
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

1. Basics of TOC
1.1. Symbol
● The smallest indivisible entity; cannot be broken

into smaller parts.
● Every unique atom of information.

1.2. Alphabet (Σ)
● A finite set of symbols.
● Examples:

○ English letters: {a, b, …, z}
○ Binary: {0, 1}

1.3. String
● A finite sequence of symbols over Σ.
● Denoted w ∈ Σ*; empty string is ε (|ε| = 0).
● Examples over Σ = {a,b}: ε, a, b, ab, ba, …

1.4. Operations on Strings
● Length: |w| = number of symbols in w.
● Reversal: wR = symbols of w in reverse order.
● Concatenation: w₁.w₂ = sequence w₁ followed

by w₂.
● Prefix/suffix: any leading/trailing substring of w

(including ε and w).
● Substring: any contiguous sequence within w.

1.5. Language
● A set of strings over Σ (i.e. L ⊆ Σ*).
● Examples:

○ Universal: Σ* = all strings over Σ.
○ L = ab* = {a, ab, abb, …}.

Note:
1. Kleene star, L* = L0 ⋃ L1 ⋃ L2 ⋃ ...
2. Positive closure, L+ = L1 ⋃ L2 ⋃ ...

1.6. Chomsky Hierarchy

1.7. Grammar
● Defined as G = (V,T,S,P) where,

V: variables/nonterminals; T: terminals; S ∈ V:
start symbol; P: production rules.

● Language generated L(G) = all terminal strings
derivable from S.

1.7.1. Types of grammars
1.7.1.1. Type 0 (Unrestricted Grammar)
Form of productions: α → β, where α ∈ (V ∪ T)+ & β
∈ (V ∪ T)* (no restrictions on length or symbols
except α ≠ ε).

1.7.1.2.  Type 1 (Context‑Sensitive Grammar)
Form of productions: αAβ → αγβ, where A ∈ V,
(α, β) ∈ (V ∪ T)*, γ ∈ (V ∪ T)+, and |αγβ| ≥ |αAβ| (i.e.
productions do not shrink the string).
Note: ε is only allowed if S → ε and S does not
appear on the right side.

TOC
GATE फर्र े

Page No:- 01

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

1.7.1.3.  Type 2 (Context‑Free Grammar)
Form of productions: A → γ, where A ∈ V and γ ∈ (V
∪ T)*.
Normal form: Chomsky Normal Form (CNF),
Greibach Normal Form (GNF).

1.7.1.4.  Type 3 (Regular Grammar)
Form of productions
(Right‑linear): A → aB or A → a, where A,B ∈ V and
a ∈ T*.
(Left-linear): A → Ba or A → a, where A,B ∈ V and a
∈ T*.

1.8. Types of Automata
1.8.1.

1.8.2.

1.8.3.

1.8.4.

1.8.5. Deterministic Automata
● At any point, given the current state and input

(or tape symbol/stack symbol), there is at most
one possible move.

● Computation is a single, linear sequence of
configurations.

● Easier to simulate directly on hardware.

1.8.6. Non Deterministic Automata
● At some points, the machine may have multiple

choices (or none) for the next move.
● Conceptually “branches” into many

computation paths in parallel.
● Accepts if any branch reaches an accepting

configuration.

Note:
1. An automaton whose output response is limited

to a simple “yes” or “no” is called an accepter.
2. Automaton, capable of producing strings of

symbols as output, is called a transducer.

Properties:
1. (L*)’ ≠ (L’)*
2. (L1L2)R = L2

RL1
R ∀ languages L1 & L2

TOC
GATE फर्र े

Page No:- 02

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

3. (L*)* = L*
4. (L1 ⋃ L2)R = L1

R
 ⋃ L2

R ∀ languages L1 & L2

5. (LR)* = (L*)R ∀ languages L
6. Let L be any language on non-empty alphabet,

both L and L’ can’t be finite as L U L’ = Σ*
7. Relation b/w automata on basis of power (i.e. can
represent more no. of languages) is FA < DPDA <
NPDA < LBA < HTM < TM

2. Finite Automata & Regular
Languages
2.1. DFA
Defined by M = (Q, Σ, δ, q0, F), where Q is a finite
set of states,
Σ is a finite set of symbols called the input alphabet,
δ :Q × Σ → Q is called transition function,
q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states.

