TO EXCEL IN'GATE —

' AND ACHIEVE YOUR/DREAM IIT OR &s{u' e



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

STAR MENTOR CS/DA

KHALEEL SIR CHANDAN SIR
ALGORITHM & OS DIGITAL LOGIC
29 YEARS OF TEACHING EXPERIENCE GATE AIR 23 & 26 / EX-ISRO
SATISH SIR MALLESHAM SIR
DISCRETE MATHEMATICS M.TECH FROM IIT BOMBAY
BE in IT from MUMBAI UNIVERSITY AIR - 114, 119, 210 in GATE
(CRACKED GATE 8 TIMES)

14+ YEARS EXPERIENCE

VIJAY SIR PARTH SIR
DBMS & COA
M. TECH FROM NIT o
O P ExEERIEN IIT BANGALORE ALUMNUS

FORMER ASSISTANT PROFESSOR

= SAKSHI MA'AM SHAILENDER SIR
3 ENGINEERING MATHEMATICS C PROGRAMMING & DATA STRUCTURE
IIT ROORKEE ALUMNUS M.TECH in Computer Science

15+ YEARS EXPERIENCE

AVINASH SIR AJAY SIR

APTITUDE PH.D. IN COMPUTER SCIENCE
10+ YEARS OF TEACHING EXPERIENCE 12+ YEARS EXPERIENCE




Module 1. Database design

Limitations of File System (Short Notes)

No Data Abstraction: Users must manage physical
data access manually (no data independence).

Not Scalable: Suitable only for small datasets;
inefficient for large databases.

No Concurrency Control: Cannot handle multiple
users or concurrent transactions safely.
Single-User Access: Lacks multi-user support; no in-
built locking or transaction management.

Data Redundancy & Inconsistency: No central
control over data integrity or duplication.

Relational Model Terminology

Tuple : A tuple is a single row in a relation (table),
representing a single record in that table.

Attribute : An attribute refers to a column in a relation.
It defines the properties or characteristics of the
relation.

Domain : The domain of an attribute is the set of all
possible values that an attribute can take. It defines the
data type and constraints of the attribute.

Degree : The degree of a relation is the total number of
attributes (columns) it contains.

Cardinality : The cardinality of a relation is the total
number of tuples (rows) present in it.

Relational Instance : A relation instance is a specific set
of tuples that exist in a relation at a particular moment.
It is a finite set that changes over time.

Relation Schema: A relation schema describes the
structure of a relation, including its relation and the
names and data types of its attributes.

Functional dependencies & Normalization
X —->Y or X determines Y

GATE ¢
Function

Dependencies

\! Y

Trivial Non-Trivial
Functional Functional
Dependency Dependency

1. Trivial FD : Always valid, X — Y is trivial iff X 2 Y.
Ex AB — A

2. Non Trivial FD: X = Yis non trivial FDif XNY = ®
and X — Y must satisfy FD definition. Ex A — B

Armstrong's Axioms / Inference Rules

Armstrong’s Axioms (or inference rules) provide a
sound and complete set of rules for reasoning about
functional dependencies (FDs) in relational database
design.

Let X, Y, Z, W be sets of attributes. The following three
fundamental axioms form the basis of all functional
dependency inference:

Rule Name Rule \

Reflexivity If X2YX, then X—Y

Augmentation If X—Y, then XZ—YZ

Transitivity If X—>Y and Y—Z, then X—Z

Decomposition If X—>YZ, then X—Y and X—Z

Union If X—Y, and X—2Z, then X—YZ

Pseudotransitive If X— Y, and WY — Z, then WX —» Z

Attribute closure [X]* Let x be the attribute set of
relation R set of all possible attributes which are
logically or functionally determined by X is called
attribute closure of X [X]*

Page No:- 01

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology
https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Key Concept

Primary key: Randomly chosen candidate key is the
primary key which is Unique and Not Null.

Alternate Key: All other keys are alternate keys from
the set of candidate keys, except the primary key.

Super-key: If all attributes of relation R is determind
by attribute (attribute set) closure of X [X]* . The
superset of the candidate key is known as the super
key in a relation. Then X is super key.

Example: consider Emp-id as a candidate key in a
relation Employee.
Then, {Emp-id, Emp-name} is a super-key.

Candidate key: The minimal superkey is defined as
the candidate key.

R(ABCDE) [AB — C, C — D, B — EA]

[AB]* = [ABCDE], therefore AB is super key,

[Al" = [A]

[B]* = [ABCDE], therefore B is the candidate key.

Key / Prime attribute: Set of attributes which belongs
in any candidate key.

Non Key / Non Prime attribute: Set of attributes
which does not belong in any candidate key.
Key/prime attribute = [B]

Non key/ Non Prime attribute = [A, C, D, E]

Note: To find the candidate key, first find the super
key, then check the minimum of that super key.

Membership set

Let F be a given set of functional dependencies.

A functional dependency X—Y is said to be a member
of F* (i.e., logically implied by F) iff

X>YEF &YX

Where X" is the attribute closure of X with respect to
the set F.

