

WORKSHEET

Inverse Trigonometric Functions

Unsolved with Given Solutions

WORKSHEET

Inverse Trigonometric Functions

Q1: Evaluate $\sin^{-1}(\sqrt{3/2})$.

Q2: Simplify $\cos^{-1}(-1/2) + \sin^{-1}(1/2)$.

Q3: Solve for x: $tan^{-1}(x) = \pi/6$.

Q4: Find the derivative of $y = cos^{-1}(3x)$.

Q5: Evaluate $tan^{-1}(1) + tan^{-1}(1/3)$.

Q6: Solve the equation: $2\sin^{-1}(x) = \pi/3$.

Q7: Find the domain of $f(x) = tan^{-1}(2x+1)$.

Q8: Evaluate $\sin^{-1}(\sin(5\pi/4))$.

Q9: Simplify $tan^{-1}(1/\sqrt{3}) + cot^{-1}(\sqrt{3})$.

Q10: Find the integral of $1/\sqrt{(1-x^2)}$ dx from 0 to 1/2.

Q11: Solve for x: $\cos^{-1}(x) + \sin^{-1}(x) = \pi/2$.

Q12: Evaluate cot⁻¹(-1) - tan⁻¹(1).

Q13: Find the range of $f(x) = \sin^{-1}(2x-1)$.

Q14: Solve the equation: $tan^{-1}(x) + tan^{-1}(2x) = \pi/4$.

Q15: Evaluate $\sin^{-1}(\cos(7\pi/6))$.

Q16: Evaluate $\cos^{-1}(-\sqrt{2/2})$.

Q17: Simplify $\sin^{-1}(x) + \sin^{-1}(\sqrt{(1-x^2)})$ for $0 \le x \le 1$.

Q18: Solve for x: $2\tan^{-1}(x) = \pi/3$.

Q19: Find the derivative of $y = tan^{-1}(x^2)$.

Q20: Evaluate $\sin^{-1}(1/2) + \cos^{-1}(1/2)$.

Solutions

Inverse Trigonometric Functions

Solution 1:

To evaluate $\sin^{-1}(\sqrt{3}/2)$, we need to recall the common angle values in trigonometry.

 $\sin 30^{\circ} = 1/2$

 $\sin 60^{\circ} = \sqrt{3/2}$

Since sin⁻¹ is the inverse function of sin, we have:

 $\sin^{-1}(\sqrt{3}/2) = 60^{\circ}$

Converting to radians:

 $60^{\circ} \times (\pi/180^{\circ}) = \pi/3 \text{ radians}$

Therefore, $\sin^{-1}(\sqrt{3/2}) = \pi/3$ radians or 60°.

Solution 2:

Let's approach this step-by-step:

First, recall that $\cos^{-1}(-1/2) = 2\pi/3$ radians or 120°.

This is because $\cos 120^{\circ} = -1/2$.

Next, $\sin^{-1}(1/2) = \pi/6$ radians or 30°.

This is because $\sin 30^{\circ} = 1/2$.

Now, we can add these values:

$$\cos^{-1}(-1/2) + \sin^{-1}(1/2) = 2\pi/3 + \pi/6$$

 $= 4\pi/6 + \pi/6$

= $5\pi/6$ radians or 150°

Therefore, $\cos^{-1}(-1/2) + \sin^{-1}(1/2) = 5\pi/6$ radians or 150°.

Solution 3:

To solve this equation, we need to apply the tangent function to both sides:

$$\tan(\tan^{-1}(x)) = \tan(\pi/6)$$

The tan and tan⁻¹ on the left side cancel out, leaving:

$$x = tan(\pi/6)$$

We know that $tan(\pi/6) = 1/\sqrt{3}$

Therefore, $x = 1/\sqrt{3}$.

Solution 4:

To find the derivative of $y = \cos^{-1}(3x)$, we can use the chain rule and the derivative formula for arccosine:

The derivative of $\cos^{-1}(x)$ is $-1/\sqrt{(1-x^2)}$.