Note:
1. If a DFA accepts any string of length
(n-1), where n is no. of states (including dead state),
then L(DFA) will be infinite as a loop will surely
exist. (refer Fig. 1)

Fig. 1
∴ For finite L(DFA), max (n-2) length string is
possible for n states DFA (including dead state).
(refer Fig. 2)

Fig. 2
2. L(M’) = (L(M))’ i.e. a complimentary machine
accepts complimentary language (in case of DFA).
3. We get same power as TM when,

● FA with queue
● FA with read/write head & 2 way head

movement
● FA + 2 stack of infinite memory
● FA + 2 counter

& power of FA is same when,
● FA + read/write head
● FA + 2 way head movement

2.2. NFA
Defined by M = (Q, Σ, δ, q0, F), where
Q, Σ, q0, F are same as for DFA, but
δ :Q × (Σ ⋃ {λ}) → 2Q for NFA
Note:
1. In NFA, the range of δ is 2Q, so that its value is a
subset of Q. This subset defines the set of all
possible states that can be reached by the
transition like δ(q1,a) = (q0, q2)

● Either q0 or q2 could be the next state of
the NFA.

● NFA can make a transition without
consuming an input symbol by using null
moves.

2. If we complement states in NFA, the new NFA
may or may not recognize L’ (i.e. complement of
language L).
3. For a NFA with n states, there is an equivalent
minimum DFA with at most 2n states.

TOC
GATE फर्र े

Page No:- 03

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

2.3. Minimization of DFA
For a given language, there are many DFA that
accept it.
Algorithm:
1. First remove unreachable states from the initial
state (Q0).
2. Then, merge equivalent states.
3. If there are more than one final states then check
for final states also if they are equivalent or not.
Note: Two states p, q of a DFA are equivalent if for
every input string w ∈ Σ*, the runs from p and q on
w either both end in accepting states or both end
in non‑accepting states.

Example DFA (If in state c, it exhibits the same
behavior for every input string as in state d, or in
state e. Similarly, states a and b are
nondistinguishable. The DFA has no unreachable
states.)

Equivalent minimal DFA (Nondistinguishable states
have been merged into a single one.)

2.4. NFA to DFA conversion

2.5. Moore & Mealy Machines

TOC
GATE फर्र े

Page No:- 04

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note:

2.6. Regular expressions
Let Σ be a given alphabet. Then,
1. Ø, λ and a ∈ Σ are all regular expressions.
2. If r1 and r2 are regular expressions, so are r1+

r2, r1.r2, r1*, and (r1).

3. Ø is a regular expression denoting the empty
set { }

4. λ is a regular expression denoting {λ}
5. For every a ∈ Σ, a is regular expression denoting

{a}.

2.7. Identify Regular Languages
● If the set of strings in L is finite, L is regular

since all finite languages are regular.
● If the set of strings in L is infinite, check if we

can draw an NFA for recognizing L. If so, L is
regular

Some twisted examples of Regular Grammar:
1. ∞ language can be regular too like

L = {a⌊√n⌋, n≥0}, L = {a⌈√n⌉, n≥0}
2. L = {anbm | n ≥ m or n ≤ m} = {anbm | n,m ≥ 0} =

a*b*

3. Binary encoding of 2k (k>0) as it is same as 10k

or 10+

TOC
GATE फर्र े

Page No:- 05

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4. L = {anbm | n*m β constant}, where β is = or ≤ or
≥ or < or > or ≠

5. L = {anbm | n+m β constant}, where β is = or ≤ or
≥ or < or > or ≠

2.8. Reversal of DFA
L = Language starts with a.
Lr = Language ends with a.
In the given DFA,
1. Make the final states as initial state.
2. Make the initial state as final state.
3. Reverse all the transition from q0 → q1 to

q1→q0 for any two states in DFA.
4. Self-loops are unchanged.
5. Reversal of a DFA may result in a DFA or an

NFA.
6. If there are multiple initial states in the resulting

DFA (or NFA) , take an initial state and add all
initial states with epsilon transitions.

2.9. Complement of DFA
In a given DFA,
1. Convert final states into non-final states, and
2. Convert non-final states into final states.
3. Don’t change initial state
This DFA will accept complement of the language
accepted by the original DFA.