Equality between 2FD set:
Let two FD set F & G give

— Fowen & ¢ Tove.
F=Gl 6 < & taF : e

Finding Multiple candidate Key : First find any one
candidate key in relation R, the attribute present in
that candidate jey is key/prime attribute.

If Xuwowe — {Prime/Key Attribute}, then multiple
candidate keys are possible.

Relation FoG GoF F=G Uncomaparabl
e

F Covers G True False True False

G Covers F False True True False

Minimal cover: To eliminate redundant FD.

Minimal / Canonical cover: Sets of FD may have
redundant dependencies that can be inferred from
others.

Procedure to find canonical cover:
1. Split the FD such that RHS contain single attribute
Ex A—-BC:A—B A—C
2. Find the redundant attribute on LHS and delete
them.
3. Find the redundant FD and delete them from the
FD set. {A—-B,B—-CA—-C}:{A—-BB—>C}

Note: Minimal cover may or may not be unique i.e. we
can have more than one.

Finding number of super key: Let R be the relational
schema with n attributes A1, A, ....A,

Total number of super keys = 2™

Ex. With only CK A1, A2

Maximum number of candidate key = " C |n2;, Where n
is number of attributes.

Normalization

Why Normalisation?

To eliminate the following anomalies.
Insertion Anomalies
Updation Anomalies
Deletion Anomalies

Properties of Decomposition

Page No:- 02

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

Lossless decomposition:

i) If (R; @ R, x Ry ™ ... @ R,) = R then it is lossless
join decomposition

ii) If (R; @ R, @ ... @ Ry) D R then it is lossy.

Dependency preserving decomposition:

i) If {F1 UF, UF;...UF,} =F, then decomposition is
dependency preserving.

ii) If {F; UF, UF;..UF,} cF, thenitis not
dependency preserving.

Normal Forms

First Normal Form (1NF)

e A relation is in First Normal Form (1NF) if it does
not contain any multivalued or composite
attributes.

e All attributes must contain atomic (indivisible)
values.

e By default, RDBMS relations are in TNF.

Example:

If an attribute contains a list like {Math,
English}, it's not in TNF.

Instead, split into multiple rows or use
separate records.

Second Normal Form (2NF)

The second normal form (2NF) is based on the
concept of full functional dependency. A functional
dependency X — Y is a full functional dependency if
removal of any attribute A from X means that the
dependency does not hold any more; that is, for any
attribute A € X, (X - {A}) does not functionally
determine Y. A functional dependency X — Y is a
partial dependency if some attribute A € X can be
removed from X and the dependency still holds; that is,
for some A € X, (X - {A}) — Y. In Figure 15.3(b), {Ssn,
Pnumber} — Hours is a full dependency (neither Ssn
— Hours nor Pnumber — Hours holds). However, the
dependency {Ssn, Pnumber} — Ename is partial
because Ssn — Ename holds.

Definition. A relation schema R is in 2NF if every
nonprime attribute A in R is fully functionally
dependent on the primary key of R.

GATE W¢
Third Normal Form (3NF)

e Arelation is in Third Normal Form (3NF) if:
1. Itis in Second Normal Form (2NF), and

2. For every non-trivial functional dependency X—YX
\rightarrow YX—Y, at least one of the following
holds:

Either X is a superkey, or
Y is a prime attribute (i.e., part of some candidate
key).

Non-trivial FD: X—Y is non-trivial if XNY = ® &
must satisfy FD definitions

Why 3NF?

Eliminates transitive dependencies.

Allows some redundancy to preserve dependency
preservation and lossless decomposition.

Boyce-Codd Normal Form (BCNF)

e A relation is in BCNF if:
For every non-trivial functional dependency
X—=Y
— X must be a superkey.

This is stricter than 3NF because it does not
allow any dependency where the
determinant is not a superkey, even if Y is a
prime attribute.

Quick Note:
e [f a relation has only two attributes, it is
always in BCNF regardless of the dependency.

Design goal 1N | 2 3 BCNF

0% No | No | No | YES(Suffers from multivalued
Redundancy attributes)

Lossless Join yes | yes | yes | yes

Dependency yes | yes | yes | May or may not be preserved
Preservation

Page No:- 03

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Note:
2NF 3NF Checking BCNF Checking
Checking
[Proper Ris in 3NF if every non- Ris in BCNF if every X —
Subset] of trivial FD must satisfy the A non-trivial FD must
Ck. — [non | following: satisfy the following
key] Either x: Super Key , or Condition:
[attribute] y: key/prime attribute X: Super Key.
~ Notin
2NF.
Page No:- 04

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

RN

GATE CSE BATCH

KEY FiGFLIGHTS:
* 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/AGGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENRETT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Module: 2 ER Model

A description of data in terms of a data model is called
schema.
Entity relationship set: It is used to relate two or
more entity sets.
Entity: Real-world object (e.g., Student).

Strong Entity: Exists independently; has a
primary key.

Weak Entity: Depends on strong entity; no
primary key.

Attributes: Describe properties of an entity.
Simple (Atomic), Composite, Derived,
Multivalued.

Relationship: Association among entities.
Degree of Relationship Set: Specifies the

number of Entity Set participate in a relationship set.
Mapping Cardinality: 1:1, 1:N, M:1, M:N.

