m | Model Training

Kerasis an easy-to-use library for building and training deep Description
learning models. It provides a simple way to create complex neural
networks without dealing with complicated details. HKeras works compile() Configures the model for training by specifying

I A : the optimizer, loss function, and metrics.
with TensorFlow, which helps to run the models. You can use Keras to build
different types of models, like those for image recognition or analyzing text. Tralns the modet ofithe Input daia for a specified
Its clear and straightforward design makes it a popular choice for beginners fit() number of epochs.
and experts who want to quickly try out new ideas in deep learning.

. fit_generator(time bya Pythongenerator,
Installing Keras .

. s evaluate Evaluates the performance of the model on a
PIp install keras {} dataset and returns the loss and metrics.
evalu ate_generato r() Evaluates the model using a data generator, useful

for large datasets that don't fit in memory.

Model Creation

predict() Uses a trained model to make predictions on
new data.
: Createsali stack of | , useful fo
SEQUEﬂtIEﬂ{] sir“ﬁ:;:'ﬁr:ﬂ'd“ﬂl; AYErS: s ' train on batch” Trains the model on a single batch of data at a
- time.
Model Used to create a more flexible model by specifying
odel() inputs and outputs. test_on_batch() Tests the model on a single batch of data.

it das Callbacks

Description

Function

’ . Stops training early when a monitored metric
Creates a fully connected layer, where each neuron is EarlvStoppin P g earty
DEHSE[} connected to every neuron in the previous layer. y PP gl:} stops improving,
. Saves the model after each epoch if it has
Creates a 20 convolutional layer, used for ModelCh Etkpﬂ'lnt{:l improved, useful for continuing training later.

EGH?ZDU processing images.

ReduceLROnPlateau() :ﬁp‘ﬁ; mgﬁﬂ :igﬂg rate when a metric has

Performs max pooling operation, reducing the

MaxPoaling2Dl) <z stthe e TensorBoard|) i e A

Creates a Long Short-Term Memory (LSTM) layer, %
LSTM [} useful for sequential data like text. Loss Functions

Description

Adds dropout regularization to prevent overfitting by

Dropout() : iy _ :
P randomly setting a fraction of inputs to zero, bin ary_crosse ntmpy’{} E;?.F;EIE::;:E:;; :nmts:sﬁg.tmp}f loss, used for
« Creates an embedding layer, useful for working with : Computes categorical cross-entropy loss, used
Embedd II"IE{] categorical or sequenEialdata, such as words. 5 EEtEgﬂ rica l—chSEE"t ro p}r{] for multi-class classification tasks.

Computes the mean squared error loss, used

mean_squared_error() for regression tasks.

Flattens the input data, often used to convert the
Flatten H output of convolutional layers to a 1D array for fully
connected layers.

Metrics
3 Applies global average pooling to 2D data, reducing
GlobalAveragePooling2D() the size by averaging across all the spatial
dimensions.
Computes the accuracy of the model, often
Concaten Et'E“ Merges multiple models or layers into one layer. accae Cy'l::l used for classification tasks.
AUC() Computes the area under the ROC curve, used

for binary classification tasks.

Keras Cheat-Sheet

Keras is an easy-to-use library for building and training neural networks. It helps create complex models for tasks like image recognition, language processing,
and more. Keras provides simple ways to design models using two main types of tools: Sequential (for basic models) and Functional (for more complex ones). It
works well with TensorFlow, which helps run the models efficiently. Keras is popular because it's simple to learn yet powerful enough for experts to use for

serious deep-learning projects.

Sequential Model
model = Sequential()

Functional Model

input = Inputishape={input_shape))

#x= Densel{&d){input)
output = Dense{1}ix)

model = Model{inputs=input, outputs=output)

i Model Compilation

model.compileloptimizer=Adam(),

loss="binary_crossentropy’, metrics=["accuracy’])

Model Evaluation

loss, accuracy = model.evaluate(X_test, y_test)

Callbacks

Early Stopping

early_stop = EarlyStopping{monitor="val_loss',
patience=5)

Saving and Loading Models

Save Mode
model.save|'model.h5")

Load Mode

from tensorflow.keras.models import load_model

model = load_model('model.h5s')

Importing Keras

from tensorflow.keras.models import Sequential, Model

from tensorflow.keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D, LSTM
Model Creation _ from tensorflow.keras.optimizers import Adam
_ from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.preprocessing.image import ImageDataGenerator

Dense Layer

model.add(Dense(units=64, activation="relu’, input_shape={input_size }}}

Convolutional Layer (ConvZD)

Max Pooling Layer (MaxPooling2D)
model.add(MaxPooling2D{pool_size=({2, 2}})

Flatten Layer
model.add(Flatten())

Model Training Custom Layer

history = model.fit(X_train, y_train, epochs=10, from tensorflow.keras import layers
batch_size=32, validation_data=({X_val, y_val))

class CustomLayer(layers.Layer):

o def __init__(self):
Model Prediction super{CustomLayer, self).__init__()

predictions = model.predict{X_input) def call{self, inputs):
raturn inputs * 2

Data Augmentation m

ImageDataGenerator Adam Optimizer
datagen = ImageDataGenerator(rotation_range=40,
width_shift_range=0.2, height_shift_range=0.2)

SGD Optimizer
datagen.fit{X_train)

model.add(ConvZDifilters=32, kernel_size=(3,3), activation="relu’, input_shape=(height, width, channels))}

Saving & Loading

Model Weights

Saving Model Weight
model.save_weights('model_weights. h5')

Loading Model Weight
model.load_weights{'model_weights.h5')

optimizer = Adam{learning_rate=0.001)}

optimizer = SGD{learning_rate=0.01, momentum=0.9)

Custom Loss Function

import tensorflow as tf

def custom_loss(y_true,y_pred):
return tfh.reduce_mean(tf.square(y_true - y_pred))

& GeeksforGeeks