2.10. Arden’s Theorem
Let P and Q be two regular expressions over
alphabet Σ. If P does not contain null string, then R
= Q + RP
has a unique solution that is R = QP*

Eg.

Let us form the equations
q1 = q10 + q30 + є
q2 = q11 + q21 + q31
q3 = q20
Solving the equations,
q2 = q11 + q21 + (q20)1 = q11 + q2(1 + 01)
q2 = q11 (1 + 01)* (by Arden’s theorem)
So, q1 = q10 + q30 + є
q1= q10 + q11(1 + 01*)00 + є
= q1(0 + 1(1 + 01)*00) + є
= є (0 + 1(1 + 01)*00)*
q1=(0 + 1(1 + 01)*00)*
So the regular expression for the given automata is
= (0 + 1(1 + 01)*00)*

2.11. Pumping Lemma for Regular Languages
Let L be a regular language. Then there exists an
integer p≥1 depending only on L such that every

TOC
GATE फर्र े

Page No:- 06

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

string w in L of length at least p (p is called the
"pumping length") can be written as
w =xyz (i.e., w can be divided into three substrings),
satisfying the following conditions:
1. |y| ≥ 1
2. |xy| ≤ p
3. For every i ∈ N, xyiz ∈ L
Eg. The language L = {anbn, n ≥ 0} over the alphabet
Σ = {a,b} can be shown to be non-regular as
follows:
1. Assume L is regular. Then by the pumping

lemma, ∃ p such that every s ∈ L with |s| ≥ p can
be pumped.

2. Choose s = aᵖ bᵖ (so |s| = 2p ≥ p).
3. Decompose s = xyz with |xy| ≤ p and |y| > 0.

○ Since |xy| ≤ p, both x and y consist only of
a’s.

○ Thus y = aᵏ for some k where 1 ≤ k ≤ p.
4. Pump Down (i = 0):

○ x y⁰ z = x z = a(p–k) bᵖ
5. Contradiction:

○ xz has (p–k) a’s followed by p b’s, so #a’s ≠
#b’s.

○ Therefore xz ∉ L, contradicting the lemma’s
requirement that x y⁰ z ∈ L.

6.  Conclusion
○ Our assumption that L is regular must be

false.
○ Hence, L = { aⁿ bⁿ } is not a regular

language.
Note: Pumping lemma gives a necessary but not
sufficient condition for a language to be regular i.e.
if pumping lemma satisfies, language may or may
not be regular.

2.12. Myhill Nerode Theorem
Note: It is necessary & sufficient condition for a
language to be regular.

It states that L is regular iff ≡L (Equivalence Relation)
has finite no. of equivalence classes.
OR L has finite no. of equivalence classes.
No. of equivalence classes = No. of States in
Minimal DFA

For better understanding:
What is Equivalence Relation?: Let x, y be strings
and L be a language. We say that x and y are
indistinguishable by L if there for every z the
following holds: xz ∈ L iff yz ∈ L. We write x ≡L y.
Eg. L = { w ∈ Σ* | w ends with ‘a’ },
Σ = {a, b}
Equivalence Classes:
1. Class [ε] (strings not ending in ‘a’):

a. Examples: ε, b, bb, ab, ba, …
b. For any z, xz ends in ‘a’ exactly when z ends

in ‘a’.
2. Class [a] (strings ending in ‘a’):

a. Examples: a, aa, ba, aba, …
b. For any z, xz ends in ‘a’ exactly when the last

symbol of z is ‘a’.
No other distinctions exist, so there are exactly 2
equivalence classes. (Minimal DFA has two states
corresponding to [ε] (non‑accepting) and [a]
(accepting))

3. PDA & CFLs
3.1. CFL
A language L over alphabet Σ is context‑free if ∃ a
context‑free grammar (CFG) G such that L = L(G).

3.2. Parse Trees & Ambiguity
● Parse Tree: tree representation of a derivation.
● Ambiguous Grammar: ∃ w ∈ L(G) with >1

distinct parse trees.
Eg. For E → E+E | E*E | id

TOC
GATE फर्र े

Page No:- 07

https://courses.cs.washington.edu/courses/cse322/04wi/MyhillNerode.pdf
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Note: Inherently ambiguous
If every grammar that generates L is ambiguous,
then the language is called
inherently ambiguous.