Participation:

Total (Double line): Every entity must
participate.

Partial (Single line): Optional participation.

ER to Relational Mapping

Strong Entity — Relation with primary key.

Weak Entity — Include partial key + key
attribute of strong(Owner) Entity set

1:1 Relationship — Foreign key in either
entity.

1:N Relationship — Foreign key in "N" side.

M:N Relationship — Create separate relations
with foreign keys.

Multivalued Attribute — Create new relation.

Aggregation — Treat relationship set as
entity.

Keys:
Primary Key: Unique identifier for entity.
Discriminator/Partial Key: Used in weak entity sets.

Partial participation on both side of binary relationship

Entity in ER Model

D Atrbbute in ER model
<\ Relationship
_ Connection between entity and relationship
“ H Weak Entity
= = Multivalued attribute
)
A Primary key
. 11; Derived attribute
ER RDBMS
One : One Merge relationships set any one side. 2
table required
1: M Merge relationship set towards many
sides. 2 table required
M:M Separate table for each entity set and
relationship set. 3 table required
M:1 Merge relationship set towards many

side. 2 table required

Full participation on “one” side of many to one

relationship

Merge the entities and relationships set into a
single relational table. So, 1 table.

Full participation on "Many” side of Many-to-one

relationship

Merge relationship set towards many sides. So,
2 relational tables.
Full participation on any “one” side in one-to-one

relationship

Merge the entity sets and relationship sets into
a single table. So, 1 table.

Full participation on any “Many” side of Many-to-
Many relationship

Merge relationship set towards any “Many”
side of relationship. So, 2 table.

Page No:- 05

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Module - 3 Relational Model and SQL

Derived Operator
1. JOIN & its type
2. Intersection

3. Division

Relational Algebra (RA)

Basic Operators:

Selection (o), Projection (), Rename (p)
Set Operations:

Union (U), Intersection (N), Difference
(-)
Cartesian Product (x)
Joins:

Natural Join (), Theta Join, Outer Join
(Left, Right, Full)

Tattribute name (R): It is used to project required
attributes from relation R.

ocondition(p) (R): It is used to select records from
relation R, those satisfied by the condition (P).

Cross product (x): R x S - It results in all attributes of
R followed by all attributes of S, and each record of R
paired with every record of S.

Degree (R x S) = Degree (R) + Degree (S)

Note: Relation R with n tuples and Relation S with 0
tuples then number of tuples in R x S = 0 tuples

Join (x):

1. Natural join ()

RS distinct attributes(equality between
common attributes of Rand S (R x S))

deg(R = S) = deg(R) + deg(S) - number of
common attribute.

Note: Natural join is equal to cross-product if the join
condition is empty.
Number of n-ary relation that can be formed over n-
domains having n elements : n"
Number of equivalent relation

Conditional Join ()

RxcS=oc(RxS)

Outer Joins:
(@) LEFT OUTER JOIN

R > S: It produces

(R x S) {Records of R those are failed
join condition with remaining attributes null}
(b) RIGHT OUTER JOIN (<)

R p><S : It produces]

(R S) {Records of S those are failed
join condition with remaining attributes null}
(C) FULL OUTER JOIN (><)

R>xS=Rx>S) RexS)

Rename(p): It is used to rename table names and
attribute names for query processing.

Example:

(I) Stud (Sid, Sname, age)

p(Temp, Stud) : Temp (Sid, Sname, age)

Division: The division operation is used in relational
algebra to find tuples in one relation that are
associated with all tuples in another relation.

Given two relations: R(A, B), S(B)

The operation R + S returns those values of A

such that for every value of B in S, the pair (A,

B) is present in R.
Expansion of Division Using Basic Operators:

1. Compute the cross product of all student IDs

with all course IDs: nsid(Enroll) xncid(Course)

This gives all possible enroliments that
should exist if each student were enrolled in
every course.
Subtract the actual Enroll relation:
(nsid(Enroll) xncid(Course))-Enroll

This yields the set of (sid, cid) pairs that
do not existin the Enroll relation.
Project the student IDs from the result of Step
2: nsid((rsid (Enroll) xicid(Course)) —Enroll)

These are the students who are not
enrolled in every course
Subtract this result from the set of all student
IDs:
nisid(Enroll) -nsid((nsid (Enroll) xnicid(Course)
)-Enroll)

This final expression gives the students
who are enrolled in every course.

Page No:- 06

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Result : msid(Enroll) -nsid((rnsid (Enroll) xncid
(Course))-Enroll)

Set Operator:

Union:

R and S relations union compatible iff-

(i) Arity of R equal to Arity of S and

(i) Domain of attributes of R must be the same as
domain of attributes of s respectively.

Structural Query language

Create
Alter
DDL
Drop
Truncate
Select
Insert
/— DML
SQL commands Update

Delete
Grant
DCL —<
Revoke
\ /-— Commit
TCL —t Rollback
Savepoint

DDL (Data Definition Language): Used to define or
modify the structure of database schema objects
(like tables, views, indexes).

CREATE: Creates a new table, view, or other
object.

ALTER: Modifies an existing object (e.g., add a
column).

DROP: Deletes an existing object.

