MARKING SCHEME(COMPARTMENT) 2018

SET 55/3

Q.NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
1	The power of a lens equals to the reciprocal of its focal length(in meter).	1/2	
	Also accept		
	$p = \frac{1}{f(meter)}$	1/2	
	Do not deduct mark if student does not write the word meter.		
	(Alternatively		1
	Power of a lens is the ability of conversion /diversion of the rays incident on the lens.)		
	SI Unit: Dioptre(D)		
2	relative intensity position on screen	1	1
3	Normal : Circular	1/2	
	At an angle of 30^0 it will follow helical path	1/2	1
4	$V = \sqrt{\frac{2eV}{m}}$	1	1
5	From few MHz to 30-40 MHz	1	1
	SECTION B		

6			
v	(a) One use 1 (b) One example each 1/2+ 1/2		
	(a) used to destroy cancer cells	1	
	(b) (i) The region, between the plates of a capacitor, connected to time varying voltage source, has a displacement current but no conduction current.	1/2	
	(ii) The wires, connected to the plates of a capacitor, joined to a time varying or steady voltage source, carry a conduction current but no displacement current.	1/2	
	(Alternatively		
	A circuit, having no capacitor in it, and carrying a current has conduction current but no displacement current.)		
			2
7			
	Formula (i) Frequency of first case (ii) Frequency of second case (iii) Frequency of second case Ratio 1/2 1/2		
	We have		
	$hv = E_f - E_i = \frac{E_0}{n_f^2} - \frac{E_0}{n_i^2}$	1/2	
	$(i) hv_1 = E_0(\frac{1}{1^2} - \frac{1}{2^2}) = E_0 \times \frac{3}{4}$	1/2	
	$(ii) hv_2 = E_0(\frac{1}{2^2} - \frac{1}{\infty^2}) = E_0 \times \frac{1}{4}$	1/2	
	$\therefore \frac{v_1}{v_2} = 3$	1/2	2
8			
ð	Finding the Work function 1 Finding the Frequency of incident light 1		

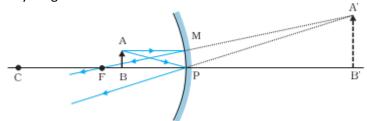
We have		
$W = h v_0$	1/2	
$= 6.63 \times 10^{-34} \times 8 \times 10^{14} J$	/-	
$=\frac{6.63\times10^{-20}\times8}{1.6\times10^{-19}}$		
=3.315eV	1/2	
Wahara	/2	
We have		
$hv = W + eV_s$	1/2	
=(3.315+3.3)eV		
$\therefore v = \frac{6.615 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} \ Hz$		
		2
$=1.596\times10^{15}\ Hz$	1/2	
OR		
Calculating		
(i) Energy of a photon $\frac{1}{2} + \frac{1}{2}$		
(ii) Number of photons emitted ½+ ½		
Energy of photon= $h u$	1/2	
$=6.63\times10^{-34}\times6.0\times10^{14}\ J$		
$=3.978\times10^{-19} J$		
$\cong 2.49eV$	1/2	
Number of photons emitted per second =		
energy of photon	1/2	
$2.0 \times 10^{-3} J/s$		
$= \frac{2.0 \times 10^{-3} \ J / s}{3.978 \times 10^{-19} \ J}$	1/2	
$=5.03\times10^{15} \ photons / \sec ond$		
	1	1

9	(a)Definition ½		
,	Relation ½		
	(b) Identification of A and B \frac{1}{2} + \frac{1}{2}		
		1/2	
	(a) Measure of the response of magnetic material to an external magnetic field.		
	Also accept		
	$\chi = \frac{ M }{ H }$		
	$\chi - \frac{\chi}{ H }$		
	We have		
	we have	1/2	
	(1)	/-	
	$\chi = (\mu_r - 1)$	1/2	
		,,,	
	(b) 0.96 : Diamagnetic	1/2	
	500 : Ferromagnetic	/-	
			2
			_
10			
10			
	SHM nature of oscillation of the wire AB		
	Expression for instantaneous magnetic flux ½		
	1		
	Qualitative explanation ½		
		1/2	
	The wire AB would oscillate in a simple harmonic way		

