af TO EXCELIN GATE &L
m " AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

1. Basics of TOC

1.1. Symbol

e The smallest indivisible entity; cannot be broken
into smaller parts.

e Every unique atom of information.

1.2. Alphabet (%)

e A finite set of symbols.

e Examples:
O English letters: {a, b, ..., z}
O Binary: {0, 1}

1.3. String

e A finite sequence of symbols over :.

e Denoted w € 3*; empty string is € (|e| = 0).
e Examples over 2 ={a,b}: g a, b, ab, ba, ...

1.4. Operations on Strings

e Length: |w| = number of symbols in w.

e Reversal: w® = symbols of w in reverse order.
e Concatenation: w,.w, = sequence w; followed

by w..

e Prefix/suffix: any leading/trailing substring of w
(including € and w).

e Substring: any contiguous sequence within w.

1.5. Language

e A set of strings over £ (i.e. L € 3*).

e Examples:
O Universal: 5* = all strings over 3.
O L =ab*={a ab, abb, ...}.

Note:
1. Kleenestar, L* = L°U L'U LU ...

2. Positive closure, L* = L'U L% U ...

1.6. Chomsky Hierarchy

g
g
E
B

: g0y

Chomsky A L Minimal
hierarchy automaton
I {) (unrestricted) Recursively enumerab Turing machine
(unrestrcted Recursive Decide
Type-1 Context-sensitive Context-sensitive Linear-bounded
Type-2 Context-free Context-free Pushdown
Type-3 Regular Regular Finite

1.7. Grammar

e Defined as G = (V,T,S,P) where,
V: variables/nonterminals; T: terminals; S € V:
start symbol; P: production rules.

e Language generated L(G) = all terminal strings
derivable from S.

1.7.1. Types of grammars
1.7.1.1. Type 0 (Unrestricted Grammar)
Form of productions: a — B, wherea € (VU T)* & B

€ (V U T)* (no restrictions on length or symbols
except o # g).

1.7.1.2. Type 1 (Context-Sensitive Grammar)

Form of productions: aAB — aypB, where A € V,
(,B)E(VUT* ye(VUT), and |ayB| = |aAB| (i.e.
productions do not shrink the string).

Note: € is only allowed if S — € and S does not
appear on the right side.

Page No:- 01

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

1.7.1.3. Type 2 (Context-Free Grammar)

Form of productions: A — y, where Ae Vandy € (V
U T)*.

Normal form: Chomsky Normal Form (CNF),
Greibach Normal Form (GNF).

1.7.1.4. Type 3 (Regular Grammar)

Form of productions

(Right-linear): A — aB or A — a, where AB € V and
aeT*

(Left-linear): A — Ba or A — a, where AB €V and a
eT™.

1.8. Types of Automata
1.8.1.

Finite
Automata

lﬂcr:eptursl r‘l’ransducerj
Moore

Mealy

DFA MEA Machine Machine

Without With
Ee-moves E-mowves

1.8.2.
Pushdown

‘ Automata |

Maon
Deterministic
FDA

Determininstic
FDA

1.8.3.
Linear

Bounded
Automata l
DLBA MNLBA

1.8.4.

Turing

li MaTne —l

Halting Turing Deterministic
Machine Nan ™

Deterministic
T

1.8.5. Deterministic Automata

e At any point, given the current state and input
(or tape symbol/stack symbol), there is at most
one possible move.

e Computation is a single, linear sequence of
configurations.

e Easier to simulate directly on hardware.

1.8.6. Non Deterministic Automata

e At some points, the machine may have multiple
choices (or none) for the next move.

e Conceptually “branches” into many
computation paths in parallel.

e Accepts if any branch reaches an accepting
configuration.

a,b X = {a,b}
b L = (a+b)*b

N O
NFA

b a DFA

Note:

1. An automaton whose output response is limited
to a simple “yes” or "no” is called an accepter.

2. Automaton, capable of producing strings of
symbols as output, is called a transducer.

Properties:
1. (L) #(L)*
2. (LiL)® = LA v languages Lt & L,

Page No:- 02

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

(L) = L*
(L1U L)® = LU L* v languages L+ & L,

(L?* = (L*)RV languages L

Let L be any language on non-empty alphabet,
both L and L' can't be finiteas LU L' = 5*

7. Relation b/w automata on basis of power (i.e. can

A e

represent more no. of languages) is FA < DPDA <
NPDA < LBA < HTM < TM

2. Finite Automata & Regular

Languages

2.1. DFA

Defined by M = (Q, 5, §, 90, F), where Q is a finite
set of states,

% is a finite set of symbols called the input alphabet,
86 :Q x I — Qs called transition function,

qo € Q is the initial state,

F € Qs a set of final states.

