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Module 1: Analysis of Algorithm 

Aim : The goal of analysis of algorithms is to 
compare algorithms mainly in terms of running time 
but also in terms of other factors like memory, 
developer effort. 

Need for Analysis (Why to analyze || What to 
analyze || How to analyze) 

1. To determine resource consumption
<resource such that
space+time+cost+register>
Resources may differ from domain to
domain.

2. Performance comparison to find out efficient
solution

Methodology of algorithm 
● Depends on language
● Operating system
● Hardware (CPU, processor, memory,

Input/output)
Types of analysis 
1. Aposteriori analysis(platform dependent) : It gives

exact value in real units.
2. Apriori analysis(platform independent) : It allows

us to calculate the relative efficient performance of
two algorithms in a way such that it is platform
independent. It will not give real values in units.

Asymptotic Notations 
θ-Notation 
Let f(n) and g(n) be two positive functions 
f(n) = θ(g(n)) if and only if 
f(n) ≤ c1 . g(n) and f(n) ≥ c2 . g(n) 

∀ n ≥ n0 such that there exists three positive constant 
c1 > 0, c2 > 0 and n0 ≥ 1 

O-Notation [Pronounced “big-oh”]
Let f(n) and g(n) be two positive functions
f(n) = O(g(n)), if and only if
f(n) ≤ c . g(n), ∃ n, ≥ n0
such that $ two positive constants c > 0, n0 ≥ 1.

Ω-Notation: [Pronounced “big-omega”] 
Ω notation provides an asymptotic lower bound for a 
given function g(n), denoted by Ω(g(n)). The set of 
functions f(n) = Ω(g(n)) if and only if f(n) ≥ c . g(n), ∀ n ≥ 
n0 such that  two positive constants c > 0, n0 ≥ 1. 

Analogy between real no & asymptotic notation 
: Let a, b are two real no & f, g two positive 
functions 
If f(n) is O(g(n)) : a ≤ b  

● If f(n) is Ω(g(n)) : a ≥ b
● If f(n) is Θ(g(n)) : a = b
● If f(n) is o(g(n)) : a < b
● If f(n) is ω(g(n)) : a > b

Rate of growth of function 

[Highest]   —> n! —> 4n —> 2n —> n² —> 
nlogn —>log(n!) —> n —> 2logn —> log² n —> 
log logn —> 1 [lowest] 

Trichotomy property: 
For any two real numbers (a, b) there must be a 
relation between them 
(a > b, a < b, a = b) 
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Asymptotic notation does not satisfy trichotomy 
property 
ex: f(n) = n, g(n) = n * |sin(n)|, n > 0 
∴ These two functions cannot converge 

Example 
1. Loop

for ( i = 1; i <= n; i++) { 
x=y+z; 
} 
T(n) = O(n) 

2. Nested loop
for(i=1; i<=n; i++){ 
for(j=1; j<=n; j++){ 
k= k+1; 
} 
} 
T(n) = O(n2) 

3. Logarithm
for(i=1; i<=n ; i *= 2){ 
k=k+1; 
} 
for (int i = 1; i <= n; i++) { 
    for (int j = 1; j <= n; j *= 2) { 

  printf(“GFG”); 
    } 
} 
T(n) = O(n log n) 

4. Linear recursion:
void fun(int n) { 
    if (n > 0) { 

  fun(n - 1); 
    } 
} 
T(n) = T(n-1) + C 
T(n) = O(n) 

5. Recursive with logarithmic loop
void fun(int n) { 
    if (n > 1) { 

  fun(n / 2);           // Recursive call first 
  for (int i = 1; i <= n; i *= 2) { 

 printf("Hello\n"); 
  } 

    } 
} 
T(n) =  T(n/2) + O(log n) 

T(n) = O(log2 n) 
6. Time is infinite

c= 0; 
while(1) 
C += 1; 