	We can write		
	r = good ext		
	$x = -a\cos\omega t$		
	(as x = -a at t = 0)		
	Therefore Instantaneous magnetic Flux	1/2	
	$\phi(t) = Blx \qquad (l = AB)$		
	Instantaneous induced emf		
	$d\phi$	1/2	
	$e(t) = -\frac{d\phi}{dt} = aBl\omega \sin \omega t$		
	ui		
	The induced emf therefore veries with time sinuscidelly		
	The induced emf, therefore varies with time sinusoidally.	1/2	
	(Alternativaly		
	(Alternatively		
	Arm AD avacutes SUM under the influence of rectaring force developed in		
	Arm AB executes SHM under the influence of restoring force developed in		
	the spring, consequently an induced emfis produced across the ends of		
		_	

moving armAB which varies sinusoidally.)		
(Give full credit for the above part if the student explains qualitatively		
without using mathematical equations)		2
SECTION C		
11 Labelled circuit diagram -1 Working as a voltage amplifier - 2		
V_{BB} V_{CC} V_{CC} V_{CC} V_{CC}	1	
Working as a voltage amplifier:		
When a small sinusoidal voltage (with amplitude v_s) is connected in series with the dc bias voltage supply, V_{BB} , the base current will have sinusoidal variations super imposed on the value of I_B .	1/2	
As a result, the collector current will also have sinusoidal variations super imposed on the value of $I_{\it c}$.	1/2	
This results in corresponding sinusoidal variations in the value of the output voltage V_{o} .	1/2	
These sinusoidal variations in output voltage are an amplified version of the corresponding variations in the input voltage. This implies that the transistor can be used as a voltage amplifier.	1/2	
(Note: Give 1 mark to those students also who only draw either this circuit		
diagram or the circuit diagram given below:		
I_{B} I_{B} I_{C} I_{C		3
		3

I I	Writing the			- 1 - 1 + 1				
(a	(a) The inputs of the third gate are \overline{A} and \overline{B} . Hence the truth table is as given below.							
А	В	Ā	B	С				
0	0	1	1	0				
0	1	1	0	0				
1	0	0	1	0			1	
1	1	0	0	1				
					for $ar{A}$ and $ar{f B}$ in her,			
	photodiodo parent wind			_		fabricated with a	1/2	
Incident	light, with	photon	energy g	greater th	nan the energy g	gap of the semi-		
	r, generate				_	he photo current	1/2	
		-	-		se bias conditions	•	1/2	
						ensity and makes	1/2	
	odiode worl					enorty and makes		3
	Drawing th	-		-1				
	Marking th							
b)	Finding valu	ues of a a	nd b	- ½+ ½				
a)	Potential energy (MeV)		2 r (fm)	3			1	
For r > r ₀ ,	the force i	s attracti	ve				1/2	
For r < r ₀ ,	the force i	s repulsiv	⁄e				1/2	
-	Ve have, + 235 = a +	· 94 + 2 X	1					
A	a = 236 – 9	6 = 140					1/2	
							SET 55/3 I	Page 6 of


Also		
0 + 92 = 54 + b + 2 X 0		
∴ b = 92 – 54 = 38	1/2	3
Statement of equation with explanation of symbols – 1		
Expression for		
i. Planck's constant - 1 ii. Work function - 1		
Einstein's photoelectric equation is		
$hv = hv_0 (=W) + \frac{1}{2} mv_{max}^2$	1/2	
v = frequency of incident light		
$v_0 = threshold\ frequency\ of\ photo\ sensitive\ material$		
W = work function		
$\frac{1}{2} m v_{max}^2 = max.$ kinetic energy of the emitted photoelectrons	1/2	
(Also accept if the student writes		
$\hbar v = W + eV_s$		
W = work function of photosensitive material		
V_s = Stopping Potential)		
From Einstein's photoelectric equation, we have		
$hv = W + \frac{1}{2} mv_{max}^2$		
$\therefore v_{max}^2 = \frac{2}{m} (hv - W)$		
$= \left(\frac{2h}{m}\right)v + \left(\frac{-2W}{m}\right)$		
Slope of the given graph = $\frac{l}{n}$	1/2	
Intercept on the $y - axis = -l$	1/2	
$\therefore \frac{2h}{m} = \frac{\ell}{n} \text{ or } \hbar = \frac{m\ell}{2n}$	1/2	

