर्र े

https://www.geeksforgeeks.org/courses/category/gate#cse

https://www.geeksforgeeks.org/courses/category/gate#cse

	Benefits of Threads
	Multithreading Models
	Thread Libraries
	Disadvantages of Multithreading
	Program
	Process

	Process as an Abstract Data Type (ADT)
	Process (what makes a process in memory):
	Process Attributes (stored in PCB):
	Process Control Block (PCB)
	Context of a Process
	Number of Processes in Each State

	Schedulers in Operating System
	1. Long-Term Scheduler (Job Scheduler)
	2. Medium-Term Scheduler (Swapper)
	3. Short-Term Scheduler (CPU Scheduler)

	Dispatcher in OS
	Context Switching means:
	1. Arrival Time (AT)
	2. Burst Time (BT)
	3. Completion Time (CT)
	4. Turnaround Time (TAT)
	5. Waiting Time (WT)
	6. Response Time (RT)

	CPU Scheduling Algorithms
	1. First Come First Serve (FCFS)
	2. Shortest Job First (SJF)
	3. Shortest Remaining Time First (SRTF)
	4. Longest Remaining Time First (LRTF)

	Priority Scheduling
	6. Round Robin (RR) Scheduling
	8. Multilevel Queue Scheduling (MLQ)
	8. Multilevel Queue Scheduling (MLQ)
	Inter-Process Communication (IPC)
	2. Synchronization
	3. IPC Environment
	Types of Processes
	Understanding Synchronization
	Problems Due to Lack of Synchronization

	Producer–Consumer Problem (Bounded Buffer)
	Concept
	Drawbacks of This Solution
	Correct Solution (Using Synchronization Tools)
	Producer–Consumer Problem (Bounded Buffer)
	Uncontrolled Execution (Problem)
	Daemon Example – Printer Spooler
	Critical Section Problem
	Race Condition
	Requirements for a Correct
	Synchronization Solution
	I. Software-based Solutions
	II. Hardware-based Solutions
	III. Operating System-based Solutions
	IV. Programming Language / Compiler Support
	1. Counting Semaphore
	2. Binary Semaphore (Mutex)
	Classical Problems of IPC
	Semaphores in Readers–Writers Problem
	Condition Variables in Monitors

	Deadlock – Concept
	System Model
	Deadlock Characteristics (Coffman’s Conditions)
	1. Mutual Exclusion
	2. Hold and Wait
	3. No Preemption
	4. Circular Wait

	Deadlock Prevention
	1. Mutual Exclusion
	2. Hold and Wait
	Strategies:

	3. No Preemption
	4. Circular Wait
	Algorithm:
	Linking
	1. Static Linking
	2. Dynamic Linking

	Address Binding
	1. Compile-Time Binding
	2. Load-Time Binding
	3. Execution-Time Binding

	Fixed Partitioning (Static)
	Variable Partitioning (Dynamic)

	Dynamic Partition Allocation Methods

	Non-Contiguous Memory Allocation
	Paging
	Key Concepts
	Fragmentation in Paging
	Working
	Formula for Effective Memory Access Time (EAT)
	Concept

	Inverted Paging
	Concept
	Structure
	Advantages
	Disadvantages
	Address Translation
	Concept
	Segment Table
	Fragmentation
	Address Translation

	Segmented Paging
	Concept
	Structure
	Address Translation
	Fragmentation
	Virtual Memory (VM) Concept
	Virtual Memory Implementation
	Demand Paging
	Effective Memory Access Time (EMAT)
	Page Replacement Algorithms
	1. FIFO (First-In, First-Out)
	2. LRU (Least Recently Used)
	3. Optimal

	Thrashing
	Working Set Model
	1. Contiguous Allocation
	2. Linked (Non–Contiguous) Allocation
	3. Indexed Allocation
	1. Free List Approach (Linked List of Free Blocks)
	2. Bit Map (Bit Vector) Approach

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