TRUNCATE: Removes all rows from a table
quickly (no rollback).

DML (Data Manipulation Language): Used to
manipulate data in existing tables.
SELECT: Retrieves data from one or more
tables.

INSERT: Adds new rows into a table.
UPDATE: Modifies existing rows in a table.
DELETE: Removes rows from a table.

DCL (Data Control Language): Used to control
access and permissions to the database.
GRANT: Gives privileges to users.
REVOKE: Withdraws previously granted
privileges.

TCL (Transaction Control Language): Used to

manage transactions and control their execution.
COMMIT: Saves all changes made in the
current transaction.
ROLLBACK: Undoes all changes since the last
commit.
SAVEPOINT: Sets a point within a transaction
to which a rollback can be done.

Relational Query and SQL query

SQL : SELECT DISTINCT A1, A2, ...... An

FROM Ry, Ry, ...... Rn

WHERE P;

SQL

SELECT DISTINCT A1, A2, ...... An
FROM R1, R2, ...... Rn

WHERE condition

GROUP BY (attributes)

HAVING condition

ORDER BY (attributes) (DESC)
Execution Flow

FROM cross-product of relations
WHERE Selection operator () to apply condition for
each record

GROUP BY

HAVING

SELECT

DISTINCT ORDER BY

GROUP BY:

« It is used to group records data based on specific
attributes.

« It GROUP BY clause used then

(a) Every attribute of the GROUP BY clause must be
selected in SELECT clause.

Page No:- 07

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

(b) Not allowed to select any other attribute in the
SELECT clause.

Allowed to select aggregate function along with
GROUP BY attribute in SELECT Clause.

HAVING Clause

« HAVING clause must be followed by GROUP BY
clause.

« HAVING clause used to select groups that are
satisfied having clause condition.

« HAVING clause condition must be over aggregation
function such as some (), Every () etc. but not allowed
direct attribute

comparison

Note: Every Query which is written by using
HAVING clause can be re-written by using WHERE
clause.

Nested Query Without Co-relations: Inner query
independent of outer query.

SQL Constraints
Key Properties:
Constraints can be defined:
During table creation (CREATE TABLE)
After table creation using ALTER

TABLE
If any data violates a constraint, the database
system rejects the operation (insert/update).

1. Not Null: Ensures that a column must always
hold a value

2. Unique: Ensures all values are distinct in the
column or column set

3. Primary Key: Combines NOT NULL + UNIQUE
Uniquely identifies each record. Can consist of
one or more columns (composite key). Each
table can have only one PRIMARY KEY

4. Foreign Key: Maintains referential integrity
Enforces a relationship between columns in
two tables
The referencing column(s) must match values
in the referenced table's PRIMARY or UNIQUE
key. Can be NULL if not marked NOT NULL

5. Check :Restricts the range or condition of
values in a column

6. Default: Specifies a default value when none is
provided during insert

ALTER TABLE Statement
The ALTER TABLE command is used to modify the
structure of an existing table.
Add a new column
Drop (delete) a column
Modify column data type, rename columns, rename
table (DBMS-specific)
Aggregate Functions: Aggregate functions perform
calculations over a set of rows and return a single
summary value.

1. Avg() - Mean value of numeric column

2. Count() - Returns the number of rows that
match a condition.
Sum() - Returns the total values
Min() - Returns the smallest value
5. Max() - Returns the largest value

= O

Nested Query Without Co-relations: It is
independent of the outer query.
Inner Query — Runs independently and
returns a result.
Outer Query — Uses the inner result to

complete execution.
Example:
SELECT name
FROM employees
WHERE dept_id IN (

SELECT id

FROM departments

WHERE location = “Delhi”
);
Co-related Nested Query
In Nested Co-related query inner query uses attributes
from outer query tables.
In Co-related Nested query inner query allowed in
WHERE, HAVING clause of outer query.
Example: SELECT A

FROM R
WHERE (SELECT count(*)
FROM S
WHERE S.B < RA) < 5;

NOTE: If co-relation in WHERE clause then inner query
re-computes for each record of outer query From

Page No:- 08

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

RN

GATE CSE BATCH

KEY FiGFLIGHTS:
* 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/AGGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENRETT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

clause. If correlation in HAVING clause then inner
query re-computes for each group of outer query.
Function used for Nested Query

1. IN/NotIN:

2. ANY: Compares a value with each value
returned by the subquery. Used with
comparison operators: =, <, >, <=, >=, <>

3. ALL: Compares a value with all values returned
by the subquery.

4. EXIST / NOT EXISTS: Check whether a
subquery returns any rows. (Result empty or
non-empty)

SQL Join query
SELECT DISTINCT T1.eid
FROM Emp T1
JOIN Emp T2 ON T1.sal > T2.sal
WHERE T1.gen = 'Female' AND T2.gen = 'Male’;
SQL Nested Query
SELECT eid
FROM Emp
WHERE gen = 'Female’
AND sal > ANY (
SELECT sal
FROM Emp
WHERE gen = 'Male'
);
SQL Co-related Nested Query
SELECT eid
FROM Emp T1
WHERE T1.gen = 'Female’
AND EXISTS (
SELECT *
FROM Emp T2
WHERE T2.gen = 'Male'
AND T1.sal > T2.sal

Page No:- 09

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Module - 4 File Structure & Indexing (B and B+
tree)

Indexing Types

Block Factor of Index = | (B-H) / (k + P) |
entries/block

where , B = Block size (in bytes)

H = Overhead per block (e.g., block headers, pointers,
etc)

k = Number of fields per index entry

P = Size of one field (in bytes), or size of one index
entry

1. Single-Level Index

A single-level index contains a sorted list of index
entries, each pointing to a block or record in the data
file.