3.3. Normal Forms
3.3.1. Chomsky Normal Form (CNF) Productions
A → BC or A → a (S → ε if ε ∈ L is exception).
3.3.2. Greibach Normal Form (GNF) Productions
A → aα, where a ∈ T and
α ∈ V*.

3.4. CFG to CNF conversion
1. If the start symbol S occurs on some right side,

we create a new start variable S’ and add a new
production S’ → S.

2. Then, we eliminate all λ-productions of the form
A → λ

3. We also eliminate all unit rules of the form A →
B.

4. If there is production S → S remove it as its
trivial production.

Note:
● We need (2n-1) productions to generate n

length string.
● Any CFG with λ ∉ L(G) has an equivalent

grammar in CNF & GNF.

3.5. Membership Algorithm for CFG

● CYK Membership and parsing algorithms for
CFG exist that require approximately |w|3 steps
to parse a string w.

● CYK algorithm works only if the grammar is in
CNF and succeeds by breaking one problem
into a sequence of smaller ones.

Note:
1. Some CFLs

a. L = {anbm | n-m β constant}, where β is = or
≤ or ≥ or < or > or ≠

b. L = {anbm | n/m β constant}, where β is = or
≤ or ≥ or < or > or ≠

c. L = {ambncpdq | m+n = p+q}
d. L = {ambncpdq | m+p = n+q}
e. L = {ambncpdq | m+q = n+p}

A twisted example: Consider,
L = {w1w1

Rw2w2
R | w1, w2 ∈ (a,b)*}

Let x = w1w1
R & y = w2w2

R
x, y are DCFL & DCFL ∪ DCFL = CFL

2. Comparisons between ‘a’ & ‘b’ (ordered,
unordered) → CFL

3. Palindromes → CFL
4. If we can recognize L using a PDA then L is CFL.
5. If the moves of PDA are all deterministic, then L

is a DCFL.

TOC
GATE फर्र े

Page No:- 08

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

3.6. Pushdown Automata
= FA + stack of ∞ memory
Defined by the septuple,
M = (Q, Σ, Γ, δ, q0, z, F) where,
Q is a finite set of internal states of the control unit,
Σ is the input alphabet,
Γ is a finite set of symbols called the stack alphabet
δ: Q × (Σ ∪ {λ}) × Γ → set of finite subsets of Q × Γ*
is the transition function,

q0 ∈ Q is the initial state of the control unit,
z ∈ Γ is the stack start symbol,
F ⊆ Q is the set of final states.

Note: A language L is said to be a deterministic CFL
if and only if there exists a DPDA M, such that L = L
(M).

3.6.1. Acceptance criteria of PDA
1. By final state: reach (p, ε, α) with p ∈ F
2. By empty stack: reach (p, ε, ε) regardless of p

Note:
1. A DPDA with acceptance by EMPTY STACK is a

proper subset of the languages accepted by a
DPDA with final state.

2. For each DCFL which satisfies prefix property,
can be accepted by a DPDA with empty stack.

3. NPDAempty stack = NPDAfinal state (in terms of
power)

3.7. Pumping Lemma for CFL
If A is a context-free language, then there is a
number p (the pumping length) where, if s is any

string in A of the length at least p, then s may be
divided into five pieces s = uvxyz the conditions:
1. for each i ≥ 0, uvixyiz ∈ A
2. |vy| > 0, and
3. |vyx| ≤ p
Note:
● When S is being divided into uvxyz, condition 2

says that either v or y is not an empty string.
● The pieces v, x and y together have length at

most p.

3.8. Pumping Lemma Length (p)
For every regular language L, ∃ positive integer ‘p’
such that all possible strings (w) whose length is ≥
p, if they ∈ L, then they must have a substring (s.t. 1
≤ |substring| ≤ p) which can be pumped any no. of
times & all generated strings must ∈ L.
Eg. L = 10*1, p =?
1. Let p = 1,
Strings possible with length 1 are 0,1 & they ∉ L. (∴
check for next, p ≠ 1)
2. Let p = 2,
Strings possible with length 2 are 00,01,10,11 & as
11 ∈ L, we need to check for substrings of 11 i.e. 1
& 11

a. If we pump 1, 0 times, we get 1 ∉ L, no need
to check further.

b. If we pump 11 0 times, we get null ∉ L, no
need to check further.

