

Series 3HKP35/C

SET~1

Code No. 55/1/1

		KUI	NO.		

7 - II N -

Candidates must write the Code on the title page of the answer-book.

NOTE:

- (i) Please check that this question paper contains 11 printed pages.
- (ii) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (iii) Please check that this question paper contains 33 questions.
- (iv) Please write down the serial number of the question in the answer-book before attempting it.
- (v) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

PHYSICS (Theory)

Time allowed: 3 hours

Maximum Marks: 70

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises five Sections A, B, C, D and E.
- (ii) There are **33** questions in the question paper. **All** questions are compulsory.
- (iii) **Section A** Questions no. **1** to **14** are very short answer type questions, carrying **one** mark each.
- (iv) **Section B** Questions no. **15** and **16** are case study based short answer type questions, carrying **four** marks each.
- (v) **Section C** Questions no. **17** to **25** are short answer type questions, carrying **two** marks each.
- (vi) **Section D** Questions no. **26** to **30** are long answer type questions, carrying **three** marks each.
- (vii) **Section E** Questions no. **31** to **33** are also long answer type questions, carrying **five** marks each.

1

1

1

1

1

- (viii) There is no overall choice in the question paper. However, an internal choice has been provided in 4 questions of 1 mark, 3 questions of 2 marks, 2 questions of 3 marks and all the 3 questions of 5 marks. You have to attempt only one of the choices in such questions.
- (ix) In addition to this, separate instructions are given with each section and question, wherever necessary.
- (x) Use of calculators and log tables is **not** permitted.
- (xi) You may use the following values of physical constants wherever necessary:

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

Mass of electron $(m_e) = 9.1 \times 10^{-31} \text{ kg}$

Mass of neutron = 1.675×10^{-27} kg

Mass of proton = 1.673×10^{-27} kg

Avogadro's number = 6.023×10^{23} per gram mole

Boltzmann constant = $1.38 \times 10^{-23} \text{ JK}^{-1}$

SECTION A

- 1. Two wires X and Y of the same material and of equal lengths having area of cross-section A and 2A respectively, are connected in parallel across an ideal battery of emf E. What is the ratio of current density $(j_{_{\rm X}}/j_{_{\rm Y}})$ in them ?
- **2.** (a) An object approaches a converging lens with a uniform speed of 5 m/s and stops at the focus. How will the image move with respect to the lens? Specify its nature.

OR

- (b) In a simple microscope, a convex lens of focal length 5 cm is used. Calculate the magnifying power when the object is placed at the focus of the lens.
- 3. An alternating current $I = (10 \text{ A}) \sin (100 \pi t)$ is passed through a resistor of 20 Ω . What is the average power consumed by the resistor over a complete cycle?
- **4.** (a) What oscillates in an electromagnetic wave of frequency 10 MHz?

OR

(b) Name the electromagnetic radiation used for killing germs in water purifiers.

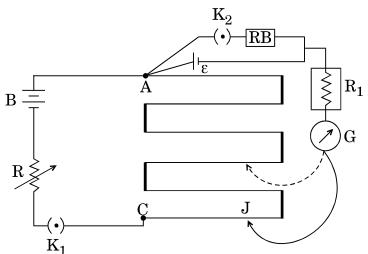
ECFNER RECOFFICIER/SCHALL FRECTIFIED	inconvention in the interest in the contraction of	that remains an annual restriction to the contract of the cont	回知			
5.	What	is the power of an equiconvex lens of refractive index n ₂ dipped in a liquid of	C HOS			
	refrac	tive index n_1 , where $n_1 < n_2$?	1			
6.	Why a	y are neutrons preferred as better projectiles in causing nuclear reaction?				
7.	If the	frequency of the radiation incident on a photosensitive surface increases (v $>$ v_0),				
	how w	vill the stopping potential change?	1			
8.	(a)	An electron is accelerated through a potential difference of 100 V. Calculate the de Broglie wavelength associated with it. \mathbf{OR}	1			
	(1)					
	(b)	A proton and a deuteron are moving with the same speed. Find the ratio of the de Broglie wavelength (λ_p / λ_d) associated with them.	1			
9.	How o	does the energy gap of an intrinsic semiconductor change when doped with a				
	trivale	ent impurity?	1			
10.	(a)	In a p-n junction under equilibrium, there is no net current. Why?	1			
		\mathbf{OR}				
	(b)	On what factor does the wavelength of the light emitted by an LED depend?	1			
Note :	Asse	Questions number 11, 12, 13 and 14, two statements are given: one labelled ertion (A) and the other labelled Reason (R). Select the correct answer to these stions from the codes (A), (B), (C) and (D) as given below:				
	(A)	Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)				
	(B)	Both Assertion (A) and Reason (R) are true but Reason (R) is <i>not</i> the correct explanation of Assertion (A)				
	(C)	Assertion (A) is true but Reason (R) is false				
	(D)	Assertion (A) is false and Reason (R) is also false				
11.		ion (A):				
	Reason	r the range of an ammeter, smaller is its resistance. $n(R)$:				
		rease the range of the ammeter, additional shunt needs to be connected across it.	1			
12.		ion (A):				
	In mos	st of the northern hemisphere, the north pole of the dip needle tilts upwards. $n(R)$:				
		ives the direction of magnetic field of the Earth at that place.	1			
13.	The and light.					
	The re	efractive index of the material of a prism for blue light is greater than that for red	1			

titren haarnad haathaat haarnad roomhad haarnad nad red had hadhadhaathad haarnad nedhadhaathaan haarnad hadhadha

14. Assertion (A):

In his study of photoelectric emission, Hallwachs connected a negatively charged zinc plate to an electroscope. He found that negatively charged particles were emitted from the zinc plate under the action of visible light.

Reason(R):


An uncharged zinc plate becomes positively charged when it is irradiated by visible light.

1

SECTION B

Note: Questions number 15 and 16 are case-study based questions and are compulsory. Attempt any 4 sub-parts from each question. Each sub-part carries 1 mark.

A potentiometer draws a steady current from the battery (B) of emf E in the circuit as shown in the figure. The balancing length for the cell of emf ε when key K_2 is kept open, is l_1 . If key K_2 is closed and a resistance S is introduced in the resistance box (RB), the balancing length becomes l_2 . $4 \times 1 = 4$

- (i) The balancing length $l_1 > l_2$ because
 - (A) $E > \varepsilon$.
 - (B) positive terminal of the battery is connected to positive terminal of the cell.
 - (C) the voltage drop across the cell is greater than that across the battery.
 - (D) terminal potential difference of the cell is less than its emf.
- (ii) The high resistance R_1 in the circuit is used to
 - (A) keep the balance point near the mid-point of the potentiometer wire AC.
 - (B) reduce the current supplied by the battery (B) to zero at balance point.
 - (C) protect the galvanometer from damage due to large current.
 - (D) make the galvanometer more sensitive.