(a) Primary Index (key + ordered file)

(b) Clustered index (non key + ordered file)

(c) Secondary Index (key/non key + unordering
file)

At most one primary index per relation. Any number
of secondary indexes can be created on non-primary
key attributes.

A relation can have either a primary (sparse) index
or a clustered index, but not both on the same
attribute.

A clustered index determines the physical order of
records; hence only one clustered index per relation.
If the number of levels = k, and we also access the
data block, Total block accesses = k +1

Then total number of block accesses to locate a record
isk + 1

Multilevel Index

A multilevel index treats the index file itself as an
ordered file (first or base level). A second-level index
is then created on this first-level index, acting like a
primary index using block anchors—one entry per
block of the first level. Since all index entries are of the
same size, the blocking factor remains the same
across all levels.

B Tree

Spanned organisation

Unspanned organisation

A record stored in more than 1
block

Record can be stored in a
particular block

Blocking factor = Block size /

Blocking factor = |Block size /

Record size
No memory wastage but block
access cost increase

Every internal node except the root node contains at
least (min) [P/2] block pointers (min keys [P/2] - 1)
and maximum P block pointers (maximum keys P - 1).
Root can contain at least 2 block pointers (min 1 key
in root node) and maximum P block pointers (max P -
1 keys).

Keys within the node should be in ascending order.
Each leaf node should be at the same level.

A B-tree maintains balance and prevents excessive
space waste due to deletion by enforcing specific
constraints.

Internal Node structure <P1, <K1, Pr1>, P2, <K2,
Pr2>, ..., <Kq-1, Prq-1>, Pq>

Pi is a tree pointer (points to a subtree).

Kj is a search key.

Prj is a data pointer (points to the actual data record
or block for key Kj).

g is the number of keys in the node (q < p).

Record size|
Block access cost reduced but
wastage of memory

B - Tree Formulas:

Order: P
Minimum | Maximum
Root ( Bp) 2 P
Non - Root ( Bp) [P/2] P
Root (Keys) 1 P-1
Non Root (Keys) | [P/2] -1 P-1

Order P:

P * Bp + P(Keys + Rp) <= Block size.

(P + 1) Bp + P(Keys + Rp) <= Block Size

Note: Maximum level: At each level min # key & min #
Bp ([P/2]-1, [P/2])

Minimum level: At each level maximum # key & max #
Bp (P-1, P)

Applicable for both B and B+ Tree

B+ Tree
All keys are available at leaf node

Page No:- 10

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Internal node: No read pointer.
Leaf node contains Key & Record pointer + 1 Block
pointer

Structure of Internal node:

B‘] K‘] BZ K2 .o Bp-1 Kp-‘] Bp

Left biasing =
If x <K,
If Ki < x <K,

Right biasing =
If x < Ky
If Ky £x < K,

Formula: P * BP + (P - 1) * Key < Block Size
Structure of Leaf node:

K1R1 K1R2 Kp.1Rp.1 Bp

Formula: (P - 1) *[ Key + R,] + 1 * BP < Block Size

In a B-tree, every value of the search field appears
once at some level in the tree, along with a data
pointer.

In a B+ tree, data pointers are stored only at the leaf
nodes of the tree; hence, the structure of leaf nodes
differs from the structure of internal nodes.

B+ Tree is best suited for sequential access to a range
of data records.

Page No:- 11

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Chapter 5: Transaction and Concurrency Control
A transaction is a collection of operations that forms a
single logical unit of work.

Operation in Transaction

Read (A) - This operation transfers the current value of
data item A from the database (typically stored on disk)
into a local variable in the transaction's main memory
workspace. It enables the transaction to access and use
the value of A during its execution.

Write (A) - This operation stores the modified value of
data item A from the transaction's local workspace (in
main memory) back into the database (on disk), thereby
making the changes made by the transaction visible in
the database.

BEGIN TRANSACTION - Marks the starting point of a
transaction. Allocates resources and begins logging.
END TRANSACTION - Marks the logical end of the
transaction. Actual commit or abort happens later.
Commit - Makes all changes made by the transaction
permanent in the database.

Abort - Undoes all changes made by the transaction
and restores the database to its previous consistent
state.

Atomicity : Atomicity ensures that a transaction is a//-
or-nothing — either all operations of the transaction
are executed successfully, or none of them are.

Goal: Prevent partial updates that can lead to data
inconsistency.

Maintained by: Recovery subsystem using undo
(rollback) operations.

