1) Introduction

- **Analysis of Algorithm**
 a) Background analysis through a Program and its functions.
- **Order of Growth**
 a) A mathematical explanation of the growth analysis through limits and functions.
 b) A direct way of calculating the order of growth
- **Asymptotic Notations**
 ○ Best, Average and Worst case explanation through a program.
- **Big O Notation**
 ○ Graphical and mathematical explanation.
 ○ Calculation
 ○ Applications at Linear Search
- **Omega Notation**
 ○ Graphical and mathematical explanation.
 ○ Calculation.
- **Theta Notation**
 ○ Graphical and mathematical explanation.
 ○ Calculation.
- **Analysis of common loops**
 ○ Single, multiple and nested loops
- **Analysis of Recursion**
 ○ Various calculations through Recursion Tree method
- **Space Complexity**
 ○ Basic Programs
 ○ Auxiliary Space
 ○ Space Analysis of Recursion
 ○ Space Analysis of Fibonacci number
- **Practice Problems**
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.
2) Mathematics

- Mathematics
 - Count Digits
 - Palindrome Numbers
 - Factorial of Numbers
 - GCD of Two Numbers
 - LCM of Two Numbers
 - Check for Prime
 - Prime Factors
 - Sieve of Eratosthenes
 - Computing Power

- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

3) Bit Magic

- Bitwise Operators in C++
 - Operation of AND, OR, XOR operators
 - Operation of Left Shift, Right Shift and Bitwise Not

- Bitwise Operators in Java
 - Operation of AND, OR
 - Operation of Bitwise Not, Left Shift
 - Operation of Right Shift and unsigned Right Shift

- Problem (With Video Solutions): Check Kth bit is set or not
 - Method 1: Using the left Shift.
 - Method 2: Using the right shift

- Problem (With Video Solutions): Count Set Bits
 - Method 1: Simple method
 - Method 2: Brian and Kerningham Algorithm
 - Method 3: Using Lookup Table

- Problems (With Video Solutions):
 - To check whether a number is a power of 2 or not
 - Odd occurrences in an array.
 - Two numbers having odd occurrences in an array.
 - Generate power set using bitwise operators.
• **Practice Problems**
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

4) Recursion

- **Introduction to Recursion**
- **Applications of Recursion**
- **Writing base cases in Recursion**
 ○ Factorial
 ○ N-th Fibonacci number
- **Various problems on Recursion (With Video Solutions)**
 ○ Print n to 1
 ○ Print 1 to n
 ○ Tail Recursion
 ○ Checking Palindrome
 ○ Sum of digits
 ○ Rod cutting
 ○ Subsets of a set
 ○ Tower of Hanoi Problem
 ○ Josephus Problem
- **Practice Problems**
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

5) Arrays

- **Introduction and Advantages**
- **Types of Arrays**
 ○ Fixed-sized array
 ○ Dynamic-sized array
- **Operations on Arrays**
 ○ Searching
 ○ Insertions
 ○ Deletion
- Arrays vs other DS
- Reversing - Explanation with complexity

Problems (With Video Solutions)
- Left Rotation of the array by 1
- Check if Sorted
- Left Rotation of the array by D places
- Leaders in an Array
- Maximum Difference Problem
- Frequencies in Sorted Array
- Stock Buy and Sell Problem
- Trapping Rainwater Problem
- Maximum Consecutive 1s
- Maximum Subarray Sum
- Longest Even-Odd Subarray
- Maximum Circular sum subarray.
- Majority Element
- Minimum Consecutive Flips
- Sliding Window Technique
- Prefix Sum Technique

Practice Problems
- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

6) Searching

- **Binary Search Iterative and Recursive**
- **Binary Search and various associated problems (With Video Solutions)**
 - Index of First Occurrence in Sorted Array
 - Index of Last Occurrence in Sorted Array
 - Count of occurrences of x in sorted element
 - Count of 1s in a binary sorted array
 - Find an element in sorted and rotated array
 - Peak element
 - Find an element in an infinite sized sorted array
 - The square root of an integer

- **Two Pointer Approach Problems (With Video Solutions)**
 - Find pair in an unsorted array which gives sum X
 - Find pair in a sorted array which gives sum X
• Find triplet in an array which gives sum X

- **Problems (With Video Solutions)**
 - Median of two sorted arrays
 - Majority Element

- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

7) Sorting

- **Implementation of C++ STL sort() function in Arrays and Vectors**
 - Time Complexities

- **Sorting in Java**
 - Arrays.sort() in Java
 - Collection.sort() in Java

- **Stability in Sorting Algorithms**
 - Examples of Stable and Unstable Algos

- **Bubble Sort**
- **Selection Sort**
- **Insertion Sort**
- **Merge Sort**

- **Problems (With Video Solutions)**
 - Intersection of 2 sorted arrays
 - Union of 2 sorted arrays
 - Count Inversions in arrays

- **Partitions (With Video Solutions)**
 - Naive
 - Lomuto
 - Hoare

- **Quick Sort**
 - Using Lomuto and Hoare
 - Time and Space analysis
 - Choice of Pivot and Worst case
 - Tail call elimination