Echan hadhur havillast salahadhadhur hadhadhur hadhur hadhadhur hadhur h

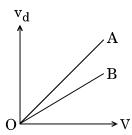
- (iii) If the key K_2 is kept open and resistance R is increased, the balancing length AJ of the wire will
 - (A) increase.
 - (B) decrease.
 - (C) remain unaffected.
 - (D) become zero.
- (iv) Two potentiometers P and Q use the same wire of lengths 5 m and 10 m respectively, between A and C. They are connected to battery (B) in the circuit separately. The potentiometer which is preferred to compare the emfs of two cells is
 - (A) P, because potential gradient is less.
 - (B) Q, because potential gradient is less.
 - (C) P, because current is more.
 - (D) Q, because resistance of the potentiometer is less.
- (v) The reason for preferring manganin wire in a potentiometer is because
 - (A) of high value of its temperature coefficient of resistivity.
 - (B) of its low resistivity.
 - (C) of low value of its temperature coefficient of resistivity.
 - (D) its resistance decreases with increase in temperature.
- In Rutherford's nuclear model of the atom, the entire positive charge and most of the mass of the atom are concentrated in the nucleus. The electrons move in orbits around the nucleus. The nucleus is made of protons and neutrons. Because the nucleus is extremely small as compared to the atom, most of an atom is empty space. The protons and the neutrons are held together in the nucleus by very strong nuclear forces. $4 \times 1 = 4$
 - (i) The radius R of a nucleus of mass number A is given by
 - (A) $R = R_0 A^3$
 - (B) $R = R_0 A^{1/3}$
 - (C) $R = R_0^3 A$
 - (D) $R = R_0^3 A^{1/3}$
 - (ii) The ratio of nuclear density of nuclei \boldsymbol{X}^{27} to \boldsymbol{Y}^{8} is
 - (A) 3:2
 - (B) 27:8
 - (C) 1:1
 - (D) 2:3

to near reconstruct to do year reconstruct the entering the contract free that in a contract reconstruct reconstruct the contract reconstruct the contract reconstruct the contract the contract reconstruct the contract the cont

2

2

(iii) In the following nuclear reaction


$${}^{238}_{92}U+n \longrightarrow {}^{Y}_{X}Np+e^-+\overline{\nu}+Q\,,$$

the values of X and Y are

- (A) X = 92; Y = 238
- (B) X = 92; Y = 239
- (C) X = 93; Y = 239
- (D) X = 93; Y = 238
- (iv) The saturation property of the nuclear forces is due to the fact that they are
 - (A) charge independent forces.
 - (B) non-central forces.
 - (C) spin-dependent forces.
 - (D) short-range forces.
- (v) In Geiger-Marsden scattering experiment, thin gold foil is used to scatter alpha particles because alpha particles will
 - (A) not suffer more than one scattering and gold nucleus is 50 times heavier than alpha particle.
 - (B) not suffer more than one scattering and gold nucleus is lighter than alpha particle.
 - (C) not suffer more than few scatterings and gold nucleus is 25 times heavier than alpha particle.
 - (D) suffer more than one scattering and gold nucleus is 25 times heavier than alpha particle.

SECTION C

17. Define drift velocity of electrons in a conductor connected across a battery. Figure shows variation of the drift velocity (v_d) of electrons in two copper wires A and B of different lengths versus the potential difference (V) applied across their ends.

- (i) What does the slope of the line represent?
- (ii) Which one of the two wires is longer?

(a) (i) The angle of dip at a location in southern India is about 18°. Would you expect a greater or smaller dip angle in Britain? Justify your answer.

(ii) "The declination in India is small, it being 0°41′ E at Delhi and 0°58′ W at Mumbai." What is the significance of this statement?

OR

18.

(b)

(b) The magnetic moment of a circular coil carrying current I, having N turns, each of radius r, is M. Find the magnetic moment of the same coil if it is unwound and rewound into a coil having 2N turns for the same current.

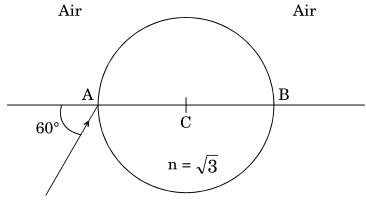
2

19. Two identical circular discs, one of copper and another of aluminium, are rotated about their geometrical axes with same angular speed in the same magnetic field acting perpendicular to their planes. Compare the (i) induced emf, and (ii) induced current produced in discs between its centre and edge. Justify your answers.

20. (a) The electric field of an electromagnetic wave is represented as $E_x = E_0 \sin{(\omega t + kz)}$.

2

(i) In which direction is the wave propagating?


Write two characteristics of electromagnetic waves.

(ii) In which direction does the magnetic field oscillate?

2

21. A ray of light falls on a transparent sphere of $n = \sqrt{3}$ at an angle of incidence 60° with the diameter AB of the sphere having centre C. The ray emerges from the sphere parallel to the line AB. Find the angle of emergence.

2

,

22. (a) How would the angular width of central maximum of diffraction pattern be affected when (i) width of the slit is decreased, and (ii) monochromatic light is replaced by polychromatic light? Justify your answers.

2

OR

(b) In interference of light, write the expression for the intensity of resultant wave if I_0 is the intensity of light wave from each slit. Hence, obtain an expression for the intensity of resultant wave if the two sources are (i) incoherent, and (ii) coherent.

2

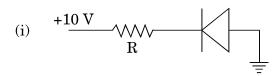
23. For the light of wavelength 400 nm incident on the cathode of a photocell, the stopping potential is 6 V. If the wavelength of incident light is increased to 600 nm, calculate the new stopping potential. (Take $h = 4.14 \times 10^{-15}$ eV . s)

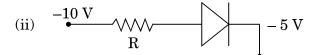
2

24. (a) With the help of the circuit diagram, explain the working of a diode as a half-wave rectifier.