Note:

1. If a DFA accepts any string of length

(n-1), where n is no. of states (including dead state),
then L(DFA) will be infinite as a loop will surely
exist. (refer Fig. 1)

Fig. 1
= For finite L(DFA), max (n-2) length string is
possible for n states DFA (including dead state).
(refer Fig. 2)

Fig. 2

2. L(M') = (L(M))" i.e. a complimentary machine
accepts complimentary language (in case of DFA).
3. We get same power as TM when,

e FA with queue

e FA with read/write head & 2 way head

movement

e FA + 2 stack of infinite memory

e FA + 2 counter
& power of FA is same when,

e FA + read/write head

e FA + 2 way head movement

2.2. NFA

Defined by M = (Q, &, 6, q0, F), where

Q, 2, q0, F are same as for DFA, but

§:Q x (2 U {A}) — 2% for NFA

Note:

1. In NFA, the range of & is 2%, so that its value is a
subset of Q. This subset defines the set of all
possible states that can be reached by the
transition like 6(q1,a) = (qo, 92)

e Either q0 or g2 could be the next state of
the NFA.

e NFA can make a transition without
consuming an input symbol by using null
moves.

2. If we complement states in NFA, the new NFA
may or may not recognize L' (i.e. complement of
language L).

3. For a NFA with n states, there is an equivalent

minimum DFA with at most 2" states.

Page No:- 03

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

2.3. Minimization of DFA NFA

For a given language, there are many DFA that
State Transition Diagram for NFA

accept it.

Algorithm: 0 1

1. First remove unreachable states from the initial {A} {A B}
state (Qo). {C} {C}

2. Then, merge equivalent states.

3. If there are more than one final states then check
for final states also if they are equivalent or not.
Note: Two states p, q of a DFA are equivalent if for ‘_

every input string w € 3*, the runs from p and q on 1 0,1
w either both end in accepting states or both end = ° °

in non-accepting states.

DFA
State Transition Diagram for DFA

0 1

Example DFA (If in state ¢, it exhibits the same
behavior for every input string as in state d, or in
state e. Similarly, states a and b are
nondistinguishable. The DFA has no unreachable
states.)

Equivalent minimal DFA (Nondistinguishable states

have been merged into a single one.)

2.4. NFA to DFA conversion

2.5. Moore & Mealy Machines

Page No:- 04

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE CSE BATCH

KEY FHiGHLIGHTS:
* 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

e COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

Moore FSM

Reset

Mealy FSM

Reset

0/0

1;0

O

Definition 6-tuple (Q, %, A, 8, w,q,) 6-tuple (Q, Z, A, 5,), q,)
Output function mOxX = A ra— A
Output depends on Current state and input Current state only
Output timing Immediate on transition After entering state
State count Often fewer May require more
Latency Lower (no delay) One-step delay
Transition function aOQxzZ—-0 mOQ=xE—+Q
Equivalence Convertible to Moore Convertible to Mealy
Note:
NFA » DFA
v
Minimal DFA

N\

Regular Grammar || Regular Expression

2.6. Regular expressions

Let = be a given alphabet. Then,

1. @,\and a € £ are all regular expressions.

2. Ifr1andr2 are

regular expressions, so are r1+

r2, r1.r2, r1*, and (r1).

3. @is aregular expression denoting the empty

set{}

4. \is aregular expression denoting {A}
5. Forevery a € 3, ais regular expression denoting

{a}.