Operation Purpose Affects
Redo Reapply changes of | Committed
committed Transactions

transactions

Uncommitted
Transactions

Undo Revert changes of
uncommitted
transactions

All transactions
since last checkpoint

Limit redo/undo
scope for recovery

Checkpoint

System crash - If System crash/failure happen,
required operation to recover are

(I) All committed transactions until the previous
checkpoint will perform Redo.

(I) All uncommitted transactions in the entire system
will perform undo.

(I Clean all log entries.

Roll back - Undo modification of database files which
are done by failure transaction.

Durability - If a transaction completes successfully and
the user is notified, the changes made by the
transaction must persist, regardless of what happens
next.

Durability Mechanisms

Write-Ahead Logging (WAL): Log records are
written before actual data is updated.

Redo Logging: During recovery, the system reapplies
the effects of committed transactions using the log.

Stable Storage: Assumes existence of a reliable
storage medium that survives crashes (or is emulated
using replication, RAID, etc.).

Consistency - It ensures all integrity constraints are
preserved.

Isolation - Each transaction should appear to execute
in isolation, even when multiple transactions are
running concurrently.

Isolation issues - Dirty read, Non-repeatable read,
Phantom read.

Schedules - Time order execution sequence of two or
more transactions.

Schedules

Schedule: Sequence of operations from multiple
transactions.

Serial Schedule: One transaction executes completely
before another.

Concurrent Schedule: Interleaved operations of
transactions.

Serializable Schedule: Equivalent to a serial schedule.

Page No:- 12

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Types of Serializability
Conflict Serializability
Uses Precedence Graph.

No cycles = Conflict serializable. (CNC)

Conflict Operations:

Read-Write Problem

T1 T2
W(A)
R(A)
O Write-Read
T1 T2
R(A)
W(A)
O Write-Write
T1 T2
W(A)
W(A)
View Serializability
e Three checks:
Initial read

e Conflict serializable = View serializable, but

Updated read

Final write

not vice versa.

Why Concurrent Execution?

e Increases throughput of the system
e Maximizes resource utilization
e Reduces waiting time for users

T1

T2

W(A)

R(A)

Schedule type Property

Irrecoverable T2 reads dirty data from T1 and commits
before T1

Recoverable T2 commits after T1 commits.

Cascading T2 reads from uncommitted T1; failure of T1

Rollback rolls back T2.

Cascadeless T2 reads data from committed T1 only.

Strict Schedule | No overwrites on uncommitted data.

Guarantees atomicity.

Concurrency Control with Locks
Lock-Based Protocols

Lock Granularity

Granularity refers to the size of the data item that
can be locked. Coarser granularity reduces overhead
but limits concurrency, while finer granularity increases
overhead but allows higher concurrency.

Database-Level Locking

Locks ensure mutual exclusion, allowing only
one transaction to access a data itemin a
conflicting mode at a time.

A transaction must acquire a lock on a data
item before accessing it.

Locks are automatically released when the
transaction commits or aborts.

Locking protocols are sets of rules that
govern how locks are acquired and released to
ensure serializability.

Improper use of locks may lead to issues like
deadlocks, starvation, and reduced

concurrency.

Locking restricts non-serializable schedules
by design.

Locks the entire database.

Use Case: Suitable for batch jobs or bulk
updates.

Page No:- 13

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

e Drawback: Poor concurrency — only one

transaction can access the DB.

Table-Level Locking

e Locks the entire table.

e Use Case: Useful when transactions access
entire tables.

e Drawback: Reduces concurrency if multiple

transactions access different rows.

Page-Level Locking

e Locks a disk page (unit of storage, typically
4KB-8KB).

e A page may hold multiple rows or parts of a
table.

e Use Case: Balanced trade-off between
concurrency and overhead.

e Most popular in multi-user DBMS.

Tuple/Row-Level Locking
e Locks individual tuples (rows).

Use Case: Allows maximum concurrency.

Drawback: Higher overhead (more locks, more
tracking).

Attribute-Level Locking

e Locks a specific column/attribute.

e Rarely used in practice due to high
complexity.

Row-Level Locking

e Locks individual tuples (rows) in a table.

e Allows maximum concurrency, as multiple
transactions can access different rows.
e Even if rows are on the same page, they can

be accessed in parallel.

e Overhead: High, due to managing a large
number of locks.
e Common in high-concurrency systems like

banking and real-time OLTP.

Field-Level Locking (Attribute-Level)
Locks specific attributes/columns within a
tuple.

Allows highest concurrency, since multiple
transactions can access different fields of the
same row.

e Rarely used in practice due to:
O Complexity in implementation
O Very high CPU and memory overhead
e Mostly theoretical and not supported in
common DBMS implementations.
Lock types

1. Binary locks
0 — Unlocked (available)
1 — Locked (unavailable)
Every transaction must lock before accessing a data
item and unlock after operation.
Issues :
Doesn't distinguish between read/write intent.
Leads to low concurrency.
Susceptible to deadlocks and irrecoverability.

2. Shared/Exclusive Locks

Shared (S Mode)

Allows read-only access to a data item.

Multiple transactions can hold shared locks
simultaneously.

No conflict between transactions if all are reading
only.

Conflict when transaction wants to read an exclusive
lock not held on item.