and $-\ell = \frac{-2W}{m}$ or $W = \frac{m\ell}{2}$		1/2	
m 2			3
(a) Two points of difference (b) Formula Calculation of wavelength	½ +½ Mark ½ Marks 1½ Mark		
(a)			
Any two point of difference :			
Interference	Diffraction		
Fringes are equally spaced.	Fringes are not equally spaced.		
Intensity is same for all maxima	Intensity falls as we go to successive maxima away from the centre.	1/2 + 1/2	
Superposition of two waves originating from two narrow slits.	Superposition of a continuous family of waves originating from each point on a single slit.		
Maxima along an angle λ /a for two narrow slits separated by a distance a.	Minima at an angle of λ /a for a single slit of width a.		
(b)			
Let D be the distnce of the screen from	m the plane of the slits.		
We have			
Fring width $\beta = \frac{\lambda D}{d}$		1/2	
In the first case			
$\beta = \frac{\lambda D}{d}$ or $\beta d = \lambda D$	(i)	1/2	
In the second case			
$(\beta - 30 \times 10^{-6}) = \frac{\lambda(D - 0.05)}{d}$ or $(\beta - 30)$	0×10^{-6})d = λ (D - 0.05)(ii)	1/2	
Subtracting (ii) from (i) we get			
$30 \times 10^{-6} \times d = \lambda \times 0.05$			
		SET EE /2 (

	$\therefore \lambda = \frac{30 \times 10^{-6} \times 10^{-3}}{5 \times 10^{-2}} \mathrm{m}$		
	$\therefore \lambda = 6 \times 10^{-7} \mathrm{m} = 600 \mathrm{nm}$	1/2	3
16	Writing the two loop equations ½ + ½ Mark Finding the current through DB 1½ Marks Finding the p.d. between B and D ½ Mark		
	Using Kirchoff's voltage rule, we have : For loop DABD $I_1 \times 1 + (1) + (-2) + 2I_1 + 2(I_1 + I_2) = 0$ Or $5I_1 + 2I_2 = 1$ (i)	<i>Y</i> ₂	
	Or $5I_1 + 2I_2 = 1$ (i) For loop DCBD $+ I_2 \times 3 + (3) + (-1) + I_2 + 2(I_1 + I_2) = 0$		
	Or $2I_1 + 6I_2 = -2$ (ii)	1/2	
	Solving (i) and (ii), we get		
	$I_1 = \frac{5}{13} A$	1/2	
	$I_2 = \frac{-6}{13} A$	1/2	
	$\therefore \text{Current through DB} = I_1 + I_2 = \frac{-1}{13} \text{ A}$		
	13	1/2	3
	∴ P.D. between B and D = 0.154 V	1/2	
17	(a) Statement of Biot-Savaart law ½ Mark Its vector form ½ Mark (b) Obtaining the required expression 2 Mark		
	a) According to Biot Savart law :		
	The magnitude of magnetic field $d\vec{B}$, due to a current element $d\vec{l}$, is		
	(i) proportional to current I and element length, dl		
	(ii) inversely proportional to the square of the distance r.		
		CET EE /2	Page 9 of 22