Regular
Expressions

(0 + 10%)
(0*10%)
(0+e)(1l+8)

(a+b)*

(a+b)*abb

Theorem 1.1.1 : For any regular expressions o, p

Regular Set

L=4{0, 1,10, 100, 1000, 10000, ... }
L = {1, 01, 10, 010, 0010, ..}
L={e0,1,01}

Set of strings of a's and b's of any length including the null
string. SoL={ €& a, b, aa, ab, bb, ba, aaa.....}

Set of strings of a's and b's ending with the string abb. So L
= {abb, aabb, babb, aaabb, ababb,}

and vy,

lilm+ ﬁEﬁi— o,

il (x+PB) + y=a+ [p+y]),
lii) @+ a=a+ @=a,
(iv) (ap) y=alp y),
)alp+ y)l =ap+ay,
wi)la+ ply=ay+Ppy.
i) ea=ac=a,

(viii) @ a =a @ =0,

lix) &* =€,
(%) [a + e)* =a*,
(5i) alp a)* (xp)* a,

(xii) [a*)* = o*,
(xiii) (ot p*)* =[x + p)*,
(z#iv) (« p*)*
2.7. Identify Regular Languages
e If the set of strings in L is finite, L is regular
since all finite languages are regular.
e |If the set of strings in L is infinite, check if we
can draw an NFA for recognizing L. If so, L is

regular

Some twisted examples of Regular Grammar:
1.« language can be regular too like

L = {al¥", n20}, L = {aV", n=0}
2. L={@"b™|nzmorn<m}={a"b™|nm=20}=

ab’

3. Binary encoding of 2 (k>0) as it is same as 10~

or 10*

= e+ ala + p)*.

Page No:- 05

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

4. L=1{a"b™|n*m B constant}, where 8 is = or < or
2o0r<or>or#

5. L={a"b™|n+m B constant}, where B is = or < or
2o0r<or>or#

2.8. Reversal of DFA

L = Language starts with a.

L" = Language ends with a.

In the given DFA,

1. Make the final states as initial state.

2. Make the initial state as final state.

3. Reverse all the transition from q0 — g1 to
q1—q0 for any two states in DFA.
Self-loops are unchanged.

5. Reversal of a DFA may result in a DFA or an
NFA.

6. If there are multiple initial states in the resulting
DFA (or NFA) , take an initial state and add all
initial states with epsilon transitions.

2.9. Complement of DFA

In a given DFA,

1. Convert final states into non-final states, and
2. Convert non-final states into final states.

3. Don't change initial state

This DFA will accept complement of the language
accepted by the original DFA.

2.10. Arden’s Theorem

Let P and Q be two regular expressions over
alphabet 3. If P does not contain null string, then R
=Q+RP

has a unique solution that is R = QP*

g2 = q1.b + g2[b+aa]

R="P + R Q
R= PQ*

g2 = q1.b [b+aa]”

Eg.

WIH0IHL SINITHY

—@

Let us form the equations
g1 =910+ q30 + ¢

g2 =ql1+g21 + g31

g3 =920

Solving the equations,

So,q1=q10 +g30 + ¢
=q1(0 + 1(1 + 01)*00) + €
=e (0 + 1(1 + 01)*00)*

q1=(0 + 1(1 + 01)*00)*

= (0 + 1(1 + 01)*00)*

g2 =ql11 + 921 + (q20)1 = g11 + g2(1 + 01)
g2 =q11 (1 + 01)* (by Arden’s theorem)

g1=q10 + q11(1 + 01*)00 + €

So the regular expression for the given automata is

2.11. Pumping Lemma for Regular Languages
Let L be a regular language. Then there exists an
integer p21 depending only on L such that every

()
N,

Page No:- 06

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

string w in L of length at least p (p is called the

"pumping length") can be written as

w =xyz (i.e.,, w can be divided into three substrings),

satisfying the following conditions:

1. ly|=1

2. |xylsp

3. Foreveryi€eN,xyzel

Eg. The language L = {a"b", n = 0} over the alphabet

z = {a,b} can be shown to be non-regular as

follows:

1. Assume L is regular. Then by the pumping
lemma, 3 p such that every s € L with |s| =2 p can
be pumped.

2. Choose s = aPbr (so |s| = 2p = p).

3. Decompose s = xyz with |xy| < p and |y| > 0.
O Since |xy| < p, both x and y consist only of

a's.
O Thusy = ak for some k where 1 <k < p.

