
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Array
• Array: A collection of homogeneous elements

stored in contiguous memory.
• Indexing: In C, starts from 0.

int arr[10]; → arr[0] is the first element, arr[9] is
the last.

• Types:
o 1D Array: Linear structure, e.g. int a [10];
o 2D Array: Matrix-like, e.g. int a [2][3];

int a[2][3] = { {0,0,0}, {1,1,1} };
o Multi-dimensional: int a [3][2][4]; (3D array)

 Memory & Access
• Base Address: Address of the first element.
• Address Calculation:

o 1D: a[k] = base + k * w
o 2D Row-Major: a[i][j] = base + ((i * n) + j)

* w
o 2D Column-Major: a[i][j] = base + ((i) + j *

m) * w
Where:

o m = rows, n = cols, w = size of element
 Fixed size (static memory allocation)
 Lower Bound (L.B): 0 in C
Upper Bound (U.B): n-1
 Range: U.B - L.B + 1
operation on the 1d array.

Sparse Matrix
A sparse matrix is a matrix in which most of the
elements are zero.
If the number of zero elements > number of non-zero
elements, the matrix is sparse.

Lower Triangular Matrix
A lower triangular matrix is a square matrix where
all elements above the main diagonal are zero.
A[i][j] = 0 for all i < j
 Must be square (n × n).
 Non-zero elements are on or below the main
diagonal.

Upper Triangular Matrix
An upper triangular matrix is a square matrix in
which all elements below the main diagonal are
zero.
A[i][j] = 0 for all i > j
 Must be a square matrix (n × n)
 Only elements on or above the main diagonal can be
non-zero

Elements below the diagonal are always zero

Operation Time
Complexity

Explanation

Access O (1) Direct access using index:
arr[i] → CPU calculates the
address directly using
formula Base + i * size

Insertion O (n) If insertion is at beginning
or middle, all subsequent
elements must be shifted
right

Deletion O (n) If deleting from start or
middle, elements must be
shifted left to fill the gap

DATA STRUCTURE
GATE फर्र े

Page No:- 01

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Tridiagonal matrix
A tridiagonal matrix is a square matrix where non-
zero elements exist only on the main diagonal, just
above it, and just below it.
A[i][j] ≠ 0 only if i == j, i == j+1, or i == j–1
Else, A[i][j] = 0
Sum of all the element is 3n-2.

A linked list is a linear data structure where elements
(called nodes) are stored in non-contiguous memory
locations and connected using pointers.
Each node contains:

• Data
• Pointer (next) to the next node

Advantages:
• Dynamic size (unlike arrays)
• Efficient insertions/deletions (at

beginning/middle)
Disadvantages:

• No random access (O(n) access time)
• Extra memory for pointers

Stack
A stack is a linear data structure that follows the LIFO
principle
Last In, First Out
The last inserted element is the first to be removed.

Node structure in the C
struct Node {
 int data;
 struct Node* next;

};

DATA STRUCTURE
GATE फर्र े

Page No:- 02

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Implementation Methods:
1. Using Array (Fixed size, static memory)
2. Using Linked List (Dynamic size)

Queue
A Queue is a linear data structure that follows the
FIFO principle:
First In, First Out
The first element inserted is the first to be removed.
Real-World Examples:

• Ticket line
• Print queue

CPU task scheduling

Operation Description Time
Complexity

push(x) Inserts element x at
the top

O(1)

pop() Removes and returns
top element

O(1)

peek() /
top()

Returns top element
without removing

O(1)

isEmpty() Checks if the stack is
empty

O(1)

Applications of Stack:
• Expression Evaluation & Conversion

(Infix ↔ Postfix)
• Balancing symbols (brackets,

parentheses)

• Function call tracking (recursion)

• DFS traversal (graph)

• Undo functionality

• Backtracking (like maze, Sudoku)

• Number of possible stack permutations
= 2𝑛𝑛𝐶𝐶𝑛𝑛

𝑛𝑛+1

struct Stack {
 int arr [10];
 int top;
};
arr []: stores the stack elements
top: points to the topmost element (initially -1)

DATA STRUCTURE
GATE फर्र े

Page No:- 03

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Operation Description Time
Complexity

enqueue(x) Insert
element x at
the rear

O (1) (array
or LL)

dequeue() Remove
and return
element
from front

O (1)

• Type • Description

• Simple
Queue

• Basic FIFO queue
(insertion at rear, deletion
at front)

• Circular
Queue

• Last position connects
back to first (solves
overflow in array)

• Deque
(Double-
Ended
Queue)

• Insertion/deletion
possible from both ends

• Priority
Queue

• Elements served based on
priority, not position

In a simple/linear queue using array, after a few
enqueue and dequeue operations:

• The front moves ahead
• But rear reaches the end of array
• Even though free space exists at the beginning,

we can't use it
This leads to a false overflow.
 Solution:
In a circular queue, we connect the rear back to
front, forming a circle.