Its direction is perpendicular to the plane containing $d\vec{l}$ and \vec{r} . In vector notation,	1/2	
$\overrightarrow{dB} = \frac{\mu_0}{4\pi} I \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$	1/2	
(b) $\frac{d\mathbf{B}_{1}}{x} \xrightarrow{\mathbf{B}_{2}} X$	1/2	
We have $\overrightarrow{dB} = \frac{\mu_0}{4\pi} I \frac{\left \overrightarrow{dl} \times \overrightarrow{r} \right }{r^3}$		
$r^2 = x^2 + R^2$	1/2	
$\therefore dB = \frac{\mu_0 I}{4\pi} \frac{dl}{(x^2 + R^2)^{3/2}}$	/2	
We need to add only the components of $d\vec{B}$ along the axis of the coil.		
Hence, $B = \int \frac{\mu_0}{4\pi} \frac{Idl}{(x^2 + R^2)^{3/2}} \cos \theta$.		
$= \int \frac{\mu_0}{4\pi} \frac{(I dl) R}{(x^2 + R^2)^{3/2}} .$	1/2	
$= \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}}.$	1/2	_
$\therefore B = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}} \hat{i}$	/2	3
18 a) Pay diagram		
a) Ray diagram – 1 b) Obtaining		
i. mirror formula -1 ½		
ii. expression for liner magnification – ½	<u> </u>	age 10 of 22

a) Ray Diagram

1

From similar triangles A'B'F and MPF, we have

$$\frac{B'A'}{PM} = \frac{B'F}{FP}$$
 or $\frac{B'A'}{BA} = \frac{B'F}{FP}$ (since PM = BA)

From similar triangles A'B'P and ABP, we have

$$\frac{B'A'}{BA} = \frac{B'P}{BP}$$

Hence
$$\frac{B'F}{FP} = \frac{B'P}{BP}$$

1/2

Now
$$B'F = B'P + PF = (+V) + (-f)$$

$$BP = -u$$

$$\therefore \frac{v - f}{-f} = \frac{+v}{-u}$$

1/2

$$or \frac{-v}{f} + 1 = \frac{-v}{u}$$

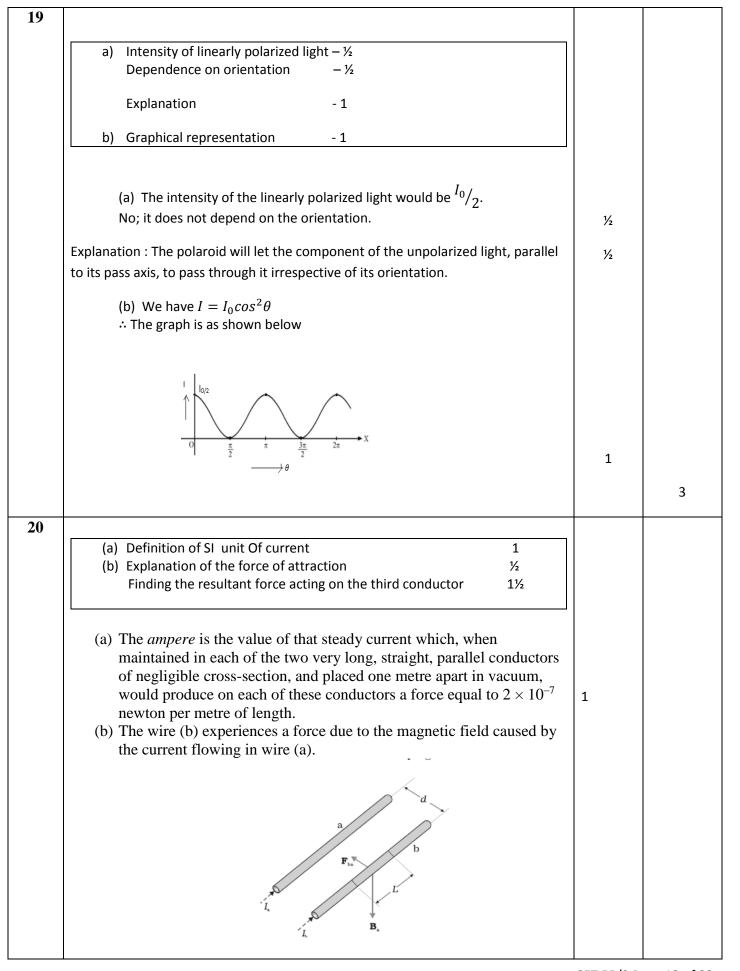
$$\therefore \ \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

1/2

This is the mirror formula.