4. Pump Down (i = 0):

O xy’z=xz=a®"pp

5. Contradiction:

O xz has (p-k) a's followed by p b's, so #a's #
#b's.

O Therefore xz & L, contradicting the lemma'’s
requirement that xy°z € L.

6. Conclusion

O Our assumption that L is regular must be
false.

O Hence, L = {anbn}is not a regular
language.

Note: Pumping lemma gives a necessary but not

sufficient condition for a language to be regular i.e.

if pumping lemma satisfies, language may or may
not be regular.

2.12. Myhill Nerode Theorem
Note: It is necessary & sufficient condition for a

language to be regular.

It states that L is regular iff =, (Equivalence Relation)
has finite no. of equivalence classes.

OR L has finite no. of equivalence classes.

No. of equivalence classes = No. of States in
Minimal DFA

For better understanding:
What is Equivalence Relation?: Let x, y be strings

and L be a language. We say that x and y are
indistinguishable by L if there for every z the
following holds: xz € L iff yz € L. We write x =, y.
Eg. L = {w € £*|w ends with a'},
2 ={a, b}
Equivalence Classes:
1. Class [€] (strings not ending in ‘a’):
a. Examples: g, b, bb, ab, ba, ...
b. Forany z xz ends in ‘a’ exactly when z ends
in‘a’.
2. Class [a] (strings ending in ‘a’):
a. Examples: a, aa, ba, aba, ...
b. Forany z xz ends in ‘a’ exactly when the last
symbol of z is ‘a’.
No other distinctions exist, so there are exactly 2
equivalence classes. (Minimal DFA has two states
corresponding to [g] (non-accepting) and [a]
(accepting))

3. PDA & CFLs

3.1. CFL
A language L over alphabet % is context-free if 3 a
context-free grammar (CFG) G such that L = L(G).

3.2. Parse Trees & Ambiguity
e Parse Tree: tree representation of a derivation.
e Ambiguous Grammar: 3 w € L(G) with >1

distinct parse trees.
Eg. ForE — E+E | E*E | id

Page No:- 07

GeoksforGeeks

https://courses.cs.washington.edu/courses/cse322/04wi/MyhillNerode.pdf
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

/E\ /E\
E _!_ E E l E
A YA
E * E E + E

Note: Inherently ambiguous

If every grammar that generates L is ambiguous,
then the language is called
inherently ambiguous.

3.3. Normal Forms

3.3.1. Chomsky Normal Form (CNF) Productions
A —BCorA — a(S— eifeelisexception).
3.3.2. Greibach Normal Form (GNF) Productions
A — aa, wherea € T and

o € V*,

3.4. CFG to CNF conversion

1. If the start symbol S occurs on some right side,
we create a new start variable S’ and add a new
production S" — S.

2. Then, we eliminate all A-productions of the form
A—-A

3. We also eliminate all unit rules of the form A —
B.

4. |If there is production S — S remove it as its
trivial production.

Note:
e We need (2n-1) productions to generate n

length string.
e Any CFG with A € L(G) has an equivalent
grammar in CNF & GNF.

3.5. Membership Algorithm for CFG

e CYK Membership and parsing algorithms for
CFG exist that require approximately |w|® steps
to parse a string w.

e CYK algorithm works only if the grammar is in
CNF and succeeds by breaking one problem
into a sequence of smaller ones.

Note:
1. Some CFLs
a. L={a"b™|n-m B constant}, where B is = or
Sor2or<or>or#
b. L={a"b™|n/m B constant}, where B is = or
Sorzor<or>or#