Conclusion, p ≠ 2.
3. Let p = 3,
Now, for |w| = 3, 101 ∈ L, we need to check for
substrings of 101 i.e. 1, 0, 10, 01, 101

a. If we pump substring ‘0’, we find that every
generated string i.e. 11 (when 0 is pumped
null times), 101 (pumped once), 1001,
10001, 100001,... ∈ L.

∴ It satisfies when |w| = 3

TOC
GATE फर्र े

Page No:- 09

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

We can also check for |w| = 4 as |w| ≥ p, 1001 ∈ L &
its substrings 0 or 00 when pumped will generate
strings which ∈ L.
Hence, p = 3.
Similarly, p = 4, p = 5,... will also satisfy.
We can say that p = 3 is minimum pumping length
(M.P.L).

Note: Properties of M.P.L
1. M.P.L ≥ 1
2. M.P.L ≤ n-1, where n is no. of states in DFA

(including dead state)
3. M.P.L is unique
4. M.P.L > wmin, where wmin is the minimum length

string in L
5. M.P.L for finite language = |wmax|+1
6. M.P.L for Φ = 1
7. M.P.L for {∈} i.e. language which has only 1

string i.e null = |wmax|+1 = 0 + 1 = 1
8. P.L ≥ M.P.L
9. If L = L1 ∪ L2, then M.P.L(L) = max(M.P.L(L1),

M.P.L(L2))

4. Turing Machine & Decidability
4.1. Turing Machine
A Turing machine M is defined by,
M = (Q, Σ, Γ, δ, q0, B, F) where,
Q: finite set of states,
Σ: input alphabet (does not include blank),
Γ: tape alphabet (Σ ∪ {B}, where B = blank symbol),
δ: transition function
δ:Q×Γ→Q×Γ×{L,R} (reads a symbol, writes a symbol,
moves Left or Right)
q₀ ∈ Q: start state,
F ⊆ Q: set of accepting (final) states

Eg. shows the situation before and after the move

Acceptance in TM: halts in some q ∈ F

Note:
1. TM >> LBA(FA + 2 counter) > NPDA(NFA + 1

counter) > DPDA (DFA + 1 counter) > NFA =
DFA

2. Any TM with m symbols and n states can be
simulated using 4mn + n states by other TM.

4.2. Context Sensitive Language (CSL)
A language L ⊆ Σ* is context sensitive if it can be
generated by a context‑sensitive grammar (CSG).

4.2.1. Identify CSL
1. If * or / happening in power then CSL. Eg. L =

{an!b2 | n ≥ 0}, L = {ambncpdq | m*n = p*q}
2. If >1 linear comparison of the same variable (‘n’

in given eg.) then CSL. Eg. L = {anbmco | n < m &
n < o, n,m,o ≥ 0}

3. ∞ non-linear power is CSL. Eg. L = {an² | n≥0}

4.2.2. Some twisted examples
1. L = {ap, p is prime} is CSL
2. L = {ww | w ∈ (a,b)*}
3. L = {ww | w ∈ (a,b)+}
4. L={xww | w,x ∈ (a+b)*} might seem like CSL but

it's not CSL. Proof: w can be ϵ and x ∈ (a+b)∗,
making L=Σ* i.e. the set of strings generated by
L is {ϵ,a,b,aa,ab,ba,…} = Σ* making L regular.

TOC
GATE फर्र े

Page No:- 10

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

5. L={xww | w,x ∈ (a+b)+} is CSL as Here, w can’t
be ϵ and hence to accept the string we do need
the power of an LBA making L a CSL.

4.3. RE & REC Languages
4.3.1. Recursively Enumerable (RE)
A language L is RE if there exists a Turing machine
that accepts every
w ∈ L (halts and enters an accepting state), but on
w ∉ L may either reject or loop forever.

4.3.2. Recursive (REC) (Decidable)
A language L is recursive if there exists a Turing
machine that halts on every input, accepting exactly
those in L & rejecting all others.