7. Mutually Exclusive Loops
1. For i←1 to n: C=C+1;
2. For j←1 to m: K=K∗2;

Time = O(max(n, m)) 
8. Nested loop analysis

for (i = 1; i <= n; ++i) // Executes 'n' times  
for (j = 1; j <= n; ++j) // Executes 'n' times  
for (k = n/2; k <= n; k += n/2) // Executes 2 times (n/2, 
n)  
C = C + H; 
Time  = O(n2) 
for(i=1;i<n;i = i+a) 
Time : O(n/a) = O(n) 

9. For a loop with a multiplicative increment:
for (i=1;i<=n;i=i∗2): This loop's complexity is Log2n. 
for (i=1;i<=n;i=i∗3): This loop's complexity is Log3n. 
for (i=1;i<=n;i=i∗a); 

General formula: The time complexity is 
O(logan). 

k=1, i=1 
while(k<=n){ 
i++; 
k=k+i; 
} 
Time complexity : T(n) = O(√n) 
for (i = n; i >= 2; i = sqrt(i)) 
Time complexity: O(log log n). 

10. for (i = 2; i <= n; i++) { // log logn
for (j = 1; j <= i; j++) { 
for (k = 1; k <= n; k +=j) { // n/j ,  where j = 1,2,3,..n 
x = y + z; 
... 
} 
} 
} 
T(m) = O(log logn (n logn)) 
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Master Theorem: 
Let f(n) is a positive function and T (n) is defined 
recurrence relation:   
T(n) = aT(n/b) + f(n) 
Where a >= 1 and b > 1 are two positive constants. 
Case 1:  
If f(n) = O(n(logb a−∈)) for some constant ∈ > o then T(n) 
= θ (n(logb a) ) 
Case 2: 
If f(n) = θ (n(logb a) ), then T(n) = θ (n(logb a) *log n) 
Case 3: 
If f(n) = Ω (n(logb a+∈)) for some constant ∈> 0, and if a
f (n/b) ≤ cf(n) for some constant c < 1 and all 
sufficiently large n, then T(n) = θ(f(n)) 

Master theorem for subtract and conquer 
recurrence: 
Let T(n) be a function defined on possible n: 
T(n) = aT(n-b) + f(n), if n > 1 
T(n) = C, if n <= 1 
For some constant C,  a>0, b>0, and f(n) = O(nd) 
1. T(n) = O(nd) , if a < 1
2. T(n) = O(nd+1) , if a = 1
3. T(n) = O(nd * a(n/b)) , if a > 1

Common Recurrence Relation 

Analogy between real no & asymptotic notation 
Let a, b are two real no & f, g two positive functions 

● If f(n) is O(g(n)) : a ≤ b (f grows slower than
some multiple of g)

● If f(n) is Ω(g(n)) : a ≥ b (f grows faster than
some multiple of g)

● If f(n) is Θ(g(n)) : a = b (f grows at same rate of
g)

● If f(n) is o(g(n)) : a < b (f grows slower than any
multiple of g)

● If f(n) is ω(g(n)) : a > b (f grows faster than any
multiple of g)

Analysis 
1. f(n) = n!

n! <= c*nn : n >= 2
n! = O(nn) with c = 1, n0 = 2.
using stirling’s approximation : n! ≈ √(2nπ) nn *
e-n

Recurrence relation Time 
complexity 

T (n) = C; n = 2 
T (n) = 2 T(√𝑛𝑛) + C; n > 2 

O(logn) 

T (n) = C; n = 2 
T (n) = T(n – 1) + C ; n > 2 

O(n) 

T (n) = C; n = 1 
T (n) = T(n – 1) + n + C ; n > 2 

O(n^2) 

T(n) = C ; n = 1 
T(n) = T(n-1) * n  + C ; n > 2 

O(n^n) 

T(n) = C ; n = 1 
T(n) = 2T(n/2) + C ; n > 1 

O(n) 

T(n) = C ; n = 1 
T(n) = 2T(n/2) + C ; n > 2 

O(nlogn) 

T(n) = C ; n = 1 
T(n) = T(n/2) + C ; n > 1 

O(logn) 

T (n) = 1; n = 2 
T(n) = T( n ) + C; n > 2 

Θ(loglogn) 

T(n) = T(n/2) + 2^n  if n > 1 O(2^n) 
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Discrete Properties of Asymptotic Notation 