Linear magnification =
$$\frac{B'A'}{BA}$$

From similar triangles A'B'P and ABP, we get


$$\frac{B'A'}{BA} = \frac{B'P}{BP}$$

: Linear magnification

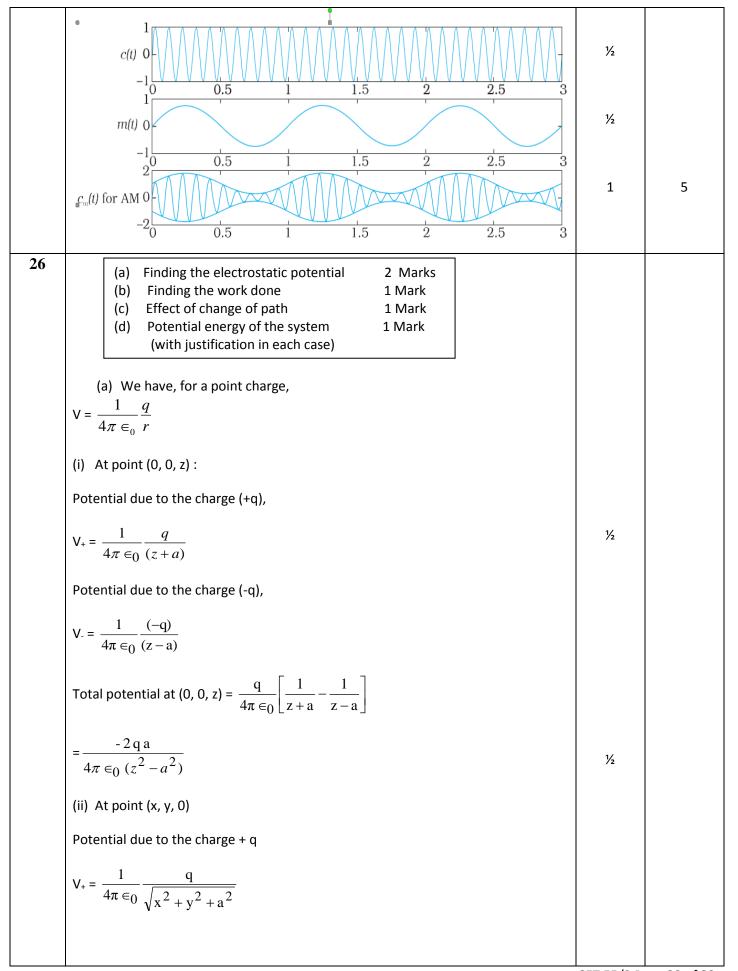
$$\frac{B'P}{BP} = \frac{+v}{-u} = -\frac{v}{u}$$

1/2

3

	1		1
	The magnetic field at any point on the wire (b) due to the current in wire (a) is is perpendicular to the plane of two wires and pointing inwards and hence force on it will be towards wire (a). Similarly force on wire (a) will be towards wire (b). Hence two wires carrying currents in same direction attract each other.	1/2	
	Force on wire (3) due to wire (1) $= \frac{\mu_0 I_a I_c}{2\pi \left(\frac{d}{2}\right)} \text{ towards right}$ Force on wire 3 due to wire 2	1/2	
	$\left(\frac{\mu_0 I_b I_c}{2\pi \left(\frac{d}{2}\right)}\right) \text{ towards left}$	1/2	
	Net force on wire 3 $= \frac{\mu_0 I_c}{\pi d} [I_a - I_b] \text{ towards right}$ Also accept	1/2	
	$= \frac{\mu_0 I_c}{\pi d} \big[I_b - I_a \big] \text{ towards left}$ Note: please do not deduct last 1/2 mark if the student does not write the		
	direction of force.		3
21	Obtaining Expression for the equivalent (i) resistance 1 (ii) emf 2		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	