2

2

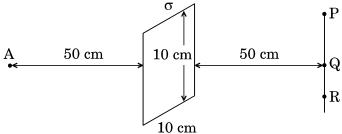

OR


(b) With the help of the circuit diagram, explain briefly the working of a photodiode.

timen hadnus kantus tudmadnad kudhunnan valmat katkus kantus kantus ladhus kantus kantus kantus kantus kantus k

25. (a) State whether the given ideal diodes are forward or reverse biased :

(b) The current in the forward bias is known to be more (\sim mA) than the current in the reverse bias (\sim μ A). What is the reason then to operate the photodiodes in reverse bias ?


SECTION D

26. (a) Two concentric circular coils X and Y of radii r_1 and r_2 ($r_1 > r_2$) having N_1 and N_2 turns respectively are placed coaxially with centres coinciding. Obtain an expression for (i) the mutual inductance for the arrangement, and (ii) the magnetic flux linked with coil Y when current I flows through coil X.

OR

- (b) What are eddy currents? Why does the pendulum plate with holes or slots reduce electromagnetic damping? How are the eddy currents minimised in the core of a transformer? Why is the electromagnetic braking effect smooth in a train?
- 27. (a) A uniformly charged large plane sheet has charge density $\sigma = \left(\frac{1}{18\pi}\right) \times 10^{-15} \text{ C/m}^2 \text{. Find the electric field at point A which is 50 cm from the sheet.}$

Consider a straight line with three points P, Q and R, placed 50 cm from the charged sheet on the right side as shown in the figure. At which of these points, does the magnitude of the electric field due to the sheet remain the same as that at point A and why?

(b) Two small identical conducting spheres carrying charge 10 μ C and – 20 μ C when separated by a distance of r, experience a force F each. If they are brought in contact and then separated to a distance of $\frac{r}{2}$, what is the new force between them in terms of F?

3

2

3

3

3

3

3

5

- 28. (a) (i) In an LCR series circuit connected to an ac source, the voltage and the current are in the same phase. If the capacitor is filled with a dielectric, will the current lead or lag behind or remain in phase with the voltage?

 Explain.
 - (ii) In the circuit, why is the rms value of net voltage not equal to the sum of voltage drops across individual elements?
 - (iii) Draw a graph showing variation of the impedance of the circuit with the frequency of the applied voltage.

OR

- (b) (i) An LCR series circuit is connected to an ac source. If the angular resonant frequency of the circuit is ω_0 , will the current lead or lag behind or be in phase with the voltage when $\omega < \omega_0$ and why?
 - (ii) We cannot step up a dc voltage using a transformer. Why?
 - (iii) On what principle does a metal detector work?

29. (a) Explain the formation of the fringes due to diffraction at a single slit, when path difference of light waves from the ends of the slit on reaching a point on the screen is (i) λ , and (ii) $\frac{3\lambda}{2}$.

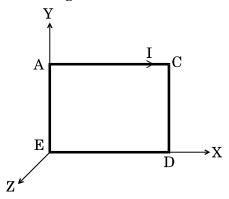
- (b) Show the intensity distribution in the fringes due to diffraction at a single slit.
- 30. (a) In a Geiger-Marsden experiment, find the distance of closest approach to the gold nucleus (mass no. = 79) of a 7.7 MeV α -particle before it comes momentarily to rest and reverses its direction. Why is it different from actual radius of gold nucleus?
 - (b) Plot a graph between number of scattered α -particles detected in gold foil experiment and angle of scattering. What is the main assumption in plotting this graph?

SECTION E

- 31. (a) (i) Draw a ray diagram of an astronomical refracting telescope in normal adjustment. Obtain an expression for its magnifying power. How can we increase the magnifying power of the telescope?
 - (ii) A beam of light converges at a point P. A lens is placed in the path of the beam at a distance of 25 cm from P. The final image is formed at infinity. Calculate the power of the lens.

OR

(b) (i) A coin is placed inside a denser medium. Why does it appear to be raised? Obtain an expression for the height through which the object appears to be raised in terms of refractive index of the medium and real depth.

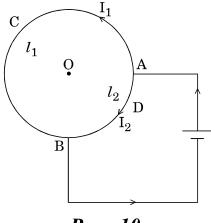


(ii) A compound microscope consists of an objective lens of focal length 2 cm and an eyepiece of focal length 6·25 cm separated by a distance of 15 cm. How far from the objective should an object be placed in order to obtain the final image at the least distance of distinct vision (25 cm)? Calculate the magnifying power of the microscope.

5

(a) (i) An α-particle, a deuteron and a proton enter into a uniform magnetic field normally with the same kinetic energy and describe circular paths.
 Find the ratio of radii of their paths.

(ii) Give the direction of magnetic field acting on the current carrying coil ACDE shown in the figure so that the coil is in unstable equilibrium.



(iii) Why do we use a low resistance ammeter in a circuit to measure current?

5

OR

- (b) (i) Draw a diagram to show the magnetic field lines produced by two parallel straight wires carrying currents in the same direction. Obtain an expression for the force per unit length between these wires and hence define SI unit of current.
 - (ii) The figure shows a circular loop connected to a battery. The arc ACB of length l_1 carries a current I_1 and arc ADB of length l_2 carries a current I_2 . Show that the net magnetic field at the centre of the loop is zero.

Page 10

to rear reconstructives and reconstructives treatment read reconstructives reconstructive reconstructives reconstructive reco

5

- **33.** (a) (i) (A) Why does the electric field inside a dielectric slab decrease when kept in an external electric field?
 - (B) Derive an expression for the capacitance of a parallel plate capacitor filled with a medium of dielectric constant K.
 - (ii) A charge $q=2~\mu C$ is placed at the centre of a sphere of radius 20 cm. What is the amount of work done in moving 4 μC from one point to another point on its surface ?
 - (iii) Write a relation for polarisation P of a dielectric material in the presence of an external electric field.

OR

- (b) (i) Obtain an expression for the potential energy of an electric dipole placed in a uniform electric field.
 - (ii) Three capacitors of capacitance C_1 , C_2 and C_3 are connected in series to a source of V volt. Show that the total energy stored in the combination of capacitors is equal to sum of the energy stored in individual capacitors.
 - (iii) A capacitor of capacitance C is connected across a battery. After charging, the battery is disconnected and the separation between the plates is doubled. How will (i) the capacitance of the capacitor, and (ii) the electric field between the plates be affected? Justify your answer.

Series 3HKP35/C

SET~1 anis ri. 55/1/1

	रो	ल नं.		

