- e : f,wJ
DATA STRUCTURE |

L
’
I‘"
I.r

-~ /.' 5’/‘_0“:‘, nmm i



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Array Sparse Matrix

e Array: A collection of homogeneous elements A sparse matrix is a matrix in which most of the
stored in contiguous memory. elements are zero.

e Indexing: In C, starts from 0. If the number of zero elements > number of non-zero
int arr[10]; — arr[0] is the first element, arr[9] is elements, the matrix is sparse.
the last.

e Types: - H

o 1D Array: Linear structure, e.g. int a [10]; Lower Trlangular Matrix

A lower triangular matrix is a square matrix where
all elements above the main diagonal are zero.
Afil[jl =0 foralli<j

Must be square (n x n).

Non-zero elements are on or below the main

2D Array: Matrix-like, e.g. int a [2][3];
int a[2][3] = {{0,0,0}, {1,1,1} };
o Multi-dimensional: int a [3][2][4]; (3D array)

Memory & Access )
o Base Address: Address of the first element. diagonal.
e Address Calculation:
o 1D:alk] = base + k*w Upper Triangular Matrix
o 2D Row-Major: a[i][j] = base + ((i * n) + j) An upper triangular matrix is a square matrix in
*
w which all elements below the main diagonal are
o 2D Column-Major: a[i][j] = base + ((i) +j * eyl
m) * w A[il[j] = 0 forall i > j
Where: . Must be a square matrix (n x n)
o m =rows, n = cols, w = size of element Only elements on or above the main diagonal can be
Fixed size (static memory allocation) Rontzero
Lower Bound (L.B): 0 in C
Upper Bound (U.B): n-1 Elements below the diagonal are always zero
Range: UB - LB + 1
operation on tiEREEEIER Upper Triangular Lower Triangular
Matrix Matrix
Operation | Time Explanation i a # ]
P Complexity & 41 342 A3 Aqg 44 0 0 O
0 a, a, a a,; a
Access o () Direct access using index: U= i E = 21 92 0 0
arr[i] — CPU calculates the 0 0 Az A a3y a3y az; 0
address directly using 0 0 0 QA Ay Ay s Ay
formula Base + i * size = J4x4 L i

Insertion | O (n) If insertion is at beginning
or middle, all subsequent
elements must be shifted
right

Deletion O (n) If deleting from start or
middle, elements must be
shifted left to fill the gap

Page No:- 01

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Tridiagonal matrix

A tridiagonal matrix is a square matrix where non-
zero elements exist only on the main diagonal, just
above it, and just below it.
Alil[j1#0onlyifi==j,i==j+1,0ri == j-1

Else, Afi][j1 =0

Sum of all the element is 3n-2.

Doubly Linked List

| ‘ : | | = last
A linked list is a linear data structure where elements data next data | next data | et

(called nodes) are stored in non-contiguous memory

locations and connected using pointers.

Each node contains: e
. Data e Representation of circular linked list

¢ Pointer (next) to the next node

Advantages:
e Dynamic size (unlike arrays)
o Efficient insertions/deletions (at
beginning/middle)
Disadvantages:
¢ No random access (O(n) access time)
e Extra memory for pointers

Node structure in the C
struct Node {

int data;

struct Node* next;

|3

Stack

A stack is a linear data structure that follows the LIFO
principle

Last In, First Out

The last inserted element is the first to be removed.

head

v

[IRCIRGIRT

Data Next

Singly Linked List

Page No:- 02

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Stack

Push

=

Top —=| C

Pop

(ﬂ :

empty

Data Structure B B |=—Top StrfJCt Stack {
' int arr [10];
A A
int top;
2
arr []: stores the stack elements
Operation Description Time top: points to the topmost element (initially -1)
Complexity
push(x) Inserts element x at | O(1)
the top
pop() Removes and returns | O(1)
top element
peek() / Returns top element | O(1)
top() without removing ?:'eue " data structo I follows h
isEmpty() Checks if the stack is | O(1) ueue is a linear data structure that follows the

FIFO principle:
First In, First Out

Implementation Methods:
1. Using Array (Fixed size, static memory)
2. Using Linked List (Dynamic size)

Applications of Stack:
e Expression Evaluation & Conversion

(Infix «» Postfix)
e Balancing symbols (brackets,
parentheses)

e DFS traversal (graph)

e Undo functionality

e Function call tracking (recursion)

o Backtracking (like maze, Sudoku)

o Number of possible stack permutations
_ chn
T ont1

The first element inserted is the first to be removed.
Real-World Examples:

e Ticket line

e Print queue
CPU task scheduling

==

: ]

Front [ Head Bock [ Tail [ Rear
Queue (-ala|5|e|1|a.)