c. L={@™"c’d9| m+n = p+q}
L = {a™b"cPdY | m+p = n+q}
e. L={a™"c’d?| m+q = n+p}

A twisted example: Consider,

L = {wiwiwawa® | wy, wa € (a,b)*}
Let x = wiwqR & y = wowR

x, y are DCFL & DCFL u DCFL = CFL

2. Comparisons between ‘a’ & ‘b’ (ordered,
unordered) — CFL

3. Palindromes — CFL
If we can recognize L using a PDA then L is CFL.

5. If the moves of PDA are all deterministic, then L
is a DCFL.

CFLs
DCFLs

Regular

Regular but not finite

DCFL but not Reg.
CFLs but not DCFLs

Page No:- 08

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE CSE BATCH

KEY FHiGHLIGHTS:
* 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

e COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

3.6. Pushdown Automata

= FA + stack of ©» memory

Defined by the septuple,

M=(Q 3 T8, qoz F) where,

Q is a finite set of internal states of the control unit,

I is the input alphabet,

lis a finite set of symbols called the stack alphabet
8:Q x (ZU{A\) x I — set of finite subsets of Q x I*
is the transition function,

el Present
State |an,yt Stack giate After

Before Before o Walue in
Value Transition
Transition S Transition | ooon Stack after

V\\ N Transition

5(q0, 0, Zo) = (g0, 0Zo)

qgo € Q is the initial state of the control unit,
z €T is the stack start symbol,
F € Q is the set of final states.

Note: A language L is said to be a deterministic CFL
if and only if there exists a DPDA M, such that L = L
(M).

3.6.1. Acceptance criteria of PDA
1. By final state: reach (p, €, a) withp € F
2. By empty stack: reach (p, €, €) regardless of p

Note:

1. A DPDA with acceptance by EMPTY STACK is a
proper subset of the languages accepted by a
DPDA with final state.

2. For each DCFL which satisfies prefix property,

can be accepted by a DPDA with empty stack.
3. NPDAempty stack = NPDAf|na| state (ln terms Of
power)

3.7. Pumping Lemma for CFL
If Ais a context-free language, then there is a
number p (the pumping length) where, if s is any

string in A of the length at least p, then s may be

divided into five pieces s = uvxyz the conditions:

1. foreachi=0, uvxy’z e A

2. |vy| >0, and
3. |vyx|=p
Note:

e When S is being divided into uvxyz, condition 2
says that either v or y is not an empty string.

e The pieces v, x and y together have length at
most p.

3.8. Pumping Lemma Length (p)
For every regular language L, 3 positive integer ‘p’
such that all possible strings (w) whose length is =
p, if they € L, then they must have a substring (s.t. 1
< |substring| < p) which can be pumped any no. of
times & all generated strings must € L.
Eg.L = 10*1, p =?
1. Letp =1,
Strings possible with length 1 are 0,1 & they €& L. (-
check for next, p # 1)
2. Letp=2,
Strings possible with length 2 are 00,01,10,11 & as
11 € L, we need to check for substrings of 11 i.e. 1
&11

a. If we pump 1, 0 times, we get 1 ¢ L, no need

to check further.
b. If we pump 11 0 times, we get null € L, no
need to check further.
Conclusion, p # 2.
3. Letp =3,
Now, for |w| = 3, 101 € L, we need to check for
substrings of 101 i.e. 1, 0, 10, 01, 101
a. If we pump substring ‘0, we find that every
generated string i.e. 11 (when 0 is pumped
null times), 101 (pumped once), 1001,
10001, 100001,... € L.
= It satisfies when |w| = 3

Page No:- 09

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

We can also check for |w| = 4 as |w| 2 p, 1001 € L &
its substrings 0 or 00 when pumped will generate
strings which € L.

Hence, p = 3.

Similarly, p = 4, p = 5,... will also satisfy.

We can say that p = 3 is minimum pumping length
(M.P.L).

Note: Properties of M.P.L

1. MP.L21

2. M.P.L £n-1, where nis no. of states in DFA
(including dead state)

3. M.P.Lis unique

M.P.L > Wmin, Where Wpin is the minimum length
string in L

5. M.P.L for finite language = |Wmax|+1
M.P.Lfor® =1

7. M.P.L for {€} i.e. language which has only 1
string i.e null = [Wmax|+1=0+1 =1

8. PL=2M.PL
9. IfL =L ULy then M.P.L(L) = max(M.P.L(L1),
M.P.L(L2))

4. Turing Machine & Decidability
4.1. Turing Machine

A Turing machine M is defined by,

M=(Q 3T, 56, 90, B, F) where,

Q: finite set of states,

Z: input alphabet (does not include blank),

I: tape alphabet (Z U {B}, where B = blank symbol),
6: transition function

5:Qxr->Qxrx{L,R} (reads a symbol, writes a symbol,
moves Left or Right)

qo € Q: start state,

F € Q: set of accepting (final) states

Eg. shows the situation before and after the move

8 (q0, a) = (q1, d, R).