- **Problems (With Video Solutions)**
 - Kth Smallest element
 - Chocolate Distribution Problem
 - Sorting arrays with 2 and 3 types of elements
- Merge Overlapping Intervals
- Meeting the Maximum Guests

- Heap Sort
- Cycle Sort
- Counting Sort
- Radix Sort
- Bucket Sort
- Overview of Sorting Algorithms
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

8) Matrix

- Introduction to Matrix in C++ and Java
- Multidimensional Matrix
- Pass Matrix as Argument
- Printing matrix in a snake pattern
- Transposing a matrix
- Rotating a Matrix
- Check if the element is present in a row and column-wise sorted matrix.
- Boundary Traversal
- Spiral Traversal
- Matrix Multiplication
- Search in row-wise and column-wise Sorted Matrix
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

9) Hashing

- Introduction and Time complexity analysis
• Application of Hashing
• Discussion on Direct Address Table
• Working and examples on various Hash Functions
• Introduction and Various techniques on Collision Handling
• Chaining and its implementation
• Open Addressing and its Implementation
• Chaining V/S Open Addressing
• Double Hashing
• C++
 ○ Unordered Set
 ○ Unordered Map
• Java
 ○ HashSet
 ○ HashMap
• Problems (With Video Solutions):
 ○ Count Distinct Elements
 ○ Count of the frequency of array elements
 ○ The intersection of two arrays
 ○ Union of two unsorted arrays
 ○ Pair with given sum in an unsorted array
 ○ Subarray with zero-sum
 ○ Subarray with given sum
 ○ Longest subarray with a given sum
 ○ Longest subarray with an equal number of 0’s and 1’s
 ○ Longest common span with the same sum in a binary array
 ○ Longest Consecutive Subsequence
 ○ Count Distinct elements in every window
 ○ More than n/k Occurences
 ○ Optimized More than n/k Solution
• Practice Problems
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

10) Strings

• Discussion of String DS
• Strings in CPP
• Strings in Java
Problems (With Video Solutions):
- Given a string, check if they are an anagram of each other.
- Given a string, find the leftmost character that repeats.
- Given a string, find the leftmost character that does not repeat.
- Given a string, find the lexicographic rank of it in $O(n)$ time.
- Implementation of the previously discussed lexicographic rank problem.
- Given a text string and a pattern string, find if a permutation of the pattern exists in the text.
- Given two strings, check if they are rotations of each other or not.
- Various Pattern Searching Algorithms.
 - Palindrome Check

Rabin Karp Algorithm

KMP Algorithm

Practice Problems
- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

11) Linked List

Introduction
- Implementation in CPP
- Implementation in Java
- Comparison with Array DS

Doubly Linked List

Circular Linked List

Loop Problems
- Detecting Loops
- Detecting loops using Floyd cycle detection
- Detecting and Removing Loops in LinkedList

Problems (With Video Solutions):
- Middle of LinkedList
- Nth node from the end of linked list
- Deleting a Node without accessing Head pointer of LinkedList
- An iterative method to Reverse a linked list
- Recursive method to reverse a linked list
- Reverse in group of size k
- Recursive Traversal in a Singly Linked List
- Segregating even-odd nodes of linked list
- The intersection of two linked list
- Pairwise swap nodes of linked list
- Clone a linked list using a random pointer
- LRU Cache Design
- Merge two Sorted Linked Lists
- Palindrome Linked List
- Recursive Traversal in a Singly Linked List
- Remove Duplicates from a Sorted Singly Linked List
- Sorted Insert in a Singly Linked List
- Reverse a Doubly Linked List

Practice Problems
- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

12) Stack

- **Understanding the Stack data structure**
- **Applications of Stack**
- **Implementation of Stack in Array and Linked List**
 - In C++
 - In Java
- **Problems (With Video Solutions):**
 - Balanced Parenthesis
 - Two stacks in an array
 - K Stacks in an array
 - Stock span problem with variations
 - Previous Greater Element
 - Next Greater Element
 - Largest Rectangular Area in a Histogram
- **Understanding getMin() in Stack with O(1)**
- **Infix, Prefix and Postfix Introduction**
 - Infix to Postfix (Simple Solution)
 - Infix to Postfix (Efficient Solution)
 - Evaluation of Postfix
 - Infix to Prefix (Simple Solution)
13) Queue

- **Introduction and Application**
- **Implementation of the queue using array and LinkedList**
 - In C++ STL
 - In Java
 - Stack using queue
- **Problems (With Video Solutions)**
 - Reversing a Queue
 - Generate numbers with given digits
 - First Circular Tour
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

14) Deque

- **Introduction and Application**
- **Implementation**
 - In C++ STL
 - In Java
- **Problems (With Video Solutions)**
 - Maximums of all subarrays of size k
 - ArrayDeque in Java
 - Design a DS with min max operations
- **Practice Problems**
This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

15) Tree

- **Introduction**
 - Tree
 - Application
 - Binary Tree
 - Tree Traversal

- **Implementation of:**
 - Inorder Traversal
 - Preorder Traversal
 - Postorder Traversal
 - Level Order Traversal (Line by Line)
 - Tree Traversal in Spiral Form