Priority queue
A priority queue is a type of abstract data structure
in which each element is associated with a priority,
and elements are served based on their priority, not
just insertion order.

Tree data Structure
A tree is a non-linear, hierarchical data structure
consisting of nodes, with a single root node and zero
or more child nodes, forming a parent-child
relationship.

Condition Formula

Empty front == -1

Full (rear + 1) % SIZE == front

Enqueue rear = (rear + 1) % SIZE

Dequeue front = (front + 1) % SIZE

Tree Type Description

Binary Tree Each node has ≤ 2 children

Full Binary
Tree

All non-leaf nodes have 2
children

Complete
Binary Tree

All levels filled except possibly
the last (left to right)

Perfect Binary
Tree

All internal nodes have 2
children & all leaves are at the
same level

Balanced Tree Height ≈ log(n), e.g. AVL tree

Binary Search
Tree (BST)

Left < root < right

AVL Tree Height-balanced BST

Heap Complete binary tree (used in
PQ)

B-Tree / B+
Tree

Multi-way trees for disk-based
search

DATA STRUCTURE
GATE फर्र े

Page No:- 04

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Binary tree

K-ary Tree:
A K-ary tree is a tree in which every internal node has
either 0 or exactly K children.
Let:

• N = Total number of nodes
• L = Number of leaf nodes
• I = Number of internal nodes
• K = Maximum number of children per internal

node
Relationship:
Each internal node has exactly K children:
N=K⋅I+1
Also, total number of nodes is the sum of internal and
leaf nodes:
N=L+ I
So, equating both expressions for N
L+I=K⋅I+1

Term Meaning
Root Topmost node (no parent)
Node Element in the tree
Edge Connection between nodes
Parent Node with children
Child Node with a parent
Leaf Node with no children
Degree Number of children of a node
Height Max level from root to leaf
Depth Distance from root to a node
Subtree Tree formed from any node and its

descendants

• Maximum Nodes in a Binary Tree of Height
'h' = 2ℎ+1 − 1

• Minimum nodes in a Binary tree= h+1
• The minimum possible height for N nodes

is ⌊𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐N⌋
• Total number of unlabelled binary tree with n

node = 2𝑛𝑛𝐶𝐶𝑛𝑛
𝑛𝑛+1

• Total number of labelled binary tree = 2𝑛𝑛𝐶𝐶𝑛𝑛
𝑛𝑛+1

 ×
𝑛𝑛!

• Total number of the binary tree with given
inorder/ preorder/ postorder = 2𝑛𝑛𝐶𝐶𝑛𝑛

𝑛𝑛+1
• Number of the tree with inorder+ preorder =1,

this is unique
• Number of the tree with inorder + postorder =

1, this is unique
• Number of the tree with preorder + postorder

= many possible

DATA STRUCTURE
GATE फर्र े

Page No:- 05

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Complete Binary tree
This is the binary tree which is filled at second last
level, and the insertion happens from the left to right.
For complete binary tree

• Minimum number of nodes is 2ℎ
• Maximum number of nodes is = 2ℎ+1 − 1

Binary Search Tree
Left < root < right
Every structure of the n node has unique binary search
tree.
i.e. if we have 3 keys, then then we have the 5
structures

This are the structure with five nodes. Now we have
the only 1 binary search tree with every structure.
So total binary search tree with n keys = 2𝑛𝑛𝐶𝐶𝑛𝑛

𝑛𝑛+1

! Binary search tree is not the complete binary tree.
Insertion in a BST
 Average case, O(logn)
 Worst case, O(n)

This is not the CBT, because it doesn’t follow
the properties.

Three Cases of Deletion:

1. Case 1: Node has no children (Leaf
Node)

o Simply remove the node.
o No tree structure change.

2. Case 2: Node has one child
o Replace the node with its only child.
o Maintain the link with the parent.

3. Case 3: Node has two children
o Replace the node with its:

 Inorder Successor (smallest in
right subtree) or

 Inorder Predecessor (largest
in left subtree)

o Then delete the
successor/predecessor recursively.

Time Complexity:

• Best/Average Case: O(logn)— for balanced
BST

• Worst Case: O(n) — for skewed BST

DATA STRUCTURE
GATE फर्र े

Page No:- 06

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

AVL Tree

Tree traversal

Inorder
Left Subtree → Node → Right Subtree
In BST, it gives sorted order of elements.

Preorder
Node → Left Subtree → Right Subtree

• A self-balancing binary search tree (BST)
where the difference in heights of the left
and right subtrees (called balance factor)
of every node is -1, 0, or +1.