Let
$$u = 3x$$
, then $y = \cos^{-1}(u)$

$$dy/dx = dy/du \times du/dx$$

$$= (-1/\sqrt{(1-u^2)}) \times 3$$

$$= -3/\sqrt{(1-(3x)^2)}$$

$$= -3/\sqrt{(1-9x^2)}$$

Therefore, the derivative of $y = \cos^{-1}(3x)$ is dy/dx = -3/ $\sqrt{(1-9x^2)}$.

Solution 5:

Let's approach this step-by-step:

 $tan^{-1}(1) = \pi/4 \text{ radians or } 45^{\circ}$

To find $tan^{-1}(1/3)$, we can use the formula:

$$tan^{-1}(1/3) = \pi/2 - tan^{-1}(3) = \pi/2 - \pi/3 = \pi/6$$

Now, we can add these values:

$$tan^{-1}(1) + tan^{-1}(1/3) = \pi/4 + \pi/6$$

- $= 3\pi/12 + 2\pi/12$
- = $5\pi/12$ radians or 75°

Therefore, $tan^{-1}(1) + tan^{-1}(1/3) = 5\pi/12$ radians or 75°.

Solution 6:

Let's solve this step-by-step:

First, divide both sides by 2:

$$\sin^{-1}(x) = \pi/6$$

Now, apply the sine function to both sides:

$$\sin(\sin^{-1}(x)) = \sin(\pi/6)$$

The sin and sin⁻¹ on the left side cancel out:

$$x = \sin(\pi/6)$$

We know that $sin(\pi/6) = 1/2$

Therefore, x = 1/2 is the solution to the equation $2\sin^{-1}(x) = \pi/3$.

Solution 7:

To find the domain of $f(x) = tan^{-1}(2x+1)$, we need to consider the domain of the arctangent function.

The arctangent function (tan⁻¹) is defined for all real numbers.

Therefore, 2x+1 can be any real number.

We can express this as an inequality:

$$-\infty < 2x+1 < \infty$$

Solving for x:

$$-\infty - 1 < 2x < \infty - 1$$

Therefore, the domain of $f(x) = tan^{-1}(2x+1)$ is all real numbers, or $(-\infty, \infty)$.

Solution 8:

To evaluate this expression, let's think about the range of \sin^{-1} and the value of $\sin(5\pi/4)$:

The range of \sin^{-1} is $[-\pi/2, \pi/2]$.

$$\sin(5\pi/4) = -\sqrt{2}/2$$

$$\sin^{-1}(\sin(5\pi/4)) = \sin^{-1}(-\sqrt{2}/2)$$

We know that $\sin(-\pi/4) = -\sqrt{2}/2$

Since $-\pi/4$ is within the range of \sin^{-1} , we have:

$$\sin^{-1}(-\sqrt{2/2}) = -\pi/4$$

Therefore, $\sin^{-1}(\sin(5\pi/4)) = -\pi/4$ radians or -45°.

Solution 9:

Let's approach this step-by-step:

First, recall that $tan^{-1}(1/\sqrt{3}) = \pi/6$ radians or 30°.

Next, note that $\cot^{-1}(x) = \tan^{-1}(1/x)$.

So, $\cot^{-1}(\sqrt{3}) = \tan^{-1}(1/\sqrt{3}) = \pi/6 \text{ radians or } 30^{\circ}.$

Now, we can add these values:

$$tan^{-1}(1/\sqrt{3}) + cot^{-1}(\sqrt{3}) = \pi/6 + \pi/6 = \pi/3 \text{ radians or } 60^{\circ}$$

Therefore, $tan^{-1}(1/\sqrt{3}) + cot^{-1}(\sqrt{3}) = \pi/3$ radians or 60°.