Note:
1. {Regular} ⊂ {CFL} ⊂ {Context‑sensitive} ⊂ {REC}

⊂ {RE}
2. If L & L’ are both RE then L is REC, hence also

RE because every recursive language is RE but
not all RE languages are recursive. (refer fig.
below)

3.

4. (RE but not REC)’ = Non RE but
RE’ ≠ Non RE (i.e. it may or may not be Non RE)

5. L is REC iff L can be enumerable in
lexicographic ordering.

4.4. TM variations
TM ≅ Single tape TM
TM ≅ One-way infinite tape TM
TM ≅ Two-way infinite tape TM
TM ≅ Multi tape and multi head TM
TM ≅ Universal TM
TM ≅ Multi stack PDA
TM ≅ FA with two stacks
TM ≅ FA + R/W tape + Bidirectional head
4.5. Church Turing Thesis
“What could naturally be called as effective
procedure can be realised by turing machine”

TOC
GATE फर्र े

Page No:- 11

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4.6. Decidability
4.6.1. Decidable & Undecidable Language

4.6.2. Closure Properties

1. All types of languages are closed under all the
operations with regular languages such as L∪R,
L∩R, L-R.

2. CFLs are not closed under difference operation as
L1-L2 = L1∩L2’, and CFLs are not closed under
complement operation.

3. No languages are closed under subset ⊆ and
Infinite union.

4. Regular languages are not closed under infinite
UNION and infinite INTERSECTION.

5. If L is DCFL then so are MIN(L) and MAX(L).
6. Complement of non-regular is always non-regular
7. Let L be a DCFL and R is a regular language then

L/R is DCFL.

8. DCFL U CFL = CFL
9. If something is closed under UNION and

COMPLEMENT then it will be surely closed under

INTERSECTION.

Let L be a language,
1. HALF(L) = {x | for some y such that |x| = |y| and xy ∈
L }
2. MIN(L) = { w | w is in L and no proper prefix of w is
in L}
3. MAX(L) = {w | w is in L and for no x other than
epsilon wx is in L}
4. INIT(L) = {w | for some x, wx is in L}
5. CYCLE(L) = { w | we can write w as w=xy such that
yx is in L}
6. ALT(L, M) is regular provided that L and M are
regular languages.
7. SHUFFLE(L, L’) is a CFL if L is CFL and L’ is regular.
8. SUFFIX(L) = { y | xy ∈ L for some string x }, CFL is
closed under SUFFIX operation.
9. NOPREFIX(L) = {w ∈ A | and no prefix of w is
member of A }
10. NOEXTEND(L) = { w ∈ A | w is not proper prefix of
any string in A }
11. DROP-OUT(L) let A be any language, define
DROP-OUT(L) to be the language containing all strings
that can be obtained by removing one symbol from a
string in L.
12. Regular languages are closed under NOPREFIX,
NOEXTEND, and DROP-OUT operations.

TOC
GATE फर्र े

Page No:- 12

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4.6.3. Decidability Table

4.6.4. Some Decidable & Undecidable Problems
1. Give a Turing machine A,

a. A has at least 481 states (decidable)
b. A takes more than 481 steps on epsilon

(decidable)
c. A takes more than 481 steps on some input

(decidable)
d. A takes more than 481 steps on all inputs

(decidable)
2. A = {<G> | G is a CFG that generates ϵ } is

decidable
3. ACFG ={G | G is a CFG and L(G) = Φ} is decidable

language
4. ∑* over alphabet ∑ = {a, b} is Decidable
5. {M M is DFA, M accepts ab} is Decidable
6. {<M, w> | M is a TM and M halts on input w} –

Undecidable, RE
7. {<M> | M is a TM and L(M) = Φ} – Undecidable,

NOT RE
8. {<M> | M is a TM and L(M)!= Φ} – Undecidable, RE
9. {<M> | M is a TM and L(M) is a regular language}