Balance Factor:
Balance Factor (BF)=Height of Left Subtree−Height
 of Right Subtree

• Valid values: -1, 0, +1

• If the balance factor becomes less than -1
or more than +1, rotation is needed to
restore balance.

Properties:
Height of AVL Tree: O(logn)
Search/Insert/Delete Time Complexity: O(logn)
space Complexity: O(n)
minimum number of the nodes in the AVL tree n(h)
= n(h-1) + n(h-2) +1
where the n(h)= number of the node at height h
LL, RR are single rotations
LR, RL are double rotations.
We check the balance factor from bottom to top, if
we find any node not following the properties then
we do the rotations.

inorder(node) {
 if (node == NULL) return;
 inorder(node->left);
 visit(node);
 inorder(node->right);
}

Inorder: 20 10 30

preorder(node) {
 if (node == NULL) return;
 visit(node);
 preorder(node->left);
 preorder(node->right);
}

Preorder: 10 20 30

DATA STRUCTURE
GATE फर्र े

Page No:- 07

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Postorder
Left Subtree → Right Subtree → Node

Heap

A Heap is a special Complete Binary Tree where
every level is completely filled except possibly the last
level, and nodes are as far left as possible.

 Min Heap

The value of each node is less than or equal to its
children.
|𝒂𝒂𝒌𝒌| < | left tree, right tree|

Root = Minimum element

postorder(node) {
 if (node == NULL) return;
 postorder(node->left);
 postorder(node->right);
 visit(node);
}

Postorder: 20 30 10

DATA STRUCTURE
GATE फर्र े

Page No:- 08

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Max Heap
The value of each node is greater than or equal to its
children.
 |𝒂𝒂𝒌𝒌| > | left tree, right tree|

 Root = Maximum element

Properties:
• Implemented using arrays.
• For node at index i:

o Left child = 2i + 1
o Right child = 2i + 2
o Parent = (i - 1) / 2

Applications:

• Priority Queue
• Heap Sort
• Scheduling algorithms
• Graph algorithms

• Access root (min/max): O(1)
• Inserting an element into the heap requires

O(log n) time.
• If we insert n elements one by one, the total

time will be O(n log n).
• If we build a heap and then heapify it, the

total time complexity is O(n).
• Deletion of an element from the heap takes

O(log n) time.
• Searching in a heap takes O(n) time, as it

is not a sorted structure.
• In a Min Heap, the maximum element will

be found in the leaf nodes, so the time
complexity to find it is O(n).

• The number of leaf nodes in a heap is
ceil(n/2).

• The minimum element in a Max Heap will
be found in the leaf nodes, so the time
complexity is also O(n).

• Heap Sort repeatedly deletes the root
element and re-heapifies the remaining
heap, so the total time complexity is O(n
log n).

• The number of distinct binary heaps (Min
or Max) with n distinct elements is:
T(n) = T(k). T(n-k-1). 𝒏𝒏 − 𝟏𝟏𝑪𝑪𝒌𝒌
k is the number of the element in left
subtree.
T(n) = number of the heap with n nodes.

DATA STRUCTURE
GATE फर्र े

Page No:- 09

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Graph
A graph is a collection of vertices (nodes) and edges
(connections) that represent relationships between
pairs of objects.
G= (V, E)
Where:

• V = set of vertices
• E = set of edges (unordered pair for

undirected, ordered for directed)

Deletion is mostly done at the root node (i.e.,
the max in Max Heap or min in Min Heap).
Steps:

1. Remove the root node (i.e., element at
index 0 in array representation).

2. Replace it with the last element in the
heap.

3. Reduce heap size by 1.
4. Heapify (percolate down) from the root

to restore the heap property.
 Time Complexity: O(log n)

Heap Sort uses a Max Heap (for ascending order
sorting).
Steps:

1. Build a Max Heap from the input array
(takes O(n) time).

2. Repeat until heap size > 1:

o Swap the root (maximum) with the
last element.

o Reduce the heap size by 1.

o Heapify the root element to restore
the max heap.

3. The array will be sorted in ascending
order.

 Time Complexity:
• Build Heap: O(n)

• Heapify (n times): O(n log n)

• Overall: O(n log n)

Heap Sort uses a Max Heap (for ascending order
sorting).
Steps:

4. Build a Max Heap from the input array
(takes O(n) time).

5. Repeat until heap size > 1:

o Swap the root (maximum) with the
last element.

o Reduce the heap size by 1.

o Heapify the root element to restore
the max heap.

6. The array will be sorted in ascending
order.

 Time Complexity:
• Build Heap: O(n)

• Heapify (n times): O(n log n)

• Overall: O(n log n)

DATA STRUCTURE
GATE फर्र े

Page No:- 10

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Graph Representations Graph Traversals
Graph traversal refers to visiting all the vertices (and
optionally edges) of a graph in a systematic way.

