

WORKSHEET Quantifiers and Negation

Unsolved with Answer key

WORKSHEET

Quantifiers and Negation

- Q 1: Negate the statement: "All integers are even."
- Q 2: Negate the statement: "There is a rational number that is irrational."
- Q 3: Negate the statement: "Every triangle has at least one right angle."
- Q 4: Negate the statement: "Every even number is divisible by 2."
- Q 5: Negate the statement: "There exists a real number that is negative."
- Q 6: Negate the statement: "All prime numbers are odd."
- Q 7: Negate the statement: "There exists a natural number that is a perfect square."
- Q 8: Negate the statement: "For every x $\ln \mathbb{R}$, x^3 is positive."

Answer Key

Quantifiers and Negation

- Negated Statement: "Not all integers are even."
 This means there exists at least one integer that is not even.
- 2. **Negated Statement**: "All rational numbers are rational." This means there is no rational number that is irrational.
- 3. **Negated Statement**: "There exists a triangle that does not have a right angle."
 - This means there is at least one triangle that does not have a right angle.
- 4. **Negated Statement**: "Not every even number is divisible by 2."

 This means there exists at least one even number that is not divisible by 2 (which is logically incorrect but serves the purpose of understanding negation).
- 5. **Negated Statement**: "All real numbers are non-negative." This means that every real number is either zero or positive.
- 6. **Negated Statement**: "There exists a prime number that is even." This means that there is at least one prime number that is not odd (the only even prime number is 2).
- Negated Statement: "For every natural number, it is not a perfect square."
 - This means that every natural number is not a perfect square, which is not true as there are many perfect squares among natural numbers (e.g., 1,4,9,161, 4, 9, 161,4,9,16, etc.).
- 8. **Negated Statement**: "There exists an x \in \mathbb{R} such that x³ is non-positive."
 - This means there is at least one real number x such that x^3 is either zero or negative.