Analogy between real no & asymptotic notation 

Let a, b are two real no & f, g two positive functions 
● If f(n) is O(g(n)) : a ≤ b (f grows slower than some

multiple of g)
● If f(n) is Ω(g(n)) : a ≥ b (f grows faster than some

multiple of g)
● If f(n) is Θ(g(n)) : a = b (f grows at same rate of g)
● If f(n) is o(g(n)) : a < b (f grows slower than any

multiple of g)
● If f(n) is ω(g(n)) : a > b (f grows faster than any

multiple of g)
Analysis

1. f(n) = n!
n! <= c*n^n : n >= 2
n! = O(n^n) with c = 1, n0 = 2.
using stirling’s approximation : n! ≈ √(2nπ) n^n * e
^ -n

Trichotomy property:

For any two real numbers (a, b) there must be a
relation between them
(a > b, a < b, a = b)

Asymptotic notation does not satisfy trichotomy
property
Ex: f(n) = n, g(n) = n ^ |sin(n)|, n > 0
∴ These two functions cannot converge

1. Reflexive
f(n) = O(f(n))
f(n) = Ω(f(n))
f(n) = Θ(f(n))

2. Symmetric
f(n) = Θ(g(n)), iff g(n) = Θ(f(n))

3. Transitive
f(n) = Θ(g(n)) & g(n) = O(h(n))
f(n) = O(h(n))
Note : Ω and Θ also satisfy transitivity

4. Transpose Symmetric
f(n) = O(g(n)) iff g(n) = Ω(f(n))

Best case(n) ≤ Average case(n) ≤ Worst case(n) 

Space Complexity 

Space required by algorithm to solve an instance of 
the problem, excluding the space allocated to hold 
input.  
Space complexity : C + S(n) 
C - Constant space 
S(n) - Additional space that depends on input size n 

Space Complexity VS Auxiliary space 

Space Complexity = Total space used including input 
Auxiliary space = Extra space used excluding the input 

Property Big 
Oh(O) 

Big 
Omega() 

Theta() Small 
oh(o) 

Small 
omega
() 

Reflexive ✓ ✓ ✓ × × 

Symmetric × × ✓ × × 

Transitive ✓ ✓ ✓ ✓ ✓ 

Transpose 
symmetric 

✓ ✓ × ✓ ✓ 
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Space Complexity (Memory) 
Example: 
Algo sum(A, n){ 
int n, a[], i; 
int sum=0; 
for(i=0; i<n; i++) 
sum = sum+arr[i]; 
} 
Time complexity : O(n) 
Space complexity : O(1) 
Algo swapNum(int a, int b){ 
int temp = a; 
a = b; 
b = temp; 
} 
Time complexity : O(1) 
Auxiliary space : O(1) 
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Module 2 : Divide and Conquer (DAC) 

Note : In DAC, divide and conquer is mandatory 
but combine is optional. 

● Algorithm DAC(A, 1, n)
● if(small(1, n)
● return (S(A, 1, n);
● Else
● m ←– Divide(1, n)
● S1 ←– DAC(A, 1, m)
● S2 ←– DAC(A, m+1, n)
● Combine (S1, S2);

Time Complexity for DAC Problem 
T(n) = F(n), if n is small, 

T(n) = 2T(n/2) + g(n) : if n is large 

Generalized Form : T(n) = aT(n/b) + g(n) 
g(n) – +ve, a > 0, b > 0; 

I Symmetric form 
T(n) = aT(n/b) + g(n) 
a : number of sub-problem 
b : size shrink factor(each sub-problem n/b) 
g(n) : cost to divide and combine 
eg. Merge sort : T(n)=2⋅T(2n)+O(n) 

II Asymmetric form 1 
T(n) = T(αn) + T((1-α)n) + g(n) provide that : 0 < α < 
1 
eg: T(n) = T(n/3) + T(2n/3) + g(n)        

III Asymmetric form 2 
T(n) = T(n/2) + T(n/4) + g(n) 
ex. Quick sort with asymmetric partitioning   
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Divide and conquer problem 