• BFS (Queue): Level-order, shortest path in
unweighted graph

• DFS (Stack/Recursion): Deepest first, used in
cycle detection, topological sort

Breadth-First Search (BFS)
Level-wise traversal
Uses a queue (FIFO) data structure
Visits all immediate neighbours before going
deeper
Algorithm

• Mark the starting node as visited
• Enqueue it
• While queue not empty:
• Dequeue node
• Visit all unvisited neighbours
• Mark them visited and enqueue

Time Complexity:
• O (V + E) (V = vertices, E = edges)

 Applications:
• Shortest path in unweighted graphs
• Bipartite graph check
• Connected components in undirected graph

Depth-First Search (DFS)
• Explores as deep as possible
• Uses stack (explicit or recursion)
• Backtracks when no unvisited neighbours

Algorithm:
1. Mark current node visited
2. Recursively visit all unvisited neighbours

Time Complexity:
• O (V + E)

Applications:
• Topological sorting (DAG)
• Cycle detection
• Strongly Connected Components
• Maze/path solving

Adjacency Matrix

• 2D array G[V][V]
• G[i][j] = 1 if edge exists, else

0
• Space: O(V²)

Adjacency List

• Array of lists
• Each list contains neighbours of

a vertex
• Space: O (V + E)
• Preferred for sparse graphs

DATA STRUCTURE
GATE फर्र े

Page No:- 11

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Hashing
Hashing is a technique to map data of arbitrary size
to fixed-size values using a hash function, for
efficient search, insert, and delete operations.
Hash Table:

• Stores key-value pairs
• Access time is O(1) (average case), O(n) (worst

case due to collisions)
Properties:

• Should be fast, uniform, and deterministic
• Maps key k to an index:

h(k)=k mod n
where n is the table size
Good n:

• Should be a prime number to reduce
collisions

Collisions
. Open Addressing (Store in same array)

Collision Resolution Techniques

Linear probing
Problem: Causes primary clustering
→ Consecutive blocks of filled slots form, making
collisions more frequent
Pros: Simple implementation
Cons: Slower as clustering grows

Quadratic Probing
Solves primary clustering
Problem: May lead to secondary clustering
 Can fail to insert even when space exists if not
carefully designed

In double hashing h2(k) should not be 0, otherwise it
becomes the linear probing.

Deletion Problem in Open Addressing (Linear,
Quadratic, Double Hashing)
In open addressing, when you delete an element,
simply marking the slot as empty can break the
search chain for other elements inserted due to
collisions.
Why It’s a Problem:

• Open addressing relies on probing sequences.
• In open addressing (e.g., linear probing),

suppose n = 10, and we insert 14 and 24. Both
hash to index 4, so 14 goes to 4, and 24 goes
to 5.

• If we delete 14, index 4 becomes empty. Now,
searching for 24 starts at 4 and stops there,
thinking it's not present, even though 24 is at
index 5.

• This happens because deletion breaks the
probing chain, causing search failure.

• This may require the rehashing.
•

 Separate chaining
A collision resolution technique where each slot in
the hash table stores a linked list (or chain) of
elements.
Insertion: Insert the element at the head (or tail) of
the linked list at the hashed index.

Technique Rule

Linear Probing Try next slot: (h(k) + i) % m

Quadratic Probing (h(k) + i²) % m

Double Hashing (h1(k) + i × h2(k)) % m

DATA STRUCTURE
GATE फर्र े

Page No:- 12

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Search: Hash the key to find the index, then
linearly search the linked list at that index.
Deletion: Hash the key, search the linked list, and
remove the node if found.
No Clustering: Since elements are in separate lists,
primary/secondary clustering does not occur.
Load Factor (λ): λ = n / m
(n = total elements, m = table size)
Performance depends on λ.

If load factor λ ≤ 1, then open addressing methods
(like linear probing, quadratic probing, or double
hashing) are efficient.
If λ > 1, then separate chaining is preferred, since
open addressing works best only when the table is
sparsely filled.

DATA STRUCTURE
GATE फर्र े

Page No:- 13

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Sparse Matrix
	Lower Triangular Matrix
	Upper Triangular Matrix
	Tridiagonal matrix
	Stack
	Queue
	Priority queue

	Tree data Structure
	Binary tree
	Complete Binary tree
	Binary Search Tree
	AVL Tree
	Tree traversal
	Inorder
	Preorder
	Postorder

	Heap

	Three Cases of Deletion:
	1. Case 1: Node has no children (Leaf Node)
	2. Case 2: Node has one child
	3. Case 3: Node has two children
	Time Complexity:
	Graph
	Graph Representations
	Graph Traversals
	Breadth-First Search (BFS)
	Depth-First Search (DFS)

	Adjacency Matrix
	Adjacency List
	Hashing
	Separate chaining

	Blank Page
	Blank Page
	Blank Page
	Blank Page