Solution 10:

This integral is the definition of the arcsine function. Let's solve it step-by-step:

$$\int 1/\sqrt{1-x^2} \, dx = \sin^{-1}(x) + C$$

Now, we need to evaluate this from 0 to 1/2:

$$[\sin^{-1}(x)]_0^{1/2} = \sin^{-1}(1/2) - \sin^{-1}(0)$$

We know that:

$$\sin^{-1}(1/2) = \pi/6$$

$$\sin^{-1}(0) = 0$$

Therefore:

$$[\sin^{-1}(x)]_0^{1/2} = \pi/6 - 0 = \pi/6$$

Thus, the integral of $1/\sqrt{(1-x^2)}$ dx from 0 to 1/2 is $\pi/6$.

Solution 11:

Let $y = \cos^{-1}(x)$. Then $\cos y = x$.

From the Pythagorean identity, we know that $\sin^2 y + \cos^2 y = 1$.

Substituting $\cos y = x$, we get:

$$\sin^2 y + x^2 = 1$$

Solving for sin y:

$$\sin y = \sqrt{(1-x^2)}$$

Now, $\sin^{-1}(\sin y) = y = \cos^{-1}(x)$

Therefore, $\sin^{-1}(\sqrt{1-x^2}) = \cos^{-1}(x)$

This means that for any x in the domain of both functions:

$$\cos^{-1}(x) + \sin^{-1}(x) = \cos^{-1}(x) + \sin^{-1}(\sqrt{1-x^2}) = \pi/2$$

Therefore, this equation is true for all x in the interval [-1, 1].

Solution 12:

Let's approach this step-by-step:

First, $\cot^{-1}(-1) = 3\pi/4$ radians or 135°.

This is because $\cot 135^{\circ} = -1$.

Next, $tan^{-1}(1) = \pi/4$ radians or 45°.

This is because $\tan 45^{\circ} = 1$.

Now, we can subtract:

 $\cot^{-1}(-1) - \tan^{-1}(1) = 3\pi/4 - \pi/4 = \pi/2$ radians or 90°

Therefore, $\cot^{-1}(-1) - \tan^{-1}(1) = \pi/2 \text{ radians or } 90^{\circ}$.

Solution 13:

The domain of sin⁻¹ is [-1, 1]. So:

$$-1 \le 2x-1 \le 1$$

Solving these inequalities:

$$0 \le 2x \le 2$$

$$0 \le x \le 1$$

When
$$x = 0$$
, $2x-1 = -1$, so $\sin^{-1}(2x-1) = -\pi/2$

When
$$x = 1$$
, $2x-1 = 1$, so $\sin^{-1}(2x-1) = \pi/2$

Since sin⁻¹ is a continuous and increasing function, its range will be all values between these extremes.

Therefore, the range of $f(x) = \sin^{-1}(2x-1)$ is $[-\pi/2, \pi/2]$.

Solution 14:

Recall the formula for tan(A+B): tan(A+B) = (tan A + tan B) / (1 - tan A tan B)

In our case, $tan(\pi/4) = tan(tan^{-1}(x) + tan^{-1}(2x))$

We know that $tan(\pi/4) = 1$, so:

$$1 = (x + 2x) / (1 - x(2x))$$

$$1 = 3x / (1 - 2x^2)$$

Cross multiply:

$$1 - 2x^2 = 3x$$

Rearrange:

$$2x^2 + 3x - 1 = 0$$

This is a quadratic equation. We can solve it using the quadratic formula:

$$x = [-3 \pm \sqrt{(9+8)}] / 4 = (-3 \pm \sqrt{17}) / 4$$

The positive solution satisfies the original equation:

$$x = (-3 + \sqrt{17}) / 4 \approx 0.5616$$

Therefore, the solution to $tan^{-1}(x) + tan^{-1}(2x) = \pi/4$ is $x = (-3 + \sqrt{17}) / 4$.