1. Finding minimum and maximum

T(n) = 2T(n/2) + 2 , n>2
Time complexity using DAC : T(n) = O(n)
Space complexity using DAC :
T(n) = O(logn)

2. Power of an element

Recurrence relation
T(n) = 1 if n = 1
T(n) = T(n/2) + C if n > 1
Time complexity : O(logn)
Space complexity : O(logn)

3. Binary Search Algorithm

Note: Provided that list of elements already sorted.
T(n) = c : n = 1
T(n) = a + T(n/2) : n > 1
Time complexity : T(n) = O(logn)
Space complexity : T(n) = O(1)

4. Merge Sort Algorithm

Comparison based sorting
Stable sorting but outplace
Recurrence relation: T(n) = c if n = 1
T(n) = T(n/2) + T(n/2) + cn if n > 1

Time complexity = O(n log n)
= Ω(n log n)
= Θ(n log n)
Space complexity : O(n + logn) = O(n)

5. Quick Sort Algorithm
Best Case / Average Case
T(n) = 1 ; if n = 1.
T(n) = 2T(n/2) + n + C, if n>1
Time complexity : O(n logn)
Worst case : T(n) = n + T(n-1) + C ; if n > 1
Note: Quick sort behaves in worst case when
element are already sorted
Time complexity : O(n^2)

6. Matrix Multiplication

I. Using DAC: T(n) = 8T(n/2)+O(n^2), for n>1

T(n) = O(n^3)

II. Strassen’s matrix multiplication :

T(n) = 7T(n/2) + a.n^2, for n > 1
Time complexity : O(n^2.81) (by Strassen’s)
Time complexity : O(n^2.37) (by Coppersmith and
winograd)
Space complexity :

7. Selection Procedure (Find kth smallest on given an
array of element and integer k)
Time complexity : O(n^2)
Space complexity : O(n)

8. Counting Number of Inversion (An inversion in an
array is a pair(i, j) such that i<j and arr[i] > arr[j])
Time complexity : O(nlogn)
Space complexity : O(n)(due to merges)

9. Closest pair of points (Find the minimum Euclidean
distance between any two points in a 2D plane.)
Recurrence relation => T(n) = 2T(n/2) + O(n)
Time complexity = O(nlogn)
Sorting copies (x-sorted, y-sorted): O(n)
Auxiliary space (recursion stack): O(log n)
Space complexity : O(logn)

10. Convex hull (Find smallest convex polygon that
encloses a point in a 2D plane)
T(n) = 2T(n/2) + O(n)
Time complexity = O(nlogn)
Space complexity : O(logn)

Note: In GATE exam if merge sort given then
always consider outplace.

• If array size is very large, merge sort preferable.
• If array size is very small, then prefer insertion sort.
• Merge sort is a stable sorting technique.
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11. Longest Integer multiplication(LIM)
int data type, can stores digits max 32767
long int data types, can store 4B/8B (8-10 digits
number) not more than that.
Solution : We can store long integer multiplication
in an array.
T(n) = 4T(n/2) + b.n ; if n>1
Time complexity : O(n^2)
Space complexity : O(logn)

Karatsuba optimization :
T(n) = 3T(n/2) + bn ; if n > 1
Time complexity : O(n^1.58)
Karatsuba is better but still not fast enough

Toom cook optimization :
Toom-Cook is a generalization of Karatsuba’s
algorithm that splits the input numbers into three
parts.

Toom-3 (3-way split) 
I. T(n) = 9T(n/3) + bn.

Time complexity : O(n^2)
II. T(n) = 8T(n/3) + bn.

Time complexity :
T(n) = xT(n/3) + bn
for x = 5,
T(n) = 5T(n/3) + bn
Time complexity : O(O(n^1.464)

Generalised equation of time complexities of k-
ways split 

1. DAC : T(n) = kT(n/k) + bn
2. Karatsuba : T(n) = (k^2 - 1)T(n/k) + bn
3. Toom-cook : T(n) = (2k-)T(n/k) + bn

Toom-4 exists but is less practical due to overhead. 
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Module 3 : Greedy Algorithm 

The greedy technique algorithm is a method that 
makes the locally optimal choice at each step with 
the hope of finding a global optimum, without 
reconsidering previous choices. 

