

DSA

Self Paced

DSA

Detailed
Course Syllabus

I) Introduction

- **Analysis of Algorithm**
 - a) Background analysis through a Program and its functions.
- **Order of Growth**
 - a) A mathematical explanation of the growth analysis through limits and functions.
 - b) A direct way of calculating the order of growth
- **Asymptotic Notations**
 - Best, Average and Worst case explanation through a program.
- **Big O Notation**
 - Graphical and mathematical explanation.
 - Calculation
 - Applications at Linear Search
- **Omega Notation**
 - Graphical and mathematical explanation.
 - Calculation.
- **Theta Notation**
 - Graphical and mathematical explanation.
 - Calculation.
- **Analysis of common loops**
 - Single, multiple and nested loops
- **Analysis of Recursion**
 - Various calculations through Recursion Tree method
- **Space Complexity**
 - Basic Programs
 - Auxiliary Space
 - Space Analysis of Recursion
 - Space Analysis of Fibonacci number
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

2) Mathematics

- **Mathematics**
 - Count Digits
 - Palindrome Numbers
 - Factorial of Numbers
 - GCD of Two Numbers
 - LCM of Two Numbers
 - Check for Prime
 - Prime Factors
 - Sieve of Eratosthenes
 - Computing Power
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

3) Bit Magic

- **Bitwise Operators in C++**
 - Operation of AND, OR, XOR operators
 - Operation of Left Shift, Right Shift and Bitwise Not
- **Bitwise Operators in Java**
 - Operation of AND, OR
 - Operation of Bitwise Not, Left Shift
 - Operation of Right Shift and unsigned Right Shift
- **Problem(With Video Solutions): Check Kth bit is set or not**
 - Method 1: Using the left Shift.
 - Method 2: Using the right shift
- **Problem(With Video Solutions): Count Set Bits**
 - Method 1: Simple method
 - Method 2: Brian and Kerningham Algorithm
 - Method 3: Using Lookup Table
- **Problems(With Video Solutions):**
 - To check whether a number is a power of 2 or not
 - Odd occurrences in an array.
 - Two numbers having odd occurrences in an array.
 - Generate power set using bitwise operators.

- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

4) Recursion

- **Introduction to Recursion**
- **Applications of Recursion**
- **Writing base cases in Recursion**

- Factorial
- N-th Fibonacci number

- **Various problems on Recursion(With Video Solutions)**

- Print n to 1
- Print 1 to n
- Tail Recursion
- Checking Palindrome
- Sum of digits
- Rod cutting
- Subsets of a set
- Tower of Hanoi Problem
- Josephus Problem

- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

5) Arrays

- **Introduction and Advantages**

- **Types of Arrays**

- Fixed-sized array
- Dynamic-sized array

- **Operations on Arrays**

- Searching
- Insertions
- Deletion

- Arrays vs other DS
- Reversing - Explanation with complexity
- **Problems(With Video Solutions)**
 - Left Rotation of the array by 1
 - Check if Sorted
 - Left Rotation of the array by D places
 - Leaders in an Array
 - Maximum Difference Problem
 - Frequencies in Sorted Array
 - Stock Buy and Sell Problem
 - Trapping Rainwater Problem
 - Maximum Consecutive 1s
 - Maximum Subarray Sum
 - Longest Even-Odd Subarray
 - Maximum Circular sum subarray.
 - Majority Element
 - Minimum Consecutive Flips
 - Sliding Window Technique
 - Prefix Sum Technique
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

6) Searching

- **Binary Search Iterative and Recursive**
- **Binary Search and various associated problems(With Video Solutions)**
 - Index of First Occurrence in Sorted Array
 - Index of Last Occurrence in Sorted Array
 - Count of occurrences of x in sorted element
 - Count of 1s in a binary sorted array
 - Find an element in sorted and rotated array
 - Peak element
 - Find an element in an infinite sized sorted array
 - The square root of an integer
- **Two Pointer Approach Problems(With Video Solutions)**
 - Find pair in an unsorted array which gives sum X
 - Find pair in a sorted array which gives sum X

- Find triplet in an array which gives sum X
- **Problems(With Video Solutions)**
 - Median of two sorted arrays
 - Majority Element
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

7) Sorting

- **Implementation of C++ STL sort() function in Arrays and Vectors**
 - Time Complexities
- **Sorting in Java**
- **Arrays.sort() in Java**
- **Collection.sort() in Java**
- **Stability in Sorting Algorithms**
 - Examples of Stable and Unstable Algos
- **Bubble Sort**
- **Selection Sort**
- **Insertion Sort**
- **Merge Sort**
- **Problems(With Video Solutions)**
 - Intersection of 2 sorted arrays
 - Union of 2 sorted arrays
 - Count Inversions in arrays
- **Partitions(With Video Solutions)**
 - Naive
 - Lomuto
 - Hoare
- **Quick Sort**
 - Using Lomuto and Hoare
 - Time and Space analysis
 - Choice of Pivot and Worst case
 - Tail call elimination
- **Problems(With Video Solutions)**
 - Kth Smallest element
 - Chocolate Distribution Problem
 - Sorting arrays with 2 and 3 types of elements