Internal state g, Internal state ¢,

Y : ’ 1
a é i d ﬂ i
(a) (b)

Acceptance in TM: halts in some q € F

Note:

1. TM >> LBA(FA + 2 counter) > NPDA(NFA + 1
counter) > DPDA (DFA + 1 counter) > NFA =
DFA

2. Any TM with m symbols and n states can be
simulated using 4mn + n states by other TM.

4.2. Context Sensitive Language (CSL)
A language L C 5* is context sensitive if it can be
generated by a context-sensitive grammar (CSG).

4.2.1. Identify CSL

1. If * or / happening in power then CSL. Eg. L =
{a"b? | n 20}, L = {a™b"cPd? | m*n = p*q}

2. If >1 linear comparison of the same variable ('n’

in given eg.) then CSL. Eg. L = {a"b™c®° | n < m &
n < o, n,m,0 = 0}
3.« non-linear power is CSL. Eg. L = {a" | n=0}

4.2.2. Some twisted examples

L = {aP, p is prime} is CSL

L = {ww | w € (a,b)*}

L ={ww | w € (a,b)"}

L={xww | w,x € (a+b)*} might seem like CSL but

M wn =

it's not CSL. Proof: w can be € and x € (a+b)x,
making L=3* i.e. the set of strings generated by
L is {€,a,b,aa,ab,ba,...} = £* making L regular.

Page No:- 10

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

5. L={xww | wx € (a+b)*} is CSL as Here, w can't
be € and hence to accept the string we do need
the power of an LBA making L a CSL.

4.3. RE & REC Languages

4.3.1. Recursively Enumerable (RE)

A language L is RE if there exists a Turing machine
that accepts every

w € L (halts and enters an accepting state), but on
w & L may either reject or loop forever.

4.3.2. Recursive (REC) (Decidable)

A language L is recursive if there exists a Turing
machine that halts on every input, accepting exactly
those in L & rejecting all others.

Note:
1. {Regular} c {CFL} c {Context-sensitive} c {REC}
c {RE}

2. IfL &L are both RE then L is REC, hence also
RE because every recursive language is RE but
not all RE languages are recursive. (refer fig.
below)

possible

(Transducer view) {Acceptor view)

Partial
Function

Recursive

(Machine view)

4. (RE but not REC)’ = Non RE but

RE" # Non RE (i.e. it may or may not be Non RE)
5. Lis REC iff L can be enumerable in

lexicographic ordering.

4.4. TM variations

TM = Single tape TM

TM = One-way infinite tape TM

TM = Two-way infinite tape TM

TM = Multi tape and multi head TM

TM = Universal TM

TM = Multi stack PDA

TM = FA with two stacks

TM = FA + R/W tape + Bidirectional head
4.5. Church Turing Thesis

“What could naturally be called as effective
procedure can be realised by turing machine”

when o/p is NO,
it may or may not halt

Procedure

Special type of procedure
which always halts (Y/N)

Page No:- 11

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

4.6. Decidability
4.6.1. Decidable & Undecidable Language

-

Lan%uage

-

Recursively Enumerable Mon-Recursivaly
Language Enumerable Language

{Semi-Decidable)

Recursive RELs but not
Recursive

Decidable \
w
Undecidable

4.6.2. Closure Properties

Operations REG DCFL | CFL CsL REC RE

Union v X v v v v
Intersection Vv X X v v v
Complement v v X v v X
Concatenation v X v v v v
Kleene star Vv X v v v v
Homomorphism v X v X X v
Inverse Homomorphism v v v v v v
Reverse v X v v v v
Substitution [€ - free) v X v v X v