- **Problems (With Video Solutions):**
 - Size of Binary Tree
 - Maximum in Binary Tree
 - Height of Binary Tree
 - Print Nodes at K distance
 - Print Left View of Binary Tree
 - Children Sum Property
 - Check for Balanced Binary Tree
 - Maximum Width of Binary Tree
 - Convert Binary Tree to Doubly Linked List
 - Construct Binary Tree from Inorder and Preorder
 - Tree Traversal Spiral Form
 - The diameter of a Binary Tree
 - LCA problem with an efficient solution
 - Burn A Binary Tree from a Leaf
 - Count Nodes in a complete Binary Tree
 - Serialize and Deserialize a Binary tree
 - Iterative Inorder Traversal
 - Iterative Preorder Traversal (Simple)
 - Iterative Preorder Traversal (Space Optimized)

- **Practice Problems**
16) Binary Search Tree

- **Background, Introduction and Application**
- **Implementation of Search in BST**
 - In CPP
 - In Java
- **Insertion in BST**
 - In CPP
 - In Java
- **Deletion in BST**
 - In CPP
 - In Java
- **Floor in BST**
 - In CPP
 - In Java
- **Self Balancing BST**
- **AVL Tree**
- **Red Black Tree**
- **Set in C++ STL**
- **Map in C++ STL**
- **BST Introduction**
- **TreeSet in java**
- **TreeMap in Java**
- **Problems (With Video Solutions):**
 - The ceiling of a key in BST
 - Ceiling on the left side in an array
 - Find Kth Smallest in BST
 - Check for BST
 - Fix BST with Two Nodes Swapped
 - Pair Sum with given BST
 - Vertical Sum in a Binary Tree
 - Vertical Traversal of Binary Tree
 - Top View of Binary Tree
 - Bottom View of Binary Tree
- **Practice Problems**
This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

17) Heap

- **Introduction & Implementation**
- **Binary Heap**
 - Insertion
 - Heapify and Extract
 - Decrease Key, Delete and Build Heap
- **Heap Sort**
- **Priority Queue in C++**
- **PriorityQueue in Java**
- **Problems (With Video Solutions):**
 - Sort K-Sorted Array
 - Buy Maximum Items with Given Sum
 - K Largest Elements
 - Merge K Sorted Arrays
 - Median of a Stream
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

18) Graph

- **Introduction to Graph**
- **Graph Representation**
 - Adjacency Matrix
 - Adjacency List in CPP and Java
 - Adjacency Matrix VS List
- **Breadth-First Search**
 - Applications
- **Depth First Search**
 - Applications
• Problems (With Video Solutions):
 ○ Shortest Path in an Unweighted Graph
 ○ Detecting Cycle
 ■ In the Undirected Graph
 ■ In the Directed Graph
 ○ Topological Sorting
 ■ Kahn's BFS Based Algorithm
 ■ DFS Based Algorithm
• Shortest Path in Directed Acyclic Graph
• Prim’s Algorithm/Minimum Spanning Tree
 ○ Implementation in CPP
 ○ Implementation in Java
• Dijkstra's Shortest Path Algorithm
 ○ Implementation in CPP
 ○ Implementation in Java
• Bellman-Ford Shortest Path Algorithm
• Kruskal’s Algorithm
• Kosaraju’s Algorithm
• Articulation Point
• Bridges in Graph
• Tarjan’s Algorithm
• Practice Problems
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

19) Greedy

• Introduction
• Activity Selection Problem
• Fractional Knapsack
• Job Sequencing Problem
• Huffman Coding
• Practice Problems
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.
20) Backtracking

- Concepts of Backtracking
- Rat In a Maze
- N Queen Problem
- Sudoku Problem
- Practice Problems
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

21) Dynamic Programming

- Introduction
- Dynamic Programming
 - Memoization
 - Tabulation
- Problems(With Video Solutions):
 - Longest Common Subsequence
 - Coin Change Count Combinations
 - Edit Distance Problem
 - Naive Approach
 - DP Approach
 - Longest Increasing Subsequence Problem
 - Naive Approach
 - Efficient Approach
 - Maximum Cuts
 - Minimum coins to make a value
 - Minimum Jumps to reach at the end
 - 0-1 knapsack problem
 - Naive Approach
 - Efficient Approach
 - Optimal Strategy for a Game
 - Variation of Longest Common Subsequence
 - Variation of Longest Increasing Subsequence
 - Egg Dropping Problem
 - Count BST with nkeys
 - Maximum Sum with No Consecutive
 - Subset Sum Problem
22) Trie

- **Introduction**
 - Representation
 - Search
 - Insert
 - Delete
- **Count Distinct Rows in a Binary Matrix**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

23) Segment Tree

- **Introduction**
- **Construction**
- **Range Query**
- **Update Query**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

24) Disjoint Set

- **Introduction**
- **Find and Union Operations**
- **Union by Rank**
- **Path Compression**
• **Kruskal's Algorithm**
• **Practice Problems**
 ○ This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.