- Merge Overlapping Intervals
- Meeting the Maximum Guests
- **Heap Sort**
- **Cycle Sort**
- **Counting Sort**
- **Radix Sort**
- **Bucket Sort**
- **Overview of Sorting Algorithms**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

8) Matrix

- **Introduction to Matrix in C++ and Java**
- **Multidimensional Matrix**
- **Pass Matrix as Argument**
- **Printing matrix in a snake pattern**
- **Transposing a matrix**
- **Rotating a Matrix**
- **Check if the element is present in a row and column-wise sorted matrix.**
- **Boundary Traversal**
- **Spiral Traversal**
- **Matrix Multiplication**
- **Search in row-wise and column-wise Sorted Matrix**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

9) Hashing

- **Introduction and Time complexity analysis**

- **Application of Hashing**
- **Discussion on Direct Address Table**
- **Working and examples on various Hash Functions**
- **Introduction and Various techniques on Collision Handling**
- **Chaining and its implementation**
- **Open Addressing and its Implementation**
- **Chaining V/S Open Addressing**
- **Double Hashing**
- **C++**
 - Unordered Set
 - Unordered Map
- **Java**
 - HashSet
 - HashMap
- **Problems(With Video Solutions):**
 - Count Distinct Elements
 - Count of the frequency of array elements
 - The intersection of two arrays
 - Union of two unsorted arrays
 - Pair with given sum in an unsorted array
 - Subarray with zero-sum
 - Subarray with given sum
 - Longest subarray with a given sum
 - Longest subarray with an equal number of 0's and 1's
 - Longest common span with the same sum in a binary array
 - Longest Consecutive Subsequence
 - Count Distinct elements in every window
 - More than n/k Occurrences
 - Optimized More than n/k Solution
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

10) Strings

- **Discussion of String DS**
- **Strings in CPP**
- **Strings in Java**

- **Problems(With Video Solutions):**

- Given a string, check if they are an anagram of each other.
- Given a string, find the leftmost character that repeats.
- Given a string, find the leftmost character that does not repeat.
- Given a string, find the lexicographic rank of it in $O(n)$ time.
- Implementation of the previously discussed lexicographic rank problem.
- Given a text string and a pattern string, find if a permutation of the pattern exists in the text.
- Given two strings, check if they are rotations of each other or not.
- Various Pattern Searching Algorithms.
- Palindrome Check

- **Rabin Karp Algorithm**

- **KMP Algorithm**

- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

11) Linked List

- **Introduction**

- Implementation in CPP
- Implementation in Java
- Comparison with Array DS

- **Doubly Linked List**

- **Circular Linked List**

- **Loop Problems**

- Detecting Loops
- Detecting loops using Floyd cycle detection
- Detecting and Removing Loops in Linked List

- **Problems(With Video Solutions):**

- Middle of Linked List
- Nth node from the end of linked list
- Deleting a Node without accessing Head pointer of Linked List
- An iterative method to Reverse a linked list
- Recursive method to reverse a linked list
- Reverse in group of size k
- Recursive Traversal in a Singly Linked List

- Segregating even-odd nodes of linked list
- The intersection of two linked list
- Pairwise swap nodes of linked list
- Clone a linked list using a random pointer
- LRU Cache Design
- Merge two Sorted Linked Lists
- Palindrome Linked List
- Recursive Traversal in a Singly Linked List
- Remove Duplicates from a Sorted Singly Linked List
- Sorted Insert in a Singly Linked List
- Reverse a Doubly Linked List
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

12) Stack

- **Understanding the Stack data structure**
- **Applications of Stack**
- **Implementation of Stack in Array and Linked List**
 - In C++
 - In Java
- **Problems(With Video Solutions):**
 - Balanced Parenthesis
 - Two stacks in an array
 - K Stacks in an array
 - Stock span problem with variations
 - Previous Greater Element
 - Next Greater Element
 - Largest Rectangular Area in a Histogram
- **Understanding getMin() in Stack with O(1)**
- **Infix, Prefix and Postfix Introduction**
 - Infix to Postfix (Simple Solution)
 - Infix to Postfix (Efficient Solution)
 - Evaluation of Postfix
 - Infix to Prefix (Simple Solution)

- Infix to Prefix (Efficient Solution)
- Evaluation of Prefix
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

13) Queue

- **Introduction and Application**
- **Implementation of the queue using array and LinkedList**
 - In C++ STL
 - In Java
 - Stack using queue
- **Problems(With Video Solutions)**
 - Reversing a Queue
 - Generate numbers with given digits
 - First Circular Tour
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

14) Deque

- **Introduction and Application**
- **Implementation**
 - In C++ STL
 - In Java
- **Problems(With Video Solutions)**
 - Maximums of all subarrays of size k
 - ArrayDeque in Java
 - Design a DS with min max operations
- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

15) Tree

- **Introduction**

- Tree
- Application
- Binary Tree
- Tree Traversal

- **Implementation of:**

- Inorder Traversal
- Preorder Traversal
- Postorder Traversal
- Level Order Traversal (Line by Line)
- Tree Traversal in Spiral Form

