CLASSROOM PROGRAM Detailed Course Syllabus | Week | Day | Topics | Sub Topics | Practice Problems | |--------|-------|--|--|--| | Week1 | Day 1 | Analysis of AlgorithmMathematicsBit Manipulation | Asymptotic analysis Time and Space Complexity Master Theorem Bitwise Operators (Bitwise AND, Bitwise OR, Bitwise XOR, Left Shift, Right Shift, etc) | GCD and LCM Iterative Power Genarate Power Set Factorial Computing Power Prime factorization Prime Numbers (Sieve Algorithms) | | | Day 2 | • ARRAYS | Arrays - Introduction & Advantages Types of Arrays Operations of Arrays - Searching, Insertion, Deletion, Sliding Window Technique | Largest Element
in an Array Leaders in an
Array problem Reverse an Array Maximum subarray
sum | | Week 2 | Day 1 | • RECURSION • BACKTRACKING | Introduction to Recursion Writing Base Cases in
Recursion Tail Recursion Introduction to
Backtracking Rat in a Maze Problem | Print 1 to N Using
Recursion Rope Cutting Problem Sum of Digits Using
Recursion Generate Subsets Tower of Hanoi Subset Sum Problems Josephus Problem | | | Day 2 | • SEARCHING | Linear Search Binary Search - Iterative & Recursive Approach Analysis of Binary Search Two Pointer Approach | Index of first Occurrence in Sorted Count 1s in a Sorted Binary Array Square root of a number Search in an Infinite sized array Triplet in a Sorted Array | | Week | Day | Topics | Sub Topics | Practice Problems | |--------|-------|--------------------|---|--| | Week 3 | Day 1 | • SORTING | Overview of sorting algorithm Sorting Algorithms like
Insetion, Bubble, Selection,
Merge and Quick Sort Stability of Sorting Algorithms | Minimum Difference in an Array Chocolate Distribution Problem Union of two Sorted Arrays Kth Smallest Element Sort an Array with two/three types of element | | | Day 2 | • MATRIX • HASHING | Multidimensional Array Passing 2D arrays as argument Hashing Introduction and
Application, Time Complexity
Analysis Collision Handling Hashing Function | Transpose of a Matrix Matrix in Snake Pattern Count Distinct Elements Frequencies of Array
Elements Spiral Traversal of Matrix Subarray with given Sum Count Distinct Elements
in Every Window | | Week 4 | Day 1 | • STRINGS | Introduction to Strings Overview of Pattern Searching
Algortihm Naive and Improved Naive
Pattern Searching Rabin Karp Algorithm KMP Algorithm (Constructing
LPS Array and Complete
Algorithms) | Palindrome Check Reverse words in a string Check if a String is
Subsequence of Other Check for Anagram Check if Strings are
Rotations Anagram Search Lexicographic Rank of a
String | | | Day 2 | • LINKED LIST | Introduction to Linked List Traversing a Linked List Insertion of Node in Singly
Linked List Reverse a Linked List Deletion of Node in Linked List Doubly Linked List & Circular
Linked List | Middle of Linked List Deleting a node without accessing head pointer of Linked List Nth Node from end of Linked List Segregating Even and Odd Nodes of LL Detect Loop using Floyd Cycle Detection | | Week | Day | Topics | Sub Topics | Practice Problems | |--------|-------|-------------------------|--|---| | Week 5 | Day 1 | • STACK | Stack - Introduction and
Applications Stack Operations
(e.g. push, pop, etc) Array Implementation of Stack Linked List Implementation
of Stack | Balanced Parenthesis Next Greater Element Implement two Stacks
in an Array Previous Greater Element | | | Day 2 | • QUEUE
• DEQUE | Queue- Introduction and
Application Implementation of Queue
using Array Implementation of Queue
using Linked List Deque - Introduction and
Application | Generate numbers with given digits First Circular Tour Maximums of all subarrays of size k Reversing a Queue | | Week 6 | Day 1 | • TREE | Tree - Introduction and
Application Binary Tree Tree Traversal - Inorder,
Preorder and Postorder with
Implementation Level Order Traversal LCA of a Binary Tree Serialize and Deserialize a
Binary Tree | Height of Binary Tree Diameter of a Binary
Tree Check for Balanced
Binary Tree Maximum in a Binary
Tree | | | Day 2 | • BINARY SEARCH
TREE | BST - Introduction and
Application Search in BST with
Implementation Insert in BST with
Implementation Deletion in BST with
Implementation Self Balancing BST - AVL Tree,
Red Black Tree | Find Kth Smallest in BST Vertical Sum in Binary
Tree Floor in BST Check for BST Top View of Binary Tree | | Week | Day | Topics | Sub Topics | Practice Problems | |--------|-------|-------------------------|--|--| | Week 7 | Day 1 | • GREEDY • HEAP | Introduction to Greedy
Algorithm Binary Heap - Introduction Binary Heap - Insertion,
Heapify and Extract Binary Heap - Decrease, Delete
and Build Heap Heap Sort Priority Queue | Activity Selection Problem Job Sequencing Problem Sort K Sorted Arrays Fractional Knapsack Problem K Largest Element Median of a Stream | | | Day 2 | • GRAPH | Introduction to Graph Graph Representation (Adjacency List and Matrix) Adjacency Matrix and List Comparison Breadth First Search - Introduction and Implementation Depth First Search - Introduction and Implementation Prims Algorithm - Introduction and Implementation Dijkstra Algorithm - Introduction and Implementation | Bridges in Graph Detect Cycle in a
Directed Graph Articulation Point | | Week 8 | Day 1 | • Graph - Advanced | Kruskal's AlgorithmBellman-Ford AlgorithmFord-Fulkerson Algorithm | Strongly Connected
ComponentsFind the no. of islands | | | Day 2 | Dynamic Programming | Introduction to Dynamic
Programming DP vs Greedy Approach How to approach a DP Problem Memoization and Tabulation
methods | Coin Change Problem Longest Common
Subsequence Subset Sum Problem Longest Increasing
Subsequence 0-1 Knapsack Problem Matrix Chain
Multiplication |