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

नोट :

- (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ **11** हैं।
- (ii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- (iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में **33** प्रश्न हैं।
- (iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- (v) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

भौतिक विज्ञान (सैद्धान्तिक)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित किया गया है **क, ख, ग, घ** और **ङ**।
- (ii) इस प्रश्न-पत्र में 33 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (iii) खण्ड क प्रश्न संख्या 1 से 14 तक अति लघु-उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है ।
- (iv) **खण्ड ख** प्रश्न संख्या **15** एवं **16** प्रकरण–अध्ययन (केस स्टडी) आधारित लघु–उत्तरीय प्रश्न हैं, प्रत्येक प्रश्न **4** अंकों का है।
- (v) खण्ड ग प्रश्न संख्या 17 से 25 तक लघु-उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 2 अंकों का है।
- (vi) खण्ड घ प्रश्न संख्या 26 से 30 तक दीर्घ उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 3 अंकों का है।
- (vii) **खण्ड ङ** प्रश्न संख्या **31** से **33** तक दीर्घ उत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न **5** अंकों का है ।

- (viii) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है। तथापि, एक-एक अंक के चार प्रश्नों में, दो-दो अंकों के तीन प्रश्नों में, तीन-तीन अंकों के दो प्रश्नों में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आंतरिक विकल्प दिए गए हैं। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।
- (ix) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
- (x) कैल्कुलेटरों अथवा लॉग सारणियों के प्रयोग की अनुमित **नहीं** है।
- (xi) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$\begin{split} c &= 3 \times 10^8 \text{ m/s} \\ h &= 6.63 \times 10^{-34} \text{ Js} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \end{split}$$

इलेक्ट्रॉन का द्रव्यमान $(m_e) = 9 \cdot 1 \times 10^{-31} \text{ kg}$

न्यूट्रॉन का द्रव्यमान = $1.675 \times 10^{-27} \text{ kg}$

प्रोटॉन का द्रव्यमान = $1.673 \times 10^{-27} \text{ kg}$

आवोगादो संख्या = 6.023×10^{23} प्रति ग्राम मोल

बोल्ट्ज़मान नियतांक = $1.38 \times 10^{-23} \, \mathrm{JK}^{-1}$

खण्ड क

- 1. समान पदार्थ, समान लम्बाई और अनुप्रस्थ-काट क्षेत्रफल क्रमशः A और 2A के दो तार X और Y समांतर में वि.वा.बल (emf) E की किसी आदर्श बैटरी के सिरों से संयोजित हैं । इनमें धारा घनत्वों का अनुपात (j_X/j_Y) क्या है ?
- 2. (a) कोई बिम्ब किसी अभिसारी लेंस की ओर किसी एकसमान चाल 5 m/s से गित करते हुए लेंस के फोकस पर रुक जाता है। लेंस के सापेक्ष प्रतिबिम्ब किस प्रकार गमन करेगा ? प्रतिबिम्ब की प्रकृति लिखिए।

अथवा

- (b) किसी सरल सूक्ष्मदर्शी में 5 cm फोकस दूरी के उत्तल लेंस का उपयोग किया जाता है। जब बिम्ब लेंस के फोकस पर स्थित है, तो आवर्धन क्षमता परिकलित कीजिए।
- 3. $20~\Omega$ के किसी प्रतिरोधक से कोई प्रत्यावर्ती धारा $I=(10~A)\sin{(100~\pi t)}$ प्रवाहित हो रही है । एक पूर्ण चक्र में प्रतिरोधक द्वारा उपभक्त औसत शक्ति क्या है ?
- 4. (a) 10 MHz आवृत्ति की किसी विद्युत्-चुम्बकीय तरंग में क्या दोलन करता है ?

अथवा

(b) जल शोधक में रोगाणुओं को मारने के लिए उपयोग किए जाने वाले विद्युत्-चुम्बकीय विकिरण का नाम लिखिए।

P.T.O.

1

1

1

1

1

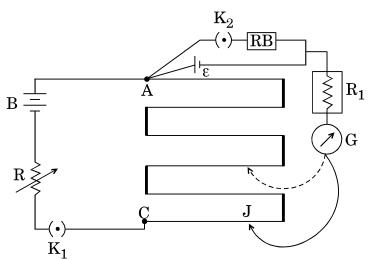
scream incommentations rate	vacriscomed featherines was red incomestion	Sect of the final defined action of extraction of extracti			
5.	अपवर्तन है ?	ांक $\mathbf{n_1}$ के किसी द्रव में डूबे अपवर्तनांक $\mathbf{n_2}$ $(\mathbf{n_1} < \mathbf{n_2})$ के किसी समोत्तल लेंस की क्षमता क्या होती			
6.		य अभिक्रिया करने के लिए बेहतर प्रक्षेपक के रूप में न्यूट्रॉनों को वरीयता क्यों दी जाती है ?	i		
7.	यदि किसी प्रकाश-सुग्राही पृष्ठ पर आपतित विकिरणों की आवृत्ति में वृद्धि (v > v ₀) होती है, तो निरोधी विभव में क्या परिवर्तन होगा ?				
8.	(a)	किसी इलेक्ट्रॉन को $100~ m V$ विभवान्तर से त्वरित किया गया है । इससे संबद्ध दे ब्रॉग्ली तरंगदैर्घ्य परिकलित कीजिए।	i		
		अथवा			
	(b)	कोई प्रोटॉन और कोई ड्यूटेरॉन समान चाल से गतिमान हैं। इनसे संबद्ध दे ब्रॉग्ली तरंगदैर्घ्यों का अनुपात $(\lambda_{ m p}/\lambda_{ m d})$ ज्ञात कीजिए।	i		
9.	त्रिसंयोज	क अशुद्धि से मादित किए जाने पर किसी नैज अर्धचालक का ऊर्जा अन्तराल किस प्रकार बदलता है ?	Ĩ		
10.	(a)	साम्य के अधीन किसी p-n संधि में कोई नेट धारा नहीं होती है। क्यों ?	ĵ		
		अथवा			
	(b)	किसी LED द्वारा उत्सर्जित प्रकाश की तरंगदैर्घ्य किस कारक पर निर्भर करती है ?	Ĩ		
नोट :		ख्या 11, 12, 13 और 14 के लिए दो कथन दिए गए हैं जिनमें एक को अभिकथन (A) तथा दूसरे को R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से दीजिए : अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R) अभिकथन (A) की सही व्याख्या करता है अभिकथन (A) और कारण (R) दोनों सही हैं परन्तु कारण (R) अभिकथन (A) की सही व्याख्या महीं करता है अभिकथन (A) सही है परन्तु कारण (R) ग़लत है अभिकथन (A) मही है परन्तु कारण (R) ग़लत है अभिकथन (A) ग़लत है और कारण (R) भी ग़लत है			
11.	किसी अ <i>कारण (1</i>	थन (A) : मिटर का परिसर उच्चतर है, तो उसका प्रतिरोध कम होता है । R) : मिटर के परिसर में वृद्धि करने के लिए उसके सिरों से अतिरिक्त शंट संयोजित करने की आवश्यकता है ।	Ī		
12.	अधिकाः <i>कारण (1</i>	थन (A) : श उत्तरी गोलार्ध में नमनदर्शी सुई (नित-सूची) का उत्तर ध्रुव उपरिमुखी झुकता है । R) : स्थान पर पृथ्वी के चुम्बकीय क्षेत्र की दिशा को दर्शाता है ।	ĵ		
13.	अभिकथ किसी प्रि कम होत कारण (1	थन (A) : प्रेज़्म के लिए लाल वर्ण के प्रकाश के लिए न्यूनतम विचलन कोण का मान नीले वर्ण के प्रकाश की अपेक्षा ा है।			
	।प्रद्रम क) पदाथ का अपवतनाक लाल वर्ण के प्रकाश का अपक्षा नाल वर्ण के प्रकाश के लिए आधिक होती है ।			