Application of Greedy algorithm 

1. Job sequencing with deadline
Schedule jobs to maximize profit before their
deadlines (one job per time slot).
Sort jobs by profit (descending).
Find maximum deadline in the given array of n-
deadlines and take the array of maximum deadlines
size
Schedule each job in the latest available slot
before its deadline.

Time complexity
Best case : O(nlogn)
Worst case : O(n2)

2. Optimal merge pattern (Huffman coding is one
of its application)

Merge n sorted files with minimum total cost
(record movements).
Always merge the two smallest files. Repeat until
one file remains.

Huffman coding is a direct application of the 
optimal merge pattern. 

Step to solve a problem : Create a min-heap 
(priority queue) of all characters based on their 
frequencies. 
Repeat until the heap contains only one node: 
(i) Extract the two nodes with the smallest

frequencies.
(ii) Create a new internal node with:

Frequency = sum of the two nodes.
Left child = node with smaller frequency.
ight child = node with larger frequency.

(iii) Insert this new node back into the heap.
The remaining node is the root of the Huffman
tree.
Time complexity : O(n log n)
Space complexity : O(n)

3. Fractional Knapsack

Maximize profit with given weight capacity.
Fractional items allowed.
Sort by value/weight ratio. Pick greedy until
capacity is full.
for(i=1;i<=n;i++)
a[i] = Profit(i)/weight(i)
Take one by one object from a and keep in
knapsack until knapsack becomes full arrange array
a in ascending order
Time complexity : O(n log n)

4. Activity selection problem (You are given n
activities, each with a start time and finish time.
The goal is to select the maximum number of
activities that can be performed by a single
person, under the constraint that the person can
work on only one activity at a time (i.e., no
overlapping activities).
Sort the activities by their finishing time (in
ascending order).
Select the first activity in the sorted list and
include it in the final solution.
Iterate through the remaining activities in the
sorted list:
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● For each activity, check if its start time is greater
than or equal to the finish time of the last
selected activity.

● If the condition holds, select the activity and
update the last selected finish time.

Time complexity 

If activities are not sorted by finish time: 
● Sorting takes O(nlog⁡n)
● Selecting activities takes O(n)O(n)O(n)
● Total time = O(nlog⁡n)
If activities are sorted by finish time:
● Only the selection loop runs → O(n)
● Total time = O(n)

5. Minimum cost spanning tree

I. Kruskal’s Minimum spanning tree algorithm
It builds the Minimum Spanning Tree by always
choosing the next lightest edge that doesn't form
a cycle.
Sort all edges of the graph in non-decreasing
order of their weights.
Initialize an empty set for the MST.
For each edge in the sorted list:

● If the edge does not form a cycle with the MST
formed so far, include it in the MST. Otherwise
discard the edge.
Repeat until the MST includes V−1V - 1V−1 edges
(where VVV is the number of vertices).
Time complexity : O(E log E) or O(E log V)
Note : Works well with sparse graphs (fewer
edges). May produce a forest if the graph is not
connected.

II. Prim’s minimum spanning tree algorithm
It builds the MST by growing it one vertex at a
time, always choosing the minimum-weight edge
that connects a vertex inside the MST to one
outside.
Start with a random vertex, Initialize a MST set
(vertices included in MST), and a priority queue (or
min-heap) of edge weights.

While the MST set does not include all vertices: 
● Select the minimum-weight edge that connects a

vertex in the MST to a vertex outside.