Data Structure i Dequeue enqueus
2

Page No:- 03

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

SO
- -

GATE CSE BATCH

KEY FiGFLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

In a simple/linear queue using array, after a few
enqueue and dequeue operations:

e The front moves ahead

e But rear reaches the end of array

e Even though free space exists at the beginning,

we can't use it

This leads to a false overflow.
Solution:
In a circular queue, we connect the rear back to
front, forming a circle.

Operation Description Time Tree Type Description
Complexity . -
enqueue(x) Insert 0 (1) (array Binary Tree Each node has < 2 children
element x at orLL) Full Binary All non-leaf nodes have 2
the rear Tree children
dequeue( aRr??:)e\ffirn oM Complete All levels filled e.xcept possibly
Binary Tree the last (left to right)
element
from front Perfect Binary | All internal nodes have 2
Tree children & all leaves are at the
same level

e Type Description Balanced Tree | Height ~log(n), e.g. AVL tree

* Simple * Bta5|c F_”:O queue . Binary Search | Left < root < right
Queue (insertion at rear, deletion Tree (BST)

at front)

e Circular e Last position connects AVL Tree Height-balanced BST
Queue back to first (solves Heap Complete binary tree (used in

overflow in array) PQ)

e Deque e Insertion/deletion i i
(Double- possible from both ends B-Tree / B+ Multi-way trees for disk-based
Ended Tree search
Queue)

e  Priority e Elements served based on
Queue priority, not position

Priority queue

A priority queue is a type of abstract data structure
in which each element is associated with a priority,
and elements are served based on their priority, not

just insertion order.

Tree data Structure

A tree is a non-linear, hierarchical data structure
consisting of nodes, with a single root node and zero
or more child nodes, forming a parent-child

relationship.

Condition | Formula

Empty front == -1

Full (rear + 1) % SIZE == front
Enqueue | rear = (rear + 1) % SIZE
Dequeue | front = (front + 1) % SIZE

Page No:- 04

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Term Meaning Bina ry tree
Root Topmost node (no parent)
Node Element in the tree
Edge Connection between nodes

Parent | Node with children
Child | Node with a parent
Leaf Node with no children

Degree | Number of children of a node

Height | Max level from root to leaf

Depth | Distance from root to a node Maximum Nodes in a Binary Tree of Height

'h'=2r*1 —1
Subtree | Tree formed from any node and its « Minimum nodes in a Binary tree= h+1
descendants e The minimum possible height for N nodes
is |log,N|
e Total number of unlabelled binary tree with n
2nc
node = —%
n+1 5
e Total number of labelled binary tree = % X
n!
e Total number of the binary tree with given
inorder/ preorder/ postorder = Znnff

e Number of the tree with inorder+ preorder =1,
this is unique

e Number of the tree with inorder + postorder =
1, this is unique

e Number of the tree with preorder + postorder
= many possible

K-ary Tree:
A K-ary tree is a tree in which every internal node has
either 0 or exactly K children.
Let:
e N = Total number of nodes
e L = Number of leaf nodes

e | = Number of internal nodes
e K = Maximum number of children per internal
node

Relationship:

Each internal node has exactly K children:

N=K-1+1

Also, total number of nodes is the sum of internal and
leaf nodes:

N=L+ |

So, equating both expressions for N

L+1=K-1+1

Page No:- 05

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Complete Binary tree
This is the binary tree which is filled at second last
level, and the insertion happens from the left to right.
For complete binary tree

e Minimum number of nodes is 2"

e Maximum number of nodes is = 2"+ — 1

This is not the CBT, because it doesn’t follow
the properties.