	$\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$ $\therefore r = \frac{r_1 r_2}{r_1 + r_2}$	1/2	
	$I = I_1 + I_2$	/2	
	$V = E_1 - I_1 r_1 and V = E_2 - I_2 r_2$ $\therefore I = \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$	1/2	
	$V = \left(\frac{E_1 r_2 + E_2 r_2}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$	1/2	
	$also\ V = E_{eq} - Ir_{eq}$ $E_{eq} - E_{eq} - E_{eq}$	1/2	
	$\Rightarrow rac{E_{eq}}{r_{eq}} = rac{E_1}{r_1} + rac{E_2}{r_2}$	1/2	
			3
22			
	Definition of Electric flux SI unit 1 1/2		
	Formula (Gauss's Law) Calculation of Charge within the cube		
	Electric Flux is the dot product of electric field and area vector.	1	
	Also Accept		
	$\varphi = \oint \overrightarrow{E} \cdot \overrightarrow{ds}$		
	SI Unit: Nm ² /C or volt -meter	1/2	
	For a given case		
	$\phi = \phi_1 + \phi_2 = \left[E_x(at \ x = 2a) - E_x(at \ x = a) \right] a^2$		
	$= \left[\alpha(2a) - \alpha(a)\right]a^2$		
	$=\alpha a^3$		
	$=100\times(0.1)^3=0.1Nm^2/C$	1/2	
	But		
	$\phi = \frac{q}{\mathcal{E}_0}$	1/2	
	ε_0 $\therefore q = \varepsilon_0 \phi = 8.854 \times 10^{-12} \times 10^{-1} C$		
	= 0.8854 pC	1/2	


Relevant formulae Calculation of time taken by the electron Calculation of time taken by the proton 1		
We have		
Force =qE		
Acceleration a = $\frac{qE}{m}$	1/2	
Also		
$s = \frac{1}{2}at^2 as u = 0$		
$s = \frac{1}{2}at^2 as u = 0$ $\therefore t = \sqrt{\frac{2s}{a}}$	1/2	
(i) For the electron $a = \frac{eE}{}$	1/2	
$\therefore t = \sqrt{\frac{3 \times 10^{-2} \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 2.0 \times 10^4}}$		
=2.92ns	1/2	
(ii) for proton		
$t = \sqrt{\frac{2 \times 1.5 \times 10^{-2} \times 1.67 \times 10^{-27}}{1.6 \times 10^{-19} \times 2 \times 10^4}}$	1/2	
$ \begin{vmatrix} V & 1.6 \times 10^{-19} \times 2 \times 10^4 \\ = 0.125 \mu s \end{vmatrix} $	1/2	3
SECTION D 23		
(a) Name of e.m. radiation ½ Mark (b) Method of production ½ Mark (c) Range of wavelength 1 Mark (d) Two values 1+1 Marks		

 (a) X-rays (b) By using X-ray tubes (Alternatively: By bombarding a metal target with high energy electrons (c) Wave length range of X-rays is from about (10 nm to 10⁻⁴ nm) (d) Alertness, empathy; concern for her mother, knowledgeable (any two) 	1 (1+1)	
CECTION E		4
SECTION E		
a) Drawing the two graphs b) Drawing the phaser diagram c) i) Naming the devices ii) Calculating the current flowing 2 a) The two graphs are as shown		
Capacitive Reactance (Ohm) Frequency (Hz) Frequency (Hz) b) (The current leads the voltage by an angle Θ where $0 < \Theta < \frac{\pi}{2}$). The	1/2 + 1/2	
required phaser diagram is as shown. $\theta \qquad \qquad \forall \qquad \ \forall \qquad \qquad \forall \qquad \forall \ \ \ \forall \ \ \ \forall \ \ \ \forall \$	1	
 (C) In device X: Current lags behind the voltage by π/2 ∴ X is an inductor. In device Y: Current is in phase with the applied voltage 	1/2	