● Add the selected edge and vertex to the MST.
● More efficient for dense graph

Time complexity : 

Adjacency matrix + linear search = O(V^2) 
Adjacency list + binary heap = O(E log V) 
Adjacency list + Fibonacci heap = O(E + log V) 

6. Single source shortest path algorithm

I. Dijkstra’s algorithm
Using min heap & adjacency list = O(E + V)logV
Using adjacency Matrix & min heap = O(V^2 * E *
logV)
Using adjacency list & Unsorted array = O(V^2)
Using adjacency list & sorted Doubly linked list =
O(EV)

II. Bellman Ford algorithm
It finds the shortest path from source to every
vertex, if the graph doesn’t contain a negative
weight edge cycle.
If a graph contains a negative weight cycle, it does
not compute the shortest path form source to all
other vertices but it will report saying “negative
weight cycle exists”.
It finds shortest path from source to every vertex,
Input : A weighted, directed graph G = (V+E), with
edge weights w(u, v), and a source vertex s.
Output : Shortest path distance from source s to all
other vertices, or detection of a negative-weight.
Time complexity : O(EV)
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Module 4 : Dynamic Programming 

Use case of Tabulation and memoization method 
● If the original problem requires all subproblems to

be solved, then tabulation is usually more efficient
than memoization.

● Tabulation avoids the overhead of recursion and
can use a preallocated array, leading to better
performance in both time and space in some cases.

● If only some subproblems are needed to solve the
original problem, then memoization is preferable,
because it solves only the required subproblems
(solved lazily, i.e., on-demand).

1. Longest common subsequence (LCS)

Given two strings, find the length of their longest
subsequence that appears in both. Subsequence
must be linear only not necessarily contiguous.

Input : x= <ABCD>, y = <BDC>
Output : 2 <BC>

Let, i & j denote indices of x & y. L(i, j) denote the
LCS of string x & y , n & m are length respectively.
L(i, j) = 1 + L(i-1, j-1) ; if x[i] = y[j]
L(i, j) = max( L(i-1, j) , L(i , j-1) ; if x[i] != y[j]
L(-i, j) = 0
L(i, -j) = 0
Time complexity : O(n * m)
Space complexity : O(n * m)

2. 0/1 Knapsack problem

Input : N items, each item has weight W[i], profit[i]
and a knapsack with a minimum capacity M
Objective : Total weight <= M, and total profit
maximized. Each item can be either 1 (include) or 0
(exclude)
Recurrence relation
KS(M, N) = 0 ; if M=0 or N=0
KS(M, N) = 0 ; if W[N]>M
KS(M, N) = max(K( M - W[N], N-1) + P[N], K(M, N-
1)) ; otherwise

Time complexity : O(M * N) (We compute and 
store results in a 2D of table of size M* N) 

3. Travelling salesman problem

Given a set of cities and distances between every
pair of cities, the goal is to find the shortest
possible tour that visits each city exactly once and
returns to the starting city.
This is equivalent to finding the minimum cost
Hamiltonian cycle.
A cost/distance function C(i, j) representing the cost
to travel from city i to city j.
TSP(A, R) be the minimum cost of visiting all cities
in the set R, starting from city A.
TSP = C( A, S )  ; if R = 0
TSP = min( C(A, K ) + TSP(K, R-{K}) ; otherwise.
Where A is current city
R : set of unvisited cities
S : Starting city
C(A, K) : cost from city A to city K

Time complexity : (without dynamic programming)
O (n^n) with dynamic programming O(2^n * n^2)
Space complexity : O(2^n * n^2)

4. Matrix chain multiplication

Given a sequence of matrices, find the most
efficient order of multiplication of these matrices
together in order to minimize the number of
multiplications.
Let MCM(i, j) denote the minimum number of scaler
multiplication required to multiply matrices from Ai
to Aj.
MCM(i, j) = 0 ; i = j
MCM(i, j) = min(MCM(i, k) + MCM(k + 1, j) + Pi-1 *
Pk * Pj) ; if i < j
The cost of multiplying the resulting matrices is
Pi−1⋅Pk⋅Pj
The total number of ways to parenthesize the
matrix chain of n matrices :
T(n) =∑𝑖𝑖−1𝑛𝑛−1   T(i)⋅T(n−i)
Number of parenthesizing for a given chain
represented by catalan number : ⌊1 / (n+1) (2𝑛𝑛𝑛𝑛𝑛𝑛)⌋
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Time complexity: 
● Without DP : O(n!)
● With DP : O(n^3)
Space complexity:
● Without DP : O(n)
● With DP : O(n^2)

5. Sum of subset problem

Given a set of numbers W[1...N] and a value M,
determine if there exists a subset whose sum is
exactly M.