to rear feature feature from vertical feature feature

14. अभिकथन (A) :

प्रकाश-विद्युत् उत्सर्जन के अपने अध्ययन में हॉलवाक्स ने ऋणावेशित ज़िंक की पट्टिका को किसी विद्युत्दर्शी (इलेक्ट्रोस्कोप) से संयोजित किया । उसने यह पाया कि दृश्य प्रकाश द्वारा किरणित किए जाने पर ज़िंक की पट्टिका से ऋणावेशित कण उत्सर्जित होते हैं ।

कारण (R):


दृश्य प्रकाश द्वारा किरणित किए जाने पर अनावेशित ज़िंक की पट्टिका धनावेशित हो जाती है।

1

खण्ड ख

नोट: प्रश्न संख्या 15 और 16 प्रकरण-अध्ययन आधारित प्रश्न हैं और अनिवार्य प्रश्न हैं । प्रत्येक प्रश्न में से किन्हीं 4 उपभागों के उत्तर दीजिए । प्रत्येक उपभाग 1 अंक का है ।

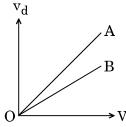
15. आरेख में दर्शाए अनुसार कोई पोटेन्शियोमीटर वि.वा.बल (emf) E की किसी बैटरी (B) से कोई स्थायी धारा ले रहा है। जब कुंजी K_2 को खुला रखा जाता है, तो वि.वा.बल (emf) ϵ के सेल के लिए संतुलन लम्बाई l_1 है। यदि कुंजी K_2 बन्द है और प्रतिरोध बॉक्स (RB) से कोई प्रतिरोध S लगाया जाता है, तो संतुलन लम्बाई l_2 हो जाती है। $4 \times 1 = 4$

- (i) संतुलन लम्बाई $l_1>l_2$ होने का कारण यह है कि
 - (A) $E > \varepsilon$.
 - (B) बैटरी का धन टर्मिनल सेल के धन टर्मिनल से संयोजित है।
 - (C) सेल के सिरों पर विभव पात बैटरी के सिरों पर विभव पात से अधिक है।
 - (D) सेल का टर्मिनल विभवान्तर उसके वि.वा.बल (emf) से कम है।
- (ii) परिपथ में उच्च प्रतिरोध ${
 m R}_1$ उपयोग किए जाने का कारण
 - (A) संतुलन बिन्दु को पोटेन्शियोमीटर के तार AC के मध्य-बिन्दु के निकट रखना है।
 - (B) संतुलन बिन्दु पर बैटरी (B) द्वारा आपूर्त धारा को घटाकर शून्य करना है ।
 - (C) गैल्वेनोमीटर को उच्च धारा से होने वाली क्षति से बचाना है।
 - (D) गैल्वेनोमीटर को अधिक सुग्राही बनाना है।

- (iii) यदि कुंजी K_2 को खुला रखें और प्रतिरोध R में वृद्धि करें, तो तार की संतुलन लम्बाई AJ
 - (A) बढ़ेगी।
 - (B) घटेगी।
 - (C) पर कोई प्रभाव नहीं होगा ।
 - (D) शून्य हो जाएगी ।
- (iv) दो पोटेन्शियोमीटरों P और Q में, समान तार, जिसकी A और C के बीच की लम्बाइयाँ क्रमशः 5 m और 10 m हैं, का उपयोग किया गया है। इनको बैटरी (B) से पृथक-पृथक परिपथ में जोड़ा जाता है। दो सेलों के वि.वा.बल (emf) की तुलना करने के लिए इनमें से किस पोटेन्शियोमीटर को वरीयता दी जाएगी?
 - (A) P को क्योंकि विभव प्रवणता कम है
 - (B) Q को क्योंकि विभव प्रवणता कम है
 - (C) P को क्योंकि धारा अधिक है
 - (D) Q को क्योंकि पोटेन्शियोमीटर का प्रतिरोध कम है
- (v) किसी पोटेन्शियोमीटर में मैंगनिन के तार को वरीयता दिए जाने का कारण है
 - (A) इसके प्रतिरोधकता ताप गुणांक का उच्च मान
 - (B) इसकी निम्न प्रतिरोधकता
 - (C) इसके प्रतिरोधकता ताप गुणांक का निम्न मान
 - (D) ताप में वृद्धि होने पर इसका प्रतिरोध घटता है
- 16. रदरफोर्ड के परमाणु के नाभिकीय मॉडल में परमाणु का सम्पूर्ण धनावेश तथा अधिकांश द्रव्यमान नाभिक में संकेंद्रित होता है। नाभिक के चारों ओर कक्षाओं में इलेक्ट्रॉन परिक्रमा करते हैं। नाभिक प्रोटॉनों और न्यूट्रॉनों का बना होता है। चूँिक परमाणु की तुलना में नाभिक अतिसूक्ष्म होता है, परमाणु का अधिकांश भाग रिक्त होता है। प्रोटॉन और न्यूट्रॉन एक-दूसरे के साथ अत्यन्त प्रबल नाभिकीय बलों द्वारा जुड़े होते हैं।
 - (i) द्रव्यमान संख्या A के किसी नाभिक की त्रिज्या R होती है
 - $(A) R = R_0 A^3$
 - (B) $R = R_0 A^{1/3}$
 - (C) $R = R_0^3 A$
 - (D) $R = R_0^3 A^{1/3}$
 - (ii) नाभिकों χ^{27} और χ^{8} के नाभिकीय घनत्वों का अनुपात है
 - (A) 3:2
 - (B) 27:8
 - (C) 1:1
 - (D) 2:3