Page No:- 14

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Lock compatibility matrix

e A transaction may be granted a lock on a data
item if the lock mode is compatible with the
existing locks held by other transactions.

e Multiple transactions can simultaneously
hold Shared (S) locks on the same item (read-
only).

e [f any transaction holds an Exclusive (X) lock,
no other transaction can obtain either shared
or exclusive lock on that item.

Request | /Held — S X
S Lock can be granted Lock request must
wait
X Lock request must Lock request must
wait wait

Problem with locking
1. Non-Serializable Schedules
Problem: Concurrent execution might lead to
inconsistent results if not carefully managed.
Solution: Enforce serializability using two-
phase locking protocol.
2. Schedule may create deadlocks.
Problem: Two or more transactions wait
indefinitely for each other’s locks.
Solution: Use deadlock handling techniques:
Deadlock detection and deadlock prevention

Issue Cause Solution
Non-Serializable Improper Two-Phase Locking
Schedule interleaving (2PL)
Deadlock Circular wait on Detection or
locks Prevention
Techniques

2 Phase locking (2PL) : Two-Phase Locking ensures
conflict serializability by dividing the transaction's
locking behavior into two phases:

Growing Phase: Transaction acquires locks (shared or
exclusive).

No lock can be released during this phase.

Shrinking Phase :

Transaction releases locks.

No new lock can be acquired once this phase begins.

Governing Rules of 2PL:

For a transaction to follow Basic 2PL, the following
must hold:
1. No conflicting locks can be held by different
transactions on the same data item.

2. No unlock operation can occur before all
required locks are acquired.

3. No data item is modified until all necessary
locks are successfully obtained.
Once a lock is released, no further locks can be
requested — this defines the lock point of the
transaction.

Basic 2PL Protocol
e Ensures conflict serializability.

e Lock point determines equivalent serial order.
e Does not ensure recoverability or cascading
abort freedom.
Problems:
e Irrecoverable Schedules: Transactions might
read uncommitted changes.

o Deadlocks: Due to circular waits.

e Starvation: Transaction may never acquire
needed locks.

Strict 2PL Protocol
e Extends Basic 2PL by holding all exclusive
locks until commit/abort.
e Ensures:

O Conflict serializability

O Strict recoverability (no cascading
aborts)

e Commonly used in real-world DBMS (e.g.,
Oracle, SQL Server)

Page No- 15

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Problems:
e Starvation is still possible (solution: fairness
policy).

e Not deadlock-free

NOTE:

Every schedule allowed by 2PL is always conflict
serializable.

But not every conflict serializable schedule is
allowed by 2PL.

Lock point of each transaction determines the serial
order in 2PL.

Rigorous Two-Phase Locking
Rules:
e A transaction holds all its locks (Shared or

Exclusive) until it commits or aborts.

e Lock acquisition follows standard 2PL (growing
then shrinking phase).
e Ensures:
O Conflict serializability
O Strict recoverability
O Cascadeless schedules
Still has:
e Deadlock possibility
e Starvation possibility (can be handled with

wait-time policies)
Difference Strict and rigorous 2pl

Strict 2PL Rigorous 2PL
Holds exclusive locks | Till commit [ Till commit
Holds shared locks May release | Till commit
early

View Serializable

L— Conflict Serializable
L— Strict

L Cascadeless

L Recoverable
L— Irrecoverable

All conflict serializable schedules are view
serializable.

All strict schedules are cascadeless and recoverable.
Rigorous 2PL ensures the strictest class: strict,
conflict-serializable, and recoverable

Rigorous 2PL (Two-Phase Locking) Protocol

In Rigorous 2PL, a stricter version of 2PL:
All locks (both Shared S and Exclusive
X) are held until the transaction
commits or aborts.
This guarantees strict schedules, which
are both conflict-serializable and
cascadeless.

Strict 2PL holds only exclusive locks until

commit.

Rigorous 2PL < Strict 2PL < Basic 2PL (in terms

of restrictiveness and guarantee of

serializability).

Timestamp Ordering Protocols
For each data item X, the system maintains:
WTS(X): The largest timestamp of any
transaction that successfully wrote X.
RTS(X): The largest timestamp of any
transaction that successfully read X.

Let TS(T) be the timestamp of transaction T.
1. If T issues R(X) (read operation):
If TS(T) < WTS(X):
Reject the read; rollback T (as a newer
transaction has already written X).

Else:
Allow the read.
Update RTS(X) = max(RTS(X), TS(T)).

2. If T issues W(X) (write operation):
If TS(T) < RTS(X):
Reject the write; rollback T (a younger
transaction has already read X).
If TS(T) < WTS(X):

Page No:- 16

GeoksforGeeks



https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

GATE B¢

Reject the write; rollback T (a younger
transaction has already written X).
Else:

Allow them to write.

Set WTS(X) = TS(T).

Thomas's Write Rule (TWR)
1. If T issues R(X):
If WTS(X) > TS(T):
rollback T.
else
execute
Set RTS(X) = max{ TS(T), RTS(X)}

2. If T issues W(X):
If TS(T) < RTS(X):
Reject the write; rollback T.
If TS(T) < WTS(X):
Ignore the write (it is obsolete write).
Else:
Perform the write.
Set WTS(X) = TS(T).