Recursive Relation:
SoS(M, N, S) =

    return(S)   ;          if M = 0 
    return(-1)   ;             if N = 0 
    SoS(M, N - 1, S)   ;     if W[N] > M 
    min( 

  SoS(M - W[N], N - 1, S ∪ {W[N]}), 
  SoS(M, N - 1, S) 

    ) ;    otherwise 
Time complexity by brute force: O(2^N) 
Time complexity with DP: O(M × N) where M is the 
target sum, N is the number of elements 
Space complexity : without optimization O(M × N) 
With space optimization : O(M) 

6. Floyd-warshall’s : All pair shortest path

Used to find the shortest distances between every
pair of vertices in a weighted graph. Works with
positive and negative edge weights (but no
negative weight cycles allowed).
Recurrence relation
A^0(i, j) = C(i, j)
A^k(i, j) = min( A^{k-1}(i, j), A^{k-1}(i, k) + A^{k-
1}(k, j) )
where : C(i,j): initial weight of the edge from iii to jjj

A^k(i,j)A^k(i, j)Ak(i,j): shortest path from iii to jjj
using vertices {1,2,…,k}\{1, 2, \dots, k\}{1,2,…,k} as
intermediate nodes
Time complexity O(n^3)
Space complexity O(n^2)

7. Optimal binary search tree

Given a sorted array of keys[0..n-1] and their
frequencies:
- p[i]: frequency of successful searches for keys[i]
- q[i]: frequency of unsuccessful searches between
keys
Goal: Construct a binary search tree that minimizes
the total expected cost of searches.

Recurrence relation 
cost(i, j) = 

    if j < i → return 0 
    else → min over k ∈ [i..j] of: 
        cost(i, k-1) + cost(k+1, j) + w(i, j) 

Where: w(i, j) = sum of p[i..j] + sum of q[i-1..j] 
Time complexity : O(n^3) 
Space complexity : O(n^2) 

8. Multistage graph

A multistage graph is a directed acyclic graph
(DAG) in which the set of vertices is partitioned into
stages (e.g., S1,S2,...,Sk) such that:
Every edge connects a vertex from stage iii to stage
i+1
The goal is to find the shortest path from the
source vertex in stage S1to the destination vertex
in stage Sk
MSG(si, vj) =
0 if si = F and vj is the destination
min over all K in si+1 where (vj, K) ∈ E:

  cost(vj, K) + MSG(si+1, K) 

Time Complexity: 
● Without dynamic programming: O(2^n)
● With dynamic programming: O(V + E)

Space Complexity: 
● Without dynamic programming: O(V^2)
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● With dynamic programming: O(V^2)

Time Complexity: 

● Without DP: O(2^n) (due to exponential
combinations)

● With DP: O(V + E)
(because each vertex and edge is processed only
once)

Space Complexity: 
● Without DP: O(V^2)
● With DP: O(V^2)
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Module 5 : Graph traversal Techniques 
Visiting all nodes of the tree/Graph in a specified 
order and processing the information only once. 

DFS in Undirected graph: 
a. Connected graph

Structure of node
E-node: Exploring node
Live node: Node which is not fully explored
Dead node: Node which is fully explored
Time associated with the node, during traversal
Discovery time: The time at which the node is
visited for the first time.
Finishing time: The time at which nodes
become dead.

b. Disconnected/Disjoint graph : Depth forest
tree

DFS in Directed graph: DFS when carried out on a 
directed graph leads to following types of edge. 
1. Tree edge : it is part of DFS spanning tree or

forest
2. Forward edge: Leads from a node to its non

child descendant in the spanning tree
3. Back edge: Leads from a node to its ancestors
4. Cross edge: Leads to a node which is neither

ascending nor descending.

DFS in Directed graph acyclic graph 
Topological Sort: 

Linear order of the vertices representing the activities 
maintaining precedence. 

Example below. 