-

hS

Binary Search Tree

Left < root < right

Every structure of the n node has unique binary search
tree.

i.e. if we have 3 keys, then then we have the 5
structures

Vi
—~ Frey —
/ = L | N
\ / \ Nt
/ N / A
/J--\\I | )f 4 I(.—-.\__' 4
| Sy’ / [ |
—r v A, =% )
\ — |
\ e VN o b
" AN ()
L S N’

This are the structure with five nodes. Now we have

the only 1 binary search tree with every structure.

So total binary search tree with n keys = —znnff

I Binary search tree is not the complete binary tree.
Insertion in a BST

Average case, O(logn)

Worst case, O(n)

hree Cases of Deletion:

1. Case 1: Node has no children (Leaf
Node)

o Simply remove the node.
o No tree structure change.

2. Case 2: Node has one child

o Replace the node with its only child.
o Maintain the link with the parent.

3. Case 3: Node has two children

o Replace the node with its:
= Inorder Successor (smallest in
right subtree) or
* Inorder Predecessor (largest
in left subtree)
o Then delete the
successor/predecessor recursively.

Time Complexity:

o Best/Average Case: O(logn)— for balanced
BST
e Worst Case: O(n) — for skewed BST

Page No:- 06

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

AVL Tree Inorder
Left Subtree — Node — Right Subtree
e A self-balancing binary search tree (BST) In BST, it gives sorted order of elements.

where the difference in heights of the left
and right subtrees (called balance factor)

of every node is -1, 0, or +1. inorder(node) {
Balance Factor: if (node == NULL) return;
Balance Factor (BF)=Height of Left Subtree—Height inorder(node->left)
of Right Subtree visit(node);

« Valid values: -1, 0, +1 inorder(node->right);
o If the balance factor becomes less than -1
or more than +1, rotation is needed to

restore balance.

Properties:

Height of AVL Tree: O(logn)
Search/Insert/Delete Time Complexity: O(logn)
space Complexity: O(n)

minimum number of the nodes in the AVL tree n(h)
= n(h-1) + n(h-2) +1 Sy

where the n(h)= number of the node at height h \.

LL, RR are single rotations /
LR, RL are double rotations.
We check the balance factor from bottom to top, if

we find any node not following the properties then
we do the rotations.

Inorder: 20 10 30

Preorder
Node — Left Subtree — Right Subtree

Tree traversal

preorder(node) {
/ L if (node == NULL) return;
/ \ visit(node);
) preorder(node->left);
preorder(node->right);
}

Preorder: 10 20 30

Page No:- 07

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

SO
- -

GATE CSE BATCH

KEY FiGFLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Postorder
Left Subtree — Right Subtree — Node

postorder(node) {
if (node == NULL) return;
postorder(node->left);
postorder(node->right);
visit(node);

}

Postorder: 20 30 10

Heap

A Heap is a special Complete Binary Tree where
every level is completely filled except possibly the last
level, and nodes are as far left as possible.

Min Heap

The value of each node is less than or equal to its
children.
|ax| < | left tree, right tree|

Root = Minimum element

2) :
3 @ @ 3) @
& @ ONGIUXO
o @ o

Min Heap Min Heap Min Heap
li i
Not a Complete Binary Tree Not a Complete Binary Tree Violates Min Heap Property
e lid i —_—

Page No:- 08

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Max Heap Applications:

The value of each node is greater than or equal to its

children. ..
|ax| > | left tree, right tree| * PI‘lOI‘lty Queue
Root = Maximum element * Heap Sort

« Scheduling algorithms

0 e « Graph algorithms
o 0 . Acces.s root (min/ma>f): o(1) _
e o : o e e . Q(S.igl?g {airr;gement into the heap requires
v/ 9 9

¢ If we insert n elements one by one, the total
time will be O(n log n).

e If we build a heap and then heapify it, the
total time complexity is O(n).

e Deletion of an element from the heap takes
O(log n) time.

¢ Searching in a heap takes O(n) time, as it
is not a sorted structure.