Strict Timestamp Ordering Protocol

A transaction Tj that issues a read or write (R(X) or
W(X)) operation must wait until the transaction Ti that
last wrote to X has committed or aborted, if TS(Tj) >
WTS(X).

Deadlock Prevention Using Timestamp-Based
Schemes

1. Wait Die protocol (Preemptive)
Transactions are ordered by their
timestamps.

Smaller timestamp — Older transaction
Larger timestamp — Younger transaction
Transactions are ordered by their timestamps:
smaller timestamp = older transaction.
If a transaction T, requests a lock held by T5:
If TS(T,) < TS(T,) (i.e., T, is older):
— T, waits.
If TS(T,) > TS(T,) (i.e., T4 is younger):
— T4 is rolled back (dies) and
restarted with the same timestamp.
No deadlocks occur.

Starvation is possible for younger transactions, as they
may be repeatedly rolled back if older transactions
continuously block them.

2. Wound Wait Protocol (Non- Preemptive)

Transactions are ordered by their timestamps.
Older transactions have higher priority over
younger ones.
Transactions are again ordered by timestamp.
If a transaction T, requests a lock held by T:
If TS(T,) < TS(T,) (i.e., T, is older):
— T, preempts T, — T, is
rolled back (wounded), and T, gets the lock.
If TS(T,) > TS(T>) (i.e, T, is younger):
— T, waits.

No deadlocks occur.

Starvation is possible for younger transactions, as they
may be forced to wait if older transactions repeatedly
preempt them.

Page No:- 17

GeoksforGeeks


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

RN

GATE CSE BATCH

KEY FiGFLIGHTS:
* 300+ HOURS OF RECORDED CONTENT
* 900+ HOURS OF LIVE CONTENT
* SKILL ASSESSMENT CONTESTS
« 6 MONTHS OF 24/7 ONE-ON-ONE Al DOUBT ASSISTANCE
* SUPPORTING NOTES/DOCUMENTATION AND DPPS FOR EVERY LECTURE

COURSE COVER/AGGE:

* ENGINEERING MATHEMATICS

* GENERAL APTITUDE

* DISCRETE MATHEMATICS

* DIGITALLOGIC

* COMPUTER ORGANIZATION AND ARCHITECTURE
* C PROGRAMMING

* DATA STRUCTURES

* ALGORITHMS

* THEORY OF COMPUTATION

* COMPILER DESIGN

* OPERATING SYSTEM

* DATABASE MANAGEMENT SYSTEM
* COMPUTER NETWORKS

LEZRNING BENEFIT:

* GUIDANCE FROM EXPERT MENTORS

* COMPREHENSIVE GATE SYLLABUS COVERAGE

* EXCLUSIVE ACCESS TOE-STUDY MATERIALS

* ONLINE DOUBT-SOLVING WITH Al

* QUIZZES, DPPS AND PREVIOUS YEAR QUESTIONS SOLUTIONS

ENROLL TO EXCEL IN GATE ENRETT
m AND ACHIEVE YOUR DREAM IIT OR PSU! m


https://www.geeksforgeeks.org/courses/category/gate#computer-science-information-technology

	Armstrong's Axioms / Inference Rules
	Armstrong’s Axioms (or inference rules) provide a sound and complete set of rules for reasoning about functional dependencies (FDs) in relational database design.
	Let X, Y, Z, W be sets of attributes. The following three fundamental axioms form the basis of all functional dependency inference:
	Properties of Decomposition
	Lossless decomposition:
	Dependency preserving decomposition:
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Why 3NF?

	Boyce-Codd Normal Form (BCNF)
	Quick Note:

	Relational Algebra (RA)
	DML (Data Manipulation Language): Used to manipulate data in existing tables.
	DCL (Data Control Language): Used to control access and permissions to the database.
	TCL (Transaction Control Language): Used to manage transactions and control their execution.
	Key Properties:

	ALTER TABLE Statement
	Indexing Types
	1. Single-Level Index


	Schedules
	Schedule: Sequence of operations from multiple transactions. Serial Schedule: One transaction executes completely before another. Concurrent Schedule: Interleaved operations of transactions. Serializable Schedule: Equivalent to a serial schedule.

	Types of Serializability
	Conflict Serializability
	Uses Precedence Graph. No cycles ⇒ Conflict serializable. (CNC) Conflict Operations:
	Read–Write Problem
	○ Write–Read
	○ Write–Write
	View Serializability
	● Three checks:  Initial read
	Updated read
	Final write
	● Conflict serializable ⇒ View serializable, but not vice versa.
	Why Concurrent Execution?

	Lock-Based Protocols
	Lock Granularity
	Database-Level Locking
	Table-Level Locking
	Page-Level Locking
	Tuple/Row-Level Locking
	Attribute-Level Locking

	Row-Level Locking
	Field-Level Locking (Attribute-Level)
	1. Non-Serializable Schedules

	Basic 2PL Protocol
	Problems:

	Strict 2PL Protocol
	Problems:
	Rules:
	Still has:

	Rigorous 2PL (Two-Phase Locking) Protocol
	1. If T issues R(X):
	2. If T issues W(X):

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