∴ X is a resistor.	1/2	
We are given that		
$0.25 = \frac{220}{x_L}$		
or $X_L = \frac{220}{0.25}\Omega = 880\Omega$	1/2	
Also $0.25 = 0.25 = \frac{220}{x_R}$		
$\therefore X_R = \frac{220}{0.25}\Omega = 880\Omega$	1/2	
For the series combination of X and Y,		
Equivalent impedance = $\sqrt{X_L^2 + X_R^2} = (880\sqrt{2})\Omega$	1/2	
$\therefore \text{Current flowing} = \frac{220}{880\sqrt{2}} A = 0.177 A$	1/2	5
OR		
a) Principal of working – 1 b) Defining efficiency – 1 c) Any two factor – ½ + ½ d) Calculating the current drawn - 2		
a) A transformer works on the principle of mutual induction. (Alternatively – an emf is induced in the secondary coil when the magnetic		
flux, linked with it changes with time due to ta (time) changing magnetic flux linked with the primary coil).	1	
 b) The efficiency of a transformer equals the ratio of the output power to the input power. (Alteratively: 	1	
Efficiency = output power input power		
or Efficiency $rac{V_{\mathcal{S}}\ I_{\mathcal{S}}}{V_{P}\ I_{P}}$		
c) i) Eddy current losses ii) joule heat losses	1/2 + 1/2	
iii) hysteresis losses		
iv) magnetic flux leakage losses		
(Any two)		
	1	

	d) We have	1/2	
	$\frac{V_S I_S}{V_P I_P} = 90\% = 0.9$		
	$\therefore \frac{220}{22} \frac{I_s}{I_p} = 0.9$	1/2	
	or $\frac{I_s}{I_p} = \frac{0.9}{0.1} = 9$	1/2	
	$\therefore I_p = \frac{I_S}{9} = \frac{\binom{22}{440}}{9} A$		
	$=\frac{1}{180}A$		
	= 0.0056A	1/2	
25			
	a) Explaining the two processes- $1+1$ Defining the two terms - $\frac{1}{2} + \frac{1}{2}$		
	b) Circuit diagram -1 Working -1		
	a) The two important processes are diffusion and drift Due to concentration gradient, the electrons diffuse from the <i>n</i> side to the	1/2	
	p side and holes diffuse from the $ ho$ side to the n side.	1/2	
	Electron diffusion $ \begin{array}{c} \longleftarrow & \text{Electron diffusion} \\ & \longrightarrow \\ & \bigcirc \oplus \oplus \oplus \\ & \bigcirc \oplus \oplus \oplus \\ & p & \bigcirc \ominus \ominus \oplus \oplus \\ & p & \bigcirc \ominus \ominus \oplus \oplus \\ & p & \bigcirc \ominus \ominus \oplus \oplus \\ & p & \bigcirc \ominus \ominus \oplus \\ & p & \bigcirc \ominus \ominus \ominus \ominus \\ & p & \bigcirc \ominus \ominus \ominus \\ & p & \bigcirc \ominus \ominus \\ & p & \bigcirc \ominus \ominus \\ & p & \bigcirc \\ $	1/2	
	9999 9999	/2	
	Hole diffusion \longrightarrow Hole drift Due to the diffusion, an electric field develops across the junction. Due to the field, an electron moves from the p-side to the n-side, a hole moves from the n-side to		
	the p-side. The flow of the charge carriers due to the electric field, is called drift.	1/2	
	Depletion region: It is the space charge region on either side of the junction, that gets depleted of		
	free charges, is known as the depletion region.	1/2	
	Potential Barrier The potential difference, that gets developed across the junction and opposes the diffusion of charge carries and brings about a condition of equilibrium, is known as		
	the barrier potential.	1/2	
		CET EE /2 D	ago 10 of 22