Chest hearteathaith is an varing shad that heartean values in orthood contact hebrial freshaut a cheat hear hear he

(iii) निम्नलिखित नाभिकीय अभिक्रिया


$${}^{238}_{92}U+n \longrightarrow {}^{Y}_{X}Np+e^-+\overline{\nu}+Q$$

में X और Y के मान हैं

- (A) X = 92; Y = 238
- (B) X = 92; Y = 239
- (C) X = 93; Y = 239
- (D) X = 93; Y = 238
- (iv) नाभिकीय बलों के संतृप्ति गुणधर्म का कारण यह तथ्य है कि ये
 - (A) आवेश अनाश्रित बल हैं।
 - (B) अकेन्द्रीय बल हैं।
 - (C) स्पिन-आश्रित बल हैं।
 - (D) लघुपरासी बल हैं।
- (v) गाइगर-मार्सडन प्रकीर्णन प्रयोग में ऐल्फा कणों को प्रकीर्णित करने के लिए स्वर्ण (गोल्ड) की महीन पन्नी का प्रयोग किया जाता है, क्योंकि ऐल्फा कण
 - (A) एक से अधिक बार प्रकीर्णित नहीं होंगे तथा स्वर्ण (गोल्ड) का नाभिक ऐल्फा कण से 50 गुना भारी होता है।
 - (B) एक से अधिक बार प्रकीर्णित नहीं होंगे तथा स्वर्ण (गोल्ड) का नाभिक ऐल्फा कण से हल्का होता है।
 - (C) इने-गिने से अधिक प्रकीर्णित नहीं होंगे तथा स्वर्ण (गोल्ड) का नाभिक ऐल्फा कण से 25 गुना भारी होता है।
 - (D) एक से अधिक बार प्रकीर्णित होंगे तथा स्वर्ण (गोल्ड) का नाभिक ऐल्फा कण से 25 गुना भारी होता है।

खण्ड ग

17. किसी बैटरी के सिरों से संयोजित चालक में इलेक्ट्रॉनों के अपवाह वेग की परिभाषा लिखिए । दिए गए आरेख में विभिन्न लम्बाइयों के दो ताँबे के तारों A और B में इलेक्ट्रॉनों के अपवाह वेग (v_d) का उनके सिरों पर विभवान्तर (V) के साथ विचरण दर्शाया गया है ।

- (i) इन रेखाओं की ढाल (प्रवणता) क्या निरूपित करती है ?
- (ii) इन दोनों में से कौन-सा तार अधिक लम्बा है ?

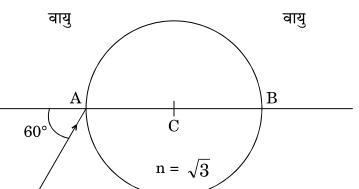
(a) (i) दक्षिणी भारत के किसी स्थान पर नित कोण लगभग 18° है। ब्रिटेन में क्या आप इससे अधिक या कम नित कोण की अपेक्षा करते हैं ? अपने उत्तर की पृष्टि कीजिए।

(ii) "भारत में दिक्पात कम है, दिल्ली में यह $0^{\circ}41'$ E और मुम्बई में $0^{\circ}58'$ W है ।" इस कथन का क्या महत्त्व है ?

अथवा

55/1/1

18.


2

- किसी वृत्तीय कुण्डली, जिसकी त्रिज्या \mathbf{r} , लपेटों की संख्या \mathbf{N} तथा जिससे धारा \mathbf{I} प्रवाहित हो रही है, (b) का चुम्बकीय आधूर्ण M है। यदि इसी कुण्डली को खोलकर 2N लपेटों की कोई दूसरी कुण्डली बनाएँ, तो इतनी ही धारा के लिए कृण्डली का चुम्बकीय आघूर्ण ज्ञात कीजिए।
- 2
- दो सर्वसम वृत्तीय डिस्क, जिनमें एक कॉपर तथा दूसरी ऐलुमिनियम की है, अपने तलों के लम्बवत्, समान 19. चुम्बकीय क्षेत्र में समान कोणीय चाल से अपने ज्यामितीय अक्ष के सापेक्ष घूर्णन कर रही हैं । इन डिस्कों के केन्द्र एवं किनारों के बीच (i) प्रेरित वि.वा.बल (emf), और (ii) प्रेरित धारा की तुलना कीजिए । अपने उत्तर की पृष्टि कीजिए।
- 2
- किसी विद्युत्-चुम्बकीय तरंग के चुम्बकीय क्षेत्र को $E_x = E_0 \sin{(\omega t + kz)}$ द्वारा निरूपित किया गया 20. (a)
 - यह तरंग किस दिशा में संचरण कर रही है ? (i)
 - चुम्बकीय क्षेत्र किस दिशा में दोलन करता है ? (ii)
 - विद्यत-चुम्बकीय तरंगों के दो अभिलक्षण लिखिए। (b)

2

 $n=\sqrt{3}$ के किसी पारदर्शी गोले जिसका केन्द्र C है पर कोई प्रकाश किरण इसके व्यास AB से 60° के कोण पर 21. आपतन करती है। यह किरण गोले से रेखा AB के समान्तर निर्गत होती है। निर्गत कोण ज्ञात कीजिए।

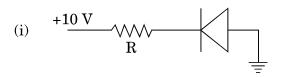
- 22.
- विवर्तन पैटर्न के केंद्रीय उच्चिष्ठ की कोणीय चौडाई किस प्रकार प्रभावित होगी जब (a)
 - (i) झिरी की चौडाई कम कर दी जाए,
 - एकवर्णी प्रकाश को बहवर्णी प्रकाश से प्रतिस्थापित कर दिया जाए ? अपने उत्तर की पृष्टि (ii) कीजिए।

- अथवा
- प्रकाश के व्यतिकरण में परिणामी तरंग की तीव्रता के लिए व्यंजक लिखिए, यदि प्रत्येक झिरी से आने (b) वाली प्रकाश तरंग की तीव्रता ${
 m I}_0$ है । इस व्यंजक का उपयोग करके परिणामी तरंग की तीव्रता के लिए व्यंजक प्राप्त कीजिए यदि दोनों स्रोत (i) कला संबद्ध नहीं हैं, और (ii) कला संबद्ध हैं।
- 2