Topological sort(){ 
1. DFS(v).
2. Arrange all the nodes of traversal in

decreasing order of finishing time.
} 
BFS : Level by level order traversal 

1. FIFO BFS: (BFS  spanning tree) A B C D E F G
H

2. LIFO BFS: A C G H E D F B
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Application of DFS & BSF 
Time complexity of DFS and BFS depends upon 
representation of Graph: 

(i) Adjacency matrix: O(V²)
(ii) Adjacency list: O(V + E)

Both DFS and BFS can be used to detect the presence 
of cycle in the graph. 
Both DFS and BFS can be used to know whether the 
given graph is connected or not. 
Both DFS and BFS can be used to know whether the 
two vertices u and v are connected or not. 
DFS is used to determine connected, strongly 
connected, biconnected components, and 
articulation points. 
Connected Component (Undirected graph) : It is a 
maximal set of vertices such that there is a path 
between any pair of vertices in that set. 
Strongly connected component (Directed graph): A 
Strongly Connected Component (SCC) of a directed 
graph is a maximal set of vertices such that for every 
pair of vertices u and v in the set, there is a path from 
u to v and a path from v to u.
Properties of Strongly Connected Components

1. Every directed graph is a D.A.G. of strongly 
connected components.

2. Let C and C′ be distinct strongly connected 
components in directed graph G = (V, E). Let u, 
v ∈ C and u′, v′ ∈ C′. Suppose that there is a 
path u → u′ in G, then there cannot be a path v′
→ v in G.

3. If C and C′ are strongly connected components 
of G, and there is an edge from a node in C to a 
node in C′, then the highest post number in C is 
bigger than the highest post number in C′.

Bi-connected Graph: A graph with no articulation 
points. 
Bi-connected Component: A maximal subgraph that 
is bi-connected. 
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Articulation point (cut vertex) 
Articulation Point: A vertex whose removal 
increases the number of connected components in a 
graph. 
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Searching and Sorting 
Classification Explanation 

Internal vs 
External 
sorting 

Internal: All data fits into main 
memory (RAM). 
External: Used when data is too large 
to fit into memory and uses external 
storage 

Comparison 
vs Non-
comparison 
Based 

Comparison: Sorting is done using 
comparisons between elements 
Non-comparison: Uses digit-based 
or counting approaches(radix sort, 
counting sort) 

Recursive vs 
Iterative 

Recursive: The function calls itself to 
divide and conquer (e.g., Merge Sort, 
Quick Sort). 

In-place vs 
Not-in-place 

Space required is generally O(1) or 
O(log n) at most (for recursion stack) 
Merge Sort → O(n) space 

Stable vs 
Unstable 

Relative order of same elements is 
maintained (Stable) 

1. Comparison based sorting
algorithm

Algorithm Time complexity Stable 
sorting 

In 
place 
sorting 

Best Avera
ge 

Worst 

Quick sort Ω(n 
log n) 

Θ(n 
log n) 

O(n²) No Yes 

Merge 
sort 

Ω(n 
log n) 

Θ(n 
log n) 

O(n 
log n) 

Yes No 

Insertion 
sort 

Ω(n) Θ(n²) O(n²) Yes Yes 

Selection 
sort 

Ω(n²) Θ(n²) O(n²) No Yes 

Bubble 
sort 

Ω(n) Θ(n²) O(n²) Yes Yes 

Heap sort Ω(n 
log n) 

Θ(n 
log n) 

O(n 
log n) 

No Yes 

Selection sort takes the least number of swaps overall 
i.e. (n – 1) swaps — no matter how unsorted the input
is.
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2. Non Comparison based sorting:

Algorithm Time complexity Stable 
sorting 

In 
place 
sorting Best Averag

e 
Worst 

Radix sort Ω(d * (n 
+ k))

Θ(d * (n 
+ k))

O(d * (n 
+ k))

Yes  No 

Counting 
sort 

Ω(n + k) Θ(n + k) O(n + 
k) 

Yes No 

Bucket sort Ω(n + k) Θ(n + k) O(n²) Yes(if 
stable 
sort 
used 
inside 
buckets
) 

No 
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