1. All types of languages are closed under all the
operations with regular languages such as LUR,
LNR, L-R.

2. CFLs are not closed under difference operation as
L1-L2 = L1NL2’, and CFLs are not closed under
complement operation.

3. No languages are closed under subset < and
Infinite union.

4. Regular languages are not closed under infinite
UNION and infinite INTERSECTION.

5. If Lis DCFL then so are MIN(L) and MAX(L).
Complement of non-regular is always non-regular

7. Let L beaDCFL and Ris a regular language then
L/R is DCFL.

GATE %¢d
8. DCFL U CFL = CFL

9. If something is closed under UNION and
COMPLEMENT then it will be surely closed under

Operations REG CFL
INIT
L/a
CYCLE
MIN
MAX
HALF
ALT

SISNISISISISNS
P AEIAEAEIENENEN

INTERSECTION.

Let L be a language,

1. HALF(L) = {x | for some y such that |x| = |y| and xy €
L}

2. MIN(L) = {w | wis in L and no proper prefix of w is
in L}

3. MAX(L) = {w | wis in L and for no x other than
epsilon wx is in L}

4. INIT(L) = {w | for some x, wx is in L}

5. CYCLE(L) = { w | we can write w as w=xy such that
yxisin L}

6. ALT(L, M) is regular provided that L and M are
regular languages.

7. SHUFFLE(L, L") is a CFL if L is CFL and L is regular.
8. SUFFIX(L) = {y | xy € L for some string x }, CFL is
closed under SUFFIX operation.

9. NOPREFIX(L) = {w € A | and no prefix of w is
member of A }

10. NOEXTEND(L) = {w € A | w is not proper prefix of
any string in A’}

11. DROP-OUT(L) let A be any language, define
DROP-OUT(L) to be the language containing all strings

that can be obtained by removing one symbol from a
string in L.

12. Regular languages are closed under NOPREFIX,
NOEXTEND, and DROP-OUT operations.

Page No:- 12

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

4.6.3. Decidability Table

14

Operations REG | DCFL | CFL | CSL | REC | RE | Comments

wELG) v | v v | v | ¥ | X | Membership property.

L{G)=0 v iV v | X | X | X | Emptiness Property

L{G)=5+ v | v X | X | X | X |Language accepts everything?
L(G1)EL(G2) v | X X | X | X | X]|IsLGL)subset of L{G2)?
L(G1)=L(G2) v | v X | X | X | X |Arebothlanguages equal?
LGLnLG2=0 | v | X X | X | X | X | Disjointness Property.
L(G)isregular? | | X | X | X | X |G generates Regular language.
L(G) is finite? v | v v | X | X | X |Gegenerates finite language?
Ambiguity v |L X | X | X | X |Isthegiven grammar ambiguous?

4.6.4. Some Decidable & Undecidable Problems

1. Give a Turing machine A,

a. A has at least 481 states (decidable)
b. A takes more than 481 steps on epsilon
(decidable)
c. A takes more than 481 steps on some input
(decidable)
d. A takes more than 481 steps on all inputs
(decidable)
2. A={<G>|GisaCFG that generates € } is
decidable
3. Acrc ={G| Gis a CFG and L(G) = ®} is decidable
language
4. Y* over alphabet) = {a, b} is Decidable
5. {M M s DFA, M accepts ab} is Decidable
6. {<M,w>|MisaTM and M halts on input w} —
Undecidable, RE
7. {<M>|MisaTM and L(M) = ®} - Undecidable,
NOT RE
8. {<M>|MisaTM and L(M)!= ®} - Undecidable, RE
9. {<M>|MisaTM and L(M) is a regular language}
— Undecidable, NOT RE
10. {<M> | M is a TM and L(M) is a REC} - Undecidable,
NOT RE
11. {<M> | Mis a TM and L(M) is a NOT REC},
Undecidable, NOT RE
12. {<M1, M2> | M1 and M2 are TMs and L(M1) =
L(M2)} — Undecidable, NOT RE
13. {<M, w> | M is an LBA that accepts string w} —

Decidable

1.
2.
3.
4,

Z*
5.
6.

15.
16.
17.
18.
19.

20.
21.

22.

23.

24.

25.

26.