Solution 15:

First, let's evaluate $cos(7\pi/6)$:

$$cos(7\pi/6) = cos(\pi + \pi/6) = -cos(\pi/6) = -\sqrt{3}/2$$

Now we have:

$$\sin^{-1}(-\sqrt{3}/2)$$

Recall that \sin^{-1} is the inverse function of \sin in the range $[-\pi/2, \pi/2]$.

We know that $\sin(-\pi/3) = -\sqrt{3}/2$

Since $-\pi/3$ is within the range of \sin^{-1} , we have:

$$\sin^{-1}(-\sqrt{3}/2) = -\pi/3$$

Therefore, $\sin^{-1}(\cos(7\pi/6)) = -\pi/3$ radians or -60°.

Solution 16:

To evaluate $\cos^{-1}(-\sqrt{2}/2)$, let's recall some common angle values:

$$\cos(3\pi/4) = -\sqrt{2}/2$$

The range of \cos^{-1} is $[0, \pi]$, and $3\pi/4$ is within this range.

Since cos⁻¹ is the inverse function of cos, we have:

$$\cos^{-1}(-\sqrt{2/2}) = 3\pi/4$$

Therefore, $\cos^{-1}(-\sqrt{2/2}) = 3\pi/4$ radians or 135°.

Solution 17:

Let $\theta = \sin^{-1}(x)$. Then $\sin \theta = x$.

From the Pythagorean identity, we know that $\sin^2 \theta + \cos^2 \theta = 1$.

Substituting $\sin \theta = x$, we get:

$$x^2 + \cos^2 \theta = 1$$

Solving for $\cos \theta$:

$$\cos\theta = \sqrt{(1-x^2)}$$

Now, $\cos^{-1}(\cos \theta) = \theta = \sin^{-1}(x)$

Therefore, $\cos^{-1}(\sqrt{(1-x^2)}) = \sin^{-1}(x)$

This means that for any x in the interval [0, 1]:

$$\sin^{-1}(x) + \sin^{-1}(\sqrt{1-x^2}) = \sin^{-1}(x) + \cos^{-1}(\sqrt{1-x^2}) = \pi/2$$

Hence, $\sin^{-1}(x) + \sin^{-1}(\sqrt{1-x^2})$ simplifies to $\pi/2$ for $0 \le x \le 1$.

Solution 18:

First, divide both sides by 2:

$$tan^{-1}(x) = \pi/6$$

Now, apply the tangent function to both sides:

$$tan(tan^{-1}(x)) = tan(\pi/6)$$

The tan and tan-1 on the left side cancel out:

$$x = tan(\pi/6)$$

We know that $tan(\pi/6) = 1/\sqrt{3}$

Therefore, $x = 1/\sqrt{3}$ is the solution to the equation $2\tan^{-1}(x) = \pi/3$.

Solution 19:

To find the derivative of $y = tan^{-1}(x^2)$, we can use the chain rule and the derivative formula for arctangent:

The derivative of $tan^{-1}(x)$ is $1/(1+x^2)$.

Let
$$u = x^2$$
, then $y = tan^{-1}(u)$

Using the chain rule:

$$dy/dx = dy/du \times du/dx$$

$$= [1/(1+u^2)] \times [2x]$$

$$= 1/(1+(x^2)^2) \times 2x$$

$$= 2x/(1+x^4)$$

Therefore, the derivative of $y = tan^{-1}(x^2)$ is $dy/dx = 2x/(1+x^4)$.

Solution 20:

First, $\sin^{-1}(1/2) = \pi/6$ radians or 30°.

This is because $\sin 30^{\circ} = 1/2$.

Next, $\cos^{-1}(1/2) = \pi/3$ radians or 60°.

This is because $\cos 60^{\circ} = 1/2$.

Now, we can add these values:

 $\sin^{-1}(1/2) + \cos^{-1}(1/2) = \pi/6 + \pi/3$ = $\pi/2$ radians or 90°

Therefore, $\sin^{-1}(1/2) + \cos^{-1}(1/2) = \pi/2$ radians or 90°.