2

- किसी फ़ोटोसेल के कैथोड पर आपतित 400 nm तरंगदैर्घ्य के प्रकाश के लिए, निरोधी विभव 6 V है। यदि 23. आपतित प्रकाश की तरंगदैर्घ्य 600 nm कर दी जाए, तो नया निरोधी विभव परिकलित कीजिए । $(h = 4.14 \times 10^{-15} \text{ eV} . \text{ s लीजिए})$
- 2

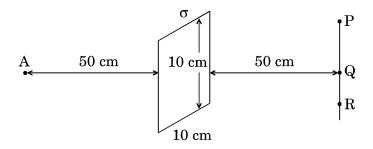
- परिपथ आरेख की सहायता से अर्ध-तरंग दिष्टकारी के रूप में डायोड की कार्यविधि की व्याख्या कीजिए। 24. (a) अथवा
 - (b) परिपथ आरेख की सहायता से किसी फ़ोटोडायोड की कार्यविधि की संक्षेप में व्याख्या कीजिए।
- 2



3

3

25. (a) उल्लेख कीजिए कि दिए गए आदर्श डायोड अग्रदिशिक बायसित हैं अथवा पश्चिदिशिक बायसित हैं :


(b) ज्ञात है कि अग्रदिशिक बायस में धारा (\sim mA) पश्चिदिशिक बायस में धारा (\sim μ A) से अधिक होती है। फिर फ़ोटोडायोडों को पश्चिदिशिक बायस में प्रचालित करने का क्या कारण है ?

खण्ड घ

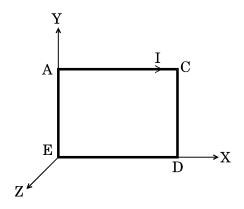
26. (a) \mathbf{r}_1 और \mathbf{r}_2 ($\mathbf{r}_1 > \mathbf{r}_2$) त्रिज्या की दो संकेंद्री वृत्ताकार कुण्डलियाँ \mathbf{X} और \mathbf{Y} जिनमें लपेटों की संख्या क्रमशः \mathbf{N}_1 और \mathbf{N}_2 हैं एक-दूसरे के केन्द्रों को संपाती रखते हुए समाक्ष रखी गई हैं। इस व्यवस्था के (i) अन्योन्य प्रेरकत्व, तथा (ii) जब कुण्डली \mathbf{X} से धारा \mathbf{I} प्रवाहित हो रही है, तब कुण्डली \mathbf{Y} से संबद्ध चुम्बकीय फ्लक्स के लिए व्यंजक प्राप्त कीजिए।

अथवा

- (b) भंवर धाराएँ क्या हैं ? छिद्रों अथवा झिरियों वाली लोलक पट्टिकाएँ विद्युत्-चुम्बकीय अवमंदन को क्यों कम कर देती हैं ? ट्रान्सफ़ॉर्मर के क्रोड में भंवर धाराएँ किस प्रकार निम्नतम की जाती हैं ? ट्रेन में विद्युत्-चुम्बकीय ब्रेक का प्रभाव अबाध क्यों होती है ?
- 27. (a) किसी एकसमान आवेशित बड़ी समतल शीट का आवेश घनत्व $\sigma = \left(\frac{1}{18\pi}\right) \times 10^{-15} \; \mathrm{C/m^2} \;$ है । इस शीट से 50 cm दूरी पर स्थित बिन्दु A पर विद्युत्-क्षेत्र ज्ञात कीजिए । आरेख में दर्शाए अनुसार इस आवेशित शीट की दायीं ओर 50 cm पर स्थित सरल रेखा पर तीन बिन्दुओं P, Q और R पर विचार कीजिए । इनमें से किस बिन्दु पर, शीट के कारण विद्युत्-क्षेत्र का परिमाण बिन्दु A पर विद्युत्-क्षेत्र के समान रहता है और क्यों ?

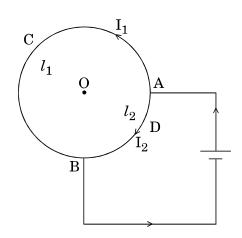
(b) दो सर्वसम लघु चालक गोले, जिन पर $10~\mu C$ और $-20~\mu C$ आवेश है, एक-दूसरे से r दूरी पर रखे जाने पर प्रत्येक F बल का अनुभव करते हैं । यदि इन्हें सम्पर्क में लाकर फिर एक-दूसरे से $\frac{r}{2}$ दूरी पर रखा जाए, तो इनके बीच F के पदों में नया बल कितना होगा ?