<u> </u>		
b) The circuit diagram is as shown		
Voltmeter(V) P n Milliammeter (mA) Switch	1	
Working In forward bias condition, the direction of the applied voltage is opposite to the barrier potential. This reduces the width of the depletion layer as well as the height of the barrier. A current can, therefore, flow through the circuit. This current increases (non-linearly) with increase in the applied voltage.	1	5
OD.		<u> </u>
OR		
a) Describing the three factors – 3b) Drawing the wave forms – 2		
a) It is necessary to modulate the audio frequency signals because of the		
following three reasons: i. Size of the antenna or aerial This size needs to be comparable to the wavelength of the signal.	1/2	
It would be unmanageably long for audio frequency signals.	1/2	
ii. <u>Effective power readiated</u>	1/2	
Power radiated, being proportional to $\left(\frac{x}{3}\right)^2$ would be very small for a audio frequency signal.	1/2	
iii. Mixing up of different signals		
The audible frequency range is quite small. Hence if transformisson is done at audio frequencies, the chances of mixing	1/2	
up of different signals are very high.	1/2	
b) The required wave forms are as shown i. Carrier wave		
ii. Modulating Signal iii. Amplitude Modulated wave		

Potential due to the charge (-q)		
$V_{-} = \frac{1}{4\pi \in_{0}} \frac{-q}{\sqrt{x^{2} + y^{2} + a^{2}}}$	1/2	
Total potential at (x, y, 0)		
$= \frac{q}{4\pi \in 0} \left(\frac{1}{\sqrt{x^2 + y^2 + a^2}} - \frac{1}{\sqrt{x^2 + y^2 + a^2}} \right) = 0$	1/2	
Give full credit of part (ii) if a student writes that the point (x,y,0) is equidistant from charges +q and -q, Hence total potential due to them at the given point will be zero.		
(b) Work done = $q [V_1 - V_2]$ $V_1 = 0$ and $V_2 = 0$	1/2	
∴ work done = 0	1/2	
Where V_1 and V_2 are the total potential due to dipole at point (5,0,0) and (-7,0,0)		
(c) There would be no change This is because the electrostatic field is a conservative field.	½ ½	
(Alternatively : The work done, in moving a test charge between two given points is independent of the path taken)		
(d) The two given charges make an electric dipole of dipole moment $\vec{p}=q.\overrightarrow{2a}$	1/2	
P.E. in position of unstable equilibrium (where \vec{p} and \vec{E} are antiparallel to each		
other)	1/2	
= + pE = 2 aq E		
OR		
(a) Finding the total energy before the capacitors are connected 1 Mark		
(b) Finding the total energy in the parallel combination 3 Marks		
(c) Reason for difference 1 Mark		
(a) We have Energy Stored in a capacitor = $\frac{1}{2}CV^2$	1/2	
Energy stored in the charged capacitors $E_1 = \frac{1}{2}C_1V_1^2$ And $E_2 = \frac{1}{2}C_2V_2^2$		
	SET 55/3 Pa	age 21 of 22

∴ Total energy stored = $\frac{1}{2}C_1V_1^2 + C_2V_2^2$	1/2	
(b)Let V be the potential difference across the parallel combination.		
Equivalent capacitance = $(C_1 + C_2)$	1/	
	1/2	
Since charge is a conserved quantity, we have	14	
$(C_1 + C_2)V = C_1V_1 + C_2V_2$	1/2	
$V = \left[\frac{C_1 V_1 + C_2 V_2}{(C_1 + C_2)} \right]$	1	
∴ Total energy stored in the parallel combination		
$= \frac{1}{2}(C_1 + C_2)V^2$	1/2	
$= \frac{1}{2} \frac{(C_1 V_1 + C_2 V_2)^2}{(C_1 + C_2)}$	1/2	
(c) The total energy of the parallel combination is different (less) from the total energy before the capacitors are connected. This is because some energy gets used up due to the movement of charges during sharing of charge.	1	5