4.7. Countable & Uncountable sets
Let > = {a,b}

Hence, no. of languages over

. {<M> | M is an LBA where L(M) = ®} -
Undecidable, NOT RE

{<G>|G is a context free grammar and L(G) = 2%}
Undecidable, NOT RE

T={<M > | MisaTM that accepts w" whenever it
accepts w} undecidable

A TM ever writes a blank symbol over a non-blank
symbol during the course of its computation. -
Undecidable, NOT RE

{< G> | G is ambiguous} RE, while L3" is NOT RE.
L(M) has at least 10 strings — RE

L(M) has at most 10 strings — NOT RE

L={M| M is a TM that accepts a string of length
2014} — RE; There are a finite number of strings of
length 2014, if we can execute multiple instances
of TM in parallel, if any string is accepted we can
stop.

L(M) is recognized by a TM having an even number
of states. Decidable (trivial property)

L={(M,w) | M does not modify the tape on input
w} - Decidable

an arbitrary TM ever prints a specific letter —
Undecidable

Post correspondence problem (PCP) is
Undecidable (RE but not REC)

Modified PCP is undecidable (semi-decidable)

> * is countably infinite (Cl)

22" is uncountably infinite (UCI)
Set of all languages over Y * is UCI
Set of all TM is ClI

>>> No. of TM, so non RE languages exist.
Set of all non RE languages is UCI
But each non RE languages is Cl

Page No:- 13

GooksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

4.8. Universal/Total Turing Machine (UTM)

M#Fx

foop

Rajost

1. m#xis an input to UTM where n is binary coding of
avalid TM.
is a separator.

3. Xis an input string to Turing machine M, x is
binary representation.

4. We will simulate TM M on x by UTM, if M accepts
x, then UTM will accept m#x.

5. If mis not a valid representation of a TM, reject it
without doing any simulation. UTM will reject it.

Note:

Decidable - If the language/property has a total TM.
Semi-decidable - If the language has just a TM.
Undecidable — No TM exists.

4.9. Rice's Theorem
“Any non-trivial property of the language recognizable

by a Turing machine (i.e. RE language) is Undecidable
i.e. Not REC”

How to apply? A property of RE languages is
non-trivial if there are two RE languages: one that has
the property and one that doesn't. Equivalently, there
must exist two Turing machines, Tyes whose language
satisfies the property and Tno whose language does
not.

Note: Any “trivial” property is always decidable.

Eg.

1. L(M) has at least 10 strings

We can have Tyes which accepts at least 10 strings and
Tno Which doesn't accept at least 10 strings. Hence,
L={M | L(M) has at least 10 strings} - Undecidable (Not
REQ)

2. L(M) has at most 10 strings

We can have Tyes & Tho. Hence, L={M | L(M) has at most
10 strings} - Undecidable (Not REC)

3. L(M) is recognized by a TM having even

number of states
This is a trivial property because for any RE language
we have a TM and even if that TM is having an odd
number of states we can make an equivalent TM
having even number of states by adding one extra
state. Thus this set equals the set of RE languages and
hence decidable.
4. L(M) is a subset of z*
This is a trivial property. All languages are subset of 5*
and hence this set contains all languages including all
RE languages.

4.9.1. Advanced Rice’'s Theorem

Any non-monotonic property of the language
recognizable by a Turing machine (RE language) is
unrecognizable i.e. Non RE.

Need? To further identify the Not REC language
because a language which is Not REC can either be RE
but Not REC (Semi-Decidable) or Non RE
(Undecidable).

Page No:- 14

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

TOC

GATE B¢

:/ N

semi-decidai:ple problems

decidable undecidable
problems problems

C y

Non-monotonic property? A property of RE languages

is non-monotonic if you can find two RE languages,
one (with TM Tyes) that has the property & another
(with TM Tho) that doesn’t; such that the first language
is a proper subset of the second.

Eg. L(M)={0}

We can have Ty for {0} and T, for £* ({0}cE*) « L={M
| L(M)={0}} is Non RE

Page No:- 15

GeoksforGeeks

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE CSE BATCH

KEY FHiGHLIGHTS:
* 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVERAGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
e C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

e COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

e COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TO E-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENROLL
m AND ACHIEVE YOUR DREAM IIT OR PSU! m

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Blank Page
	Blank Page
	Blank Page
	Blank Page