– Undecidable, NOT RE
10. {<M> | M is a TM and L(M) is a REC} - Undecidable,

NOT RE
11. {<M> | M is a TM and L(M) is a NOT REC},

Undecidable, NOT RE
12. {<M1, M2> | M1 and M2 are TMs and L(M1) =

L(M2)} – Undecidable, NOT RE
13. {<M, w> | M is an LBA that accepts string w} –

Decidable

14. {<M> | M is an LBA where L(M) = Φ} –
Undecidable, NOT RE

15. {<G>|G is a context free grammar and L(G) = Σ∗}
Undecidable, NOT RE

16. T = {<M > | M is a TM that accepts wr whenever it
accepts w} undecidable

17. A TM ever writes a blank symbol over a non-blank
symbol during the course of its computation. -
Undecidable, NOT RE

18. {< G> | G is ambiguous} RE, while L3’ is NOT RE.
19. L(M) has at least 10 strings – RE
20. L(M) has at most 10 strings – NOT RE
21. L = {M | M is a TM that accepts a string of length

2014} – RE; There are a finite number of strings of
length 2014, if we can execute multiple instances
of TM in parallel, if any string is accepted we can
stop.

22. L(M) is recognized by a TM having an even number
of states. Decidable (trivial property)

23. L={⟨M,w⟩ | M does not modify the tape on input
w} - Decidable

24. an arbitrary TM ever prints a specific letter –
Undecidable

25. Post correspondence problem (PCP) is
Undecidable (RE but not REC)

26. Modified PCP is undecidable (semi-decidable)

4.7. Countable & Uncountable sets
Let ∑ = {a,b}
1. ∑* is countably infinite (CI)
2. 2∑* is uncountably infinite (UCI)
3. Set of all languages over ∑* is UCI
4. Set of all TM is CI
Hence, no. of languages over
∑* >>> No. of TM, so non RE languages exist.
5. Set of all non RE languages is UCI
6. But each non RE languages is CI

TOC
GATE फर्र े

Page No:- 13

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

4.8. Universal/Total Turing Machine (UTM)

1. m#x is an input to UTM where n is binary coding of
a valid TM.

2. # is a separator.
3. X is an input string to Turing machine M, x is

binary representation.
4. We will simulate TM M on x by UTM, if M accepts

x, then UTM will accept m#x.
5. If m is not a valid representation of a TM, reject it

without doing any simulation. UTM will reject it.

Note:
Decidable – If the language/property has a total TM.
Semi-decidable – If the language has just a TM.
Undecidable – No TM exists.

4.9. Rice’s Theorem
“Any non-trivial property of the language recognizable
by a Turing machine (i.e. RE language) is Undecidable
i.e. Not REC”
How to apply? A property of RE languages is
non‑trivial if there are two RE languages: one that has
the property and one that doesn’t. Equivalently, there
must exist two Turing machines, Tyes whose language
satisfies the property and Tno whose language does
not.
Note: Any “trivial” property is always decidable.

Eg.
1. L(M) has at least 10 strings
We can have Tyes which accepts at least 10 strings and
Tno which doesn’t accept at least 10 strings. Hence,
L={M | L(M) has at least 10 strings} - Undecidable (Not
REC)
2. L(M) has at most 10 strings
We can have Tyes & Tno. Hence, L={M | L(M) has at most
10 strings} - Undecidable (Not REC)
3. L(M) is recognized by a TM having even

number of states
This is a trivial property because for any RE language
we have a TM and even if that TM is having an odd
number of states we can make an equivalent TM
having even number of states by adding one extra
state. Thus this set equals the set of RE languages and
hence decidable.
4. L(M) is a subset of Σ*
This is a trivial property. All languages are subset of Σ*
and hence this set contains all languages including all
RE languages.

4.9.1. Advanced Rice’s Theorem
Any non-monotonic property of the language
recognizable by a Turing machine (RE language) is
unrecognizable i.e. Non RE.
Need? To further identify the Not REC language
because a language which is Not REC can either be RE
but Not REC (Semi-Decidable) or Non RE
(Undecidable).

TOC
GATE फर्र े

Page No:- 01Page No:- 14

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Non-monotonic property? A property of RE languages
is non‑monotonic if you can find two RE languages,
one (with TM Tyes) that has the property & another
(with TM Tno) that doesn’t; such that the first language
is a proper subset of the second.
Eg. L(M)={0}
 We can have Tyes for {0} and Tno for Σ* ({0}⊂Σ*) ∴ L={M
| L(M)={0}} is Non RE

TOC
GATE फर्र े

Page No:- 15

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Blank Page
	Blank Page
	Blank Page
	Blank Page