¢ In a Min Heap, the maximum element will
be found in the leaf nodes, so the time
complexity to find it is O(n).

e The number of leaf nodes in a heap is
ceil(n/2).

e The minimum element in a Max Heap will
be found in the leaf nodes, so the time
complexity is also O(n).

e Heap Sort repeatedly deletes the root

Max Heap Max Heap Max Heap

Valid Max Heaps

® @

H ¢ 8 M4

@@ 000 @/
X X

Not a Complete Binary Tree Not a Complete Binary Tree Violates Max Heap Property
element and re-heapifies the remaining
_ heap, so the total time complexity is O(n
Invalid Max Heaps log n)_
e The number of distinct binary heaps (Min
Properties: or Max) with n distinct elements is:
) . T(n) = T(k). T(n-k-1). n — 1,
e Implemented using arrays. : ko
« For node at index i: k is the number of the element in left
o Left child = 2i + 1 subtree.
o Right child = 2i + 2 T(n) = number of the heap with n nodes.

o Parent=(i-1)/2

Page No:- 09

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Deletion is mostly done at the root node (i.e.,
the max in Max Heap or min in Min Heap).
Steps:
1. Remove the root node (i.e., element at
index 0 in array representation).
2. Replace it with the last element in the
heap.
3. Reduce heap size by 1.
4. Heapify (percolate down) from the root
to restore the heap property.
Time Complexity: O(log n)

Heap Sort uses a Max Heap (for ascending order
sorting).
Steps:
1. Build a Max Heap from the input array
(takes O(n) time).

2. Repeat until heap size > 1:

o Swap the root (maximum) with the
last element.

o Reduce the heap size by 1.

o Heapify the root element to restore
the max heap.

3. The array will be sorted in ascending
order.

Time Complexity:
e Build Heap: O(n)

e Heapify (n times): O(n log n)
e Overall: O(n log n)

Heap Sort uses a Max Heap (for ascending order
sorting).
Steps:
4. Build a Max Heap from the input array
(takes O(n) time).

5. Repeat until heap size > 1:

o Swap the root (maximum) with the
last element.

o Reduce the heap size by 1.

o Heapify the root element to restore
the max heap.

6. The array will be sorted in ascending
order.

Time Complexity:
e Build Heap: O(n)

e Heapify (n times): O(n log n)
e Overall: O(n log n)

Graph

A graph is a collection of vertices (nodes) and edges
(connections) that represent relationships between
pairs of objects.
G=(V, E)
Where:

e V = set of vertices

e E =set of edges (unordered pair for

undirected, ordered for directed)

Page No:- 10

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

Graph Representations

Adjacency Matrix

« 2D array G[V][V]

« GJ[i][j] = 1 if edge exists, else
0

. Space: O(V?)

Adjacency List

« Array of lists

. Each list contains neighbours of
a vertex

« Space: 0 (V+E)

. Preferred for sparse granhs

d
N

1

[

1

."'-' A
(o)

\
~— -

Undirected Graph Adjacency Matrix

Graph Representation of Undirected graph to Adjacency Matrix

N Fam: Array Linked List
(L) ——H2) _
= = o ol
1 —)-Z|—- 2 { N
£ 2 —>0 {11 Null
& (o]
Undirected Graph Adjacency List

Graph Representation of Undirected graph to Adjacency List

GATE %¢
Graph Traversals

Graph traversal refers to visiting all the vertices (and
optionally edges) of a graph in a systematic way.
e BFS (Queue): Level-order, shortest path in
unweighted graph
o DFS (Stack/Recursion): Deepest first, used in
cycle detection, topological sort

Breadth-First Search (BFS)

Level-wise traversal
Uses a queue (FIFO) data structure
Visits all immediate neighbours before going
deeper
Algorithm
e Mark the starting node as visited
e Enqueue it
e While queue not empty:
e Dequeue node
e Visit all unvisited neighbours
e Mark them visited and enqueue
Time Complexity:
e O(V+E)(V = vertices, E = edges)
Applications:
e Shortest path in unweighted graphs
e Bipartite graph check
e Connected components in undirected graph

Depth-First Search (DFS)
o Explores as deep as possible
e Uses stack (explicit or recursion)
e Backtracks when no unvisited neighbours

Algorithm:
1. Mark current node visited
2. Recursively visit all unvisited neighbours

Time Complexity:
e O(V+E)
Applications:
e Topological sorting (DAG)
e Cycle detection
e Strongly Connected Components
e Maze/path solving

Page No:- 11

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Hashing
Hashing is a technique to map data of arbitrary size

to fixed-size values using a hash function, for
efficient search, insert, and delete operations.