- **Problems(With Video Solutions):**

- Size of Binary Tree
- Maximum in Binary Tree
- Height of Binary Tree
- Print Nodes at K distance
- Print Left View of Binary Tree
- Children Sum Property
- Check for Balanced Binary Tree
- Maximum Width of Binary Tree
- Convert Binary Tree to Doubly Linked List
- Construct Binary Tree from Inorder and Preorder
- Tree Traversal Spiral Form
- The diameter of a Binary Tree
- LCA problem with an efficient solution
- Burn A Binary Tree from a Leaf
- Count Nodes in a complete Binary Tree
- Serialize and Deserialize a Binary tree
- Iterative Inorder Traversal
- Iterative Preorder Traversal (Simple)
- Iterative Preorder Traversal (Space Optimized)

- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

16) Binary Search Tree

- **Background, Introduction and Application**
- **Implementation of Search in BST**
 - In CPP
 - In Java
- **Insertion in BST**
 - In CPP
 - In Java
- **Deletion in BST**
 - In CPP
 - In Java
- **Floor in BST**
 - In CPP
 - In Java
- **Self Balancing BST**
- **AVL Tree**
- **Red Black Tree**
- **Set in C++ STL**
- **Map in C++ STL**
- **BST Introduction**
- **TreeSet in java**
- **TreeMap in Java**
- **Problems(With Video Solutions):**
 - The ceiling of a key in BST
 - Ceiling on the left side in an array
 - Find Kth Smallest in BST
 - Check for BST
 - Fix BST with Two Nodes Swapped
 - Pair Sum with given BST
 - Vertical Sum in a Binary Tree
 - Vertical Traversal of Binary Tree
 - Top View of Binary Tree
 - Bottom View of Binary Tree
- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

17) Heap

- **Introduction & Implementation**
- **Binary Heap**
 - Insertion
 - Heapify and Extract
 - Decrease Key, Delete and Build Heap
- **Heap Sort**
- **Priority Queue in C++**
- **PriorityQueue in Java**
- **Problems(With Video Solutions):**
 - Sort K-Sorted Array
 - Buy Maximum Items with Given Sum
 - K Largest Elements
 - Merge K Sorted Arrays
 - Median of a Stream
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

18) Graph

- **Introduction to Graph**
- **Graph Representation**
 - Adjacency Matrix
 - Adjacency List in CPP and Java
 - Adjacency Matrix VS List
- **Breadth-First Search**
 - Applications
- **Depth First Search**
 - Applications

- **Problems(With Video Solutions):**
 - Shortest Path in an Unweighted Graph
 - Detecting Cycle
 - In the Undirected Graph
 - In the Directed Graph
 - Topological Sorting
 - Kahn's BFS Based Algorithm
 - DFS Based Algorithm
- **Shortest Path in Directed Acyclic Graph**
- **Prim's Algorithm/Minimum Spanning Tree**
 - Implementation in CPP
 - Implementation in Java
- **Dijkstra's Shortest Path Algorithm**
 - Implementation in CPP
 - Implementation in Java
- **Bellman-Ford Shortest Path Algorithm**
- **Kruskal's Algorithm**
- **Kosaraju's Algorithm**
- **Articulation Point**
- **Bridges in Graph**
- **Tarjan's Algorithm**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

19) Greedy

- **Introduction**
- **Activity Selection Problem**
- **Fractional Knapsack**
- **Job Sequencing Problem**
- **Huffman Coding**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

20) Backtracking

- **Concepts of Backtracking**
- **Rat In a Maze**
- **N Queen Problem**
- **Sudoku Problem**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

21) Dynamic Programming

- **Introduction**
- **Dynamic Programming**
 - Memoization
 - Tabulation
- **Problems(With Video Solutions):**
 - Longest Common Subsequence
 - Coin Change Count Combinations
 - Edit Distance Problem
 - Naive Approach
 - DP Approach
 - Longest Increasing Subsequence Problem
 - Naive Approach
 - Efficient Approach
 - Maximum Cuts
 - Minimum coins to make a value
 - Minimum Jumps to reach at the end
 - 0-1 knapsack problem
 - Naive Approach
 - Efficient Approach
 - Optimal Strategy for a Game
 - Variation of Longest Common Subsequence
 - Variation of Longest Increasing Subsequence
 - Egg Dropping Problem
 - Count BST with nkeys
 - Maximum Sum with No Consecutive
 - Subset Sum Problem

- Matrix Chain Multiplication
- Palindrome Partitioning
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

22) Trie

- **Introduction**
 - Representation
 - Search
 - Insert
 - Delete
- **Count Distinct Rows in a Binary Matrix**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

23) Segment Tree

- **Introduction**
- **Construction**
- **Range Query**
- **Update Query**
- **Practice Problems**
 - This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.

24) Disjoint Set

- **Introduction**
- **Find and Union Operations**
- **Union by Rank**
- **Path Compression**

- **Kruskal's Algorithm**

- **Practice Problems**

- This track contains many practice problems for the users which are considered important and must-do as far as Data Structure and Algorithm is concerned.