torsensormanistics	s sear reacting of the defined free transfer and the defined free the definition of	had feathar feether feedhad fadhad fadhad feethach	Notherio	
28.	(a)	(i)	किसी LCR श्रेणी परिपथ में, जो किसी प्रत्यावर्ती धारा (ac) स्रोत से संयोजित है, वोल्टता और धारा समान कला में हैं। यदि संधारित्र में कोई परावैद्युत भर दिया जाए, तो धारा क्या वोल्टता से अग्र अथवा पश्च अथवा समान कला में होगी ? व्याख्या कीजिए।	
		(ii)	इस परिपथ में नेट वोल्टता का वर्ग-माध्य-मूल (rms) मान प्रत्येक अवयव के सिरों पर विभव पातों (वोल्टता पातों) के योगफल के बराबर क्यों नहीं होता ?	
		(iii)	इस परिपथ की प्रतिबाधा का अनुप्रयुक्त वोल्टता की आवृत्ति के साथ विचरण को दर्शाने के लिए ग्राफ़ खींचिए।	3
			अथवा	
	(b)	(i)	किसी प्रत्यावर्ती धारा (ac) स्नोत से कोई LCR श्रेणी परिपथ संयोजित है। यदि इस परिपथ की कोणीय अनुनाद आवृत्ति ω_0 है, जब $\omega<\omega_0$ है, तब क्या धारा वोल्टता से अग्र अथवा पश्च अथवा समान कला में होगी और क्यों ?	
		(ii)	हम दिष्ट धारा $(\mathrm{d}c)$ वोल्टता को ट्रान्सफ़ॉर्मर द्वारा उपचायी क्यों नहीं कर सकते $?$	
		(iii)	धातु संसूचक किस सिद्धान्त पर कार्य करता है ?	3
29.	(a)	एकल ि	झेरी पर विवर्तन के कारण फ्रिंजों के बनने की व्याख्या कीजिए जबिक झिरी के सिरों से पर्दे के	
		किसी वि	बेन्दु पर प्रकाश तरंगों का पथान्तर $({ m i})$ $\lambda,$ और $({ m ii})$ $\dfrac{3\lambda}{2}$ है।	
	(b)	एकल डि	झेरी पर विवर्तन के कारण फ्रिंजों में तीव्रता वितरण दर्शाइए ।	3
30.	(a)		मार्सडन प्रयोग में $7.7~{ m MeV}$ के किसी $α$ -कण की स्वर्ण नाभिक (द्रव्यमान संख्या = 79) से क्षण लेए विरामावस्था में आने तथा दिशा प्रतिलोमन से पूर्व निकटतम दूरी ज्ञात कीजिए।	
	(b)		त्र प्रयोग में संसूचित प्रकीर्णित α-कणों की संख्या और प्रकीर्णन कोण के बीच ग्राफ़ खींचिए। इस ो खींचने में प्रमुख परिकल्पना क्या है ?	3
			ख्रण्ड ङ	
31.	(a)	(i)	सामान्य समायोजन में किसी खगोलीय अपवर्ती दूरदर्शक का प्रकाश किरण आरेख खींचिए । इसकी आवर्धन क्षमता के लिए व्यंजक प्राप्त कीजिए । हम इस दूरदर्शक की आवर्धन क्षमता में किस प्रकार वृद्धि कर सकते हैं ?	
		(ii)	कोई प्रकाश पुंज किसी बिन्दु P पर अभिसरित होता है। इस पुंज के पथ में बिन्दु P से $25~\mathrm{cm}$ की दूरी पर किसी लेंस को रख दिया जाता है। अंतिम प्रतिबिम्ब अनंत पर बनता है। इस लेंस की क्षमता परिकलित कीजिए।	5
			अथवा	
	(b)	(i)	किसी सघन माध्यम के भीतर कोई सिक्का स्थित है। यह सिक्का ऊपर उठा क्यों प्रतीत होता	


सिक्का ऊपर उठा प्रतीत होता है, कोई व्यंजक प्राप्त कीजिए।

5

5


- (ii) किसी संयुक्त सूक्ष्मदर्शी में 2 cm फोकस दूरी के अभिनेत्र लेंस और 6·25 cm फोकस दूरी के अभिदृश्यक (नेत्रिका) के बीच 15 cm की दूरी है। अभिदृश्यक से किसी बिम्ब को कितनी दूरी पर रखा जाना चाहिए ताकि अंतिम प्रतिबिम्ब स्पष्ट दर्शन की अल्पतम दूरी (25 cm) पर प्राप्त हो ? इस सूक्ष्मदर्शी की आवर्धन क्षमता परिकलित कीजिए।
- 32. (a) (i) किसी एकसमान चुम्बकीय क्षेत्र में, समान गतिज ऊर्जा का कोई α -कण, कोई ड्यूटेरॉन और कोई प्रोटॉन क्षेत्र के अभिलम्बवत् प्रवेश करके वृत्तीय पथ पर गमन करते हैं । इनके पथों की त्रिज्याओं का अनुपात ज्ञात कीजिए।
 - (ii) आरेख में दर्शाई गई धारावाही कुण्डली ACDE पर कार्यरत चुम्बकीय क्षेत्र की दिशा ज्ञात कीजिए ताकि यह कुण्डली अस्थायी साम्य में हो।

(iii) धारा मापने के लिए हम निम्न प्रतिरोध के अमीटर का उपयोग क्यों करते हैं ?

अथवा

- (b) (i) समान दिशा में प्रवाहित धारा वाले दो समान्तर सीधे तारों द्वारा उत्पन्न चुम्बकीय क्षेत्र रेखाओं को दर्शाने के लिए आरेख खींचिए। इन तारों के बीच प्रति एकांक लम्बाई पर बल के लिए व्यंजक प्राप्त कीजिए और इस प्रकार विद्युत् धारा के SI मात्रक की परिभाषा लिखिए।
 - (ii) आरेख में किसी बैटरी से संयोजित किसी वृत्तीय पाश को दर्शाया गया है । लम्बाई l_1 के चाप ACB से I_1 धारा और l_2 लम्बाई के चाप ADB से धारा I_2 प्रवाहित हो रही है । यह दर्शाइए कि इस पाश के केन्द्र पर नेट चुम्बकीय क्षेत्र शून्य है ।

Page 21

To here the other than that in a time the attention and the other than the other

5

- 33. (a) (i) (A) किसी बाह्य विद्युत्-क्षेत्र में रखे जाने पर किसी परावैद्युत-पट्टिका के भीतर विद्युत्-क्षेत्र कम क्यों हो जाता है ?
 - (B) परावैद्युतांक K के माध्यम से भरे किसी समान्तर पट्टिका संधारित्र की धारिता के लिए व्यंजक व्युत्पन्न कीजिए।
 - (ii) 20 cm त्रिज्या के किसी गोले के केन्द्र पर कोई आवेश $q=2~\mu C$ स्थित है । इस गोले के पृष्ठ पर एक बिन्दु से किसी दूसरे बिन्दु तक $4~\mu C$ आवेश को ले जाने में किया गया कार्य कितना है ?
 - (iii) किसी बाह्य विद्युत्-क्षेत्र की उपस्थिति में किसी परावैद्युत पदार्थ के ध्रुवण P के लिए संबंध लिखिए।

अथवा

- (b) (i) किसी एकसमान विद्युत्-क्षेत्र में स्थित किसी विद्युत् द्विध्रुव की स्थितिज ऊर्जा के लिए व्यंजक प्राप्त कीजिए।
 - (ii) V वोल्ट के किसी स्रोत से श्रेणी में C_1, C_2 और C_3 धारिता के तीन संधारित्र संयोजित हैं। यह दर्शाइए कि संधारित्रों के इस संयोजन में संचित कुल ऊर्जा इन पृथक्-पृथक् संधारित्रों में संचित ऊर्जाओं के योगफल के बराबर है।
 - (iii) धारिता C का कोई संधारित्र किसी बैटरी के सिरों से संयोजित है। संधारित्र को आवेशित करने के पश्चात् बैटरी को हटा दिया गया है तथा पट्टिकाओं के बीच की दूरी को दुगुना कर दिया गया है। इसका (i) संधारित्र की धारिता, और (ii) पट्टिकाओं के बीच विद्युत्-क्षेत्र पर क्या प्रभाव होगा ? अपने उत्तर की पृष्टि कीजिए।