Linear probing

Problem: Causes primary clustering

— Consecutive blocks of filled slots form, making
collisions more frequent

Pros: Simple implementation

Hash Table:
e Stores key-value pairs
e Access time is O(1) (average case), O(n) (worst
case due to collisions)
Properties:

Cons: Slower as clustering grows
Quadratic Probing
Solves primary clustering
Problem: May lead to secondary clustering
Can fail to insert even when space exists if not
carefully designed
In double hashing h2(k) should not be 0, otherwise it
becomes the linear probing.

List=[11,12,13,14,15 ]
H(x)=[x%10]
/ oA Deletion Problem in Open Addressing (Linear,
Quadratic, Double Hashing)
In open addressing, when you delete an element,
simply marking the slot as empty can break the

.fl l:l III| I"\ \‘
%0 [ yag0 \ 15%10
/w0 | om0 N\

J v ¥ 1 N

0 5 3 4 5§ search chain for other elements inserted due to
T ] T collisions.
Hash | RVERE l 14 ‘ 15 ‘ Why It's a Problem:
Table . e Open addressing relies on probing sequences.
Introduction to HAshing se——— e In open addressing (e.g., linear probing),

suppose n = 10, and we insert 14 and 24. Both
hash to index 4, so 14 goes to 4, and 24 goes
to 5.

If we delete 14, index 4 becomes empty. Now,
searching for 24 starts at 4 and stops there,

e Should be fast, uniform, and deterministic
e Maps key k to an index: .
h(k)=k mod n

where n is the table size thinking it's not present, even though 24 is at
Good n: index 5.
* Should be a prime number to reduce e This happens because deletion breaks the

collisions probing chain, causing search failure.
Collisions e This may require the rehashing.

Open Addressing (Store in same array) .
Collision Resolution Techniques ally Al delationial 13

s J4 ™

Technique

Rule

Linear Probing

Try next slot: (h(k) + 1) % m

Quadratic Probing

(h(k) +1*) % m

Double Hashing

(h1(k) +1x h2(k)) % m

Separate chaining
A collision resolution technique where each slot in
the hash table stores a linked list (or chain) of
elements.
Insertion: Insert the element at the head (or tail) of
the linked list at the hashed index.

Page No:- 12

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

DATA STRUCTURE

GATE B¢

Search: Hash the key to find the index, then
linearly search the linked list at that index.
Deletion: Hash the key, search the linked list, and
remove the node if found.

No Clustering: Since elements are in separate lists,
primary/secondary clustering does not occur.

Load Factor (A\): A =n/m

(n = total elements, m = table size)

Performance depends on A.

Slot

ol 18 — 25

2 12 — 22

If load factor A < 1, then open addressing methods
(like linear probing, quadratic probing, or double
hashing) are efficient.

If A > 1, then separate chaining is preferred, since
open addressing works best only when the table is
sparsely filled.

Page No:- 13

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

SO
- -

GATE CSE BATCH

KEY FiGFLIGHTS:
e 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/GE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Sparse Matrix
	Lower Triangular Matrix
	Upper Triangular Matrix
	Tridiagonal matrix
	Stack
	Queue
	Priority queue

	Tree data Structure
	Binary tree
	Complete Binary tree
	Binary Search Tree
	AVL Tree
	Tree traversal
	Inorder
	Preorder
	Postorder

	Heap

	Three Cases of Deletion:
	1. Case 1: Node has no children (Leaf Node)
	2. Case 2: Node has one child
	3. Case 3: Node has two children
	Time Complexity:
	Graph
	Graph Representations
	Graph Traversals
	Breadth-First Search (BFS)
	Depth-First Search (DFS)


	Adjacency Matrix
	Adjacency List
	Hashing
	Separate chaining

	Blank Page
	Blank Page
	Blank Page
	Blank Page

