

Database Management System (DBMS)

Introduction to database Management System

1. All about DBMS
A Database Management System (DBMS) is a software system that is designed

to manage and organize data in a structured manner. It allows users to create,

modify, and query a database, as well as manage the security and access controls

for that database.

DBMS provides an environment to store and retrieve the data in coinvent and

efficient manner.

Key Features of DBMS

 Data modeling: A DBMS provides tools for creating and modifying

data models, which define the structure and relationships of the data

in a database.

 Data storage and retrieval: A DBMS is responsible for storing and

retrieving data from the database and can provide various methods for

searching and querying the data.

 Concurrency control: A DBMS provides mechanisms for controlling

concurrent access to the database, to ensure that multiple users can

access the data without conflicting with each other.

 Data integrity and security: A DBMS provides tools for enforcing

data integrity and security constraints, such as constraints on the

values of data and access controls that restrict who can access the data.

 Backup and recovery: A DBMS provides mechanisms for backing

up and recovering the data in the event of a system failure.

 DBMS can be classified into two types: Relational Database

Management System (RDBMS) and Non-Relational Database

Management System (NoSQL or Non-SQL)

 RDBMS: Data is organized in the form of tables and each table has a

set of rows and columns. The data are related to each other through

primary and foreign keys.

 NoSQL: Data is organized in the form of key-value pairs, documents,

graphs, or column-based. These are designed to handle large-scale,

high-performance scenarios.

A database is a collection of interrelated data which helps in the efficient

retrieval, insertion, and deletion of data from the database and organizes the data

in the form of tables, views, schemas, reports, etc. For Example, a university

database organizes the data about students, faculty, admin staff, etc. which helps

in the efficient retrieval, insertion, and deletion of data from it.

Database Languages

1) Data Definition Language

2) Data Manipulation Language

3) Data Control Language

4) Transactional Control Language

Data Definition Language

DDL is the short name for Data Definition Language, which deals with database

schemas and descriptions, of how the data should reside in the database.

0 seconds of 21 seconds Volume 0%

 CREATE: to create a database and its objects like (table, index,

views, store procedure, function, and triggers)

 ALTER: alters the structure of the existing database

 DROP: delete objects from the database

 TRUNCATE: remove all records from a table, including all spaces

allocated for the records are removed

 COMMENT: add comments to the data dictionary

 RENAME: rename an object

Data Manipulation Language

DML is the short name for Data Manipulation Language which deals with data

manipulation and includes most common SQL statements such SELECT,

INSERT, UPDATE, DELETE, etc., and it is used to store, modify, retrieve,

delete, and update data in a database.

 SELECT: retrieve data from a database

 INSERT: insert data into a table

 UPDATE: updates existing data within a table

 DELETE: Delete all records from a database table

 MERGE: UPSERT operation (insert or update)

 CALL: call a PL/SQL or Java subprogram

 EXPLAIN PLAN: interpretation of the data access path

 LOCK TABLE: concurrency Control

Data Control Language

DCL is short for Data Control Language which acts as an access specifier to the

database. (Basically, to grant and revoke permissions to users in the database

 GRANT: grant permissions to the user for running DML (SELECT,

INSERT, DELETE…) commands on the table

 REVOKE: revoke permissions to the user for running DML

(SELECT, INSERT, DELETE…) command on the specified table

Transactional Control Language

TCL is short for Transactional Control Language which acts as a manager for

all types of transactional data and all transactions. Some of the commands of

TCL are.

 Roll Back: Used to cancel or Undo changes made in the database.

 Commit: It is used to apply or save changes in the database

 Save Point: It is used to save the data on the temporary basis in the

database.

Data retrieval language:

DRL is short for Data Retrieval Language which is used for retrieval of data. It

can also be said as DML.

 SELECT: Used for extracting the required data.

Applications of DBMS:

 Enterprise Information: Sales, accounting, human resources,

Manufacturing, online retailers.

 Banking and Finance Sector: Banks maintaining the customer

details, accounts, loans, banking transactions, credit card transactions.

Finance: Storing the information about sales and holdings, purchasing

of financial stocks and bonds.

 University: Maintaining the information about student course

enrolled information, student grades, staff roles.

 Airlines: Reservations and schedules.

 Telecommunications: Prepaid, postpaid bills maintenance.

Paradigm Shift from File System to DBMS

 File System manages data using files on a hard disk. Users are allowed to create,

delete, and update the files according to their requirements. Let us consider the

example of file-based University Management System. Data of students is

available to their respective Departments, Academics Section, Result Section,

Accounts Section, Hostel Office, etc. Some of the data is common for all

sections like Roll No, Name, Father Name, Address, and Phone number of

students but some data is available to a particular section only like Hostel

allotment number which is a part of the hostel office. Let us discuss the issues

with this system:

 Redundancy of data: Data is said to be redundant if the same data is

copied at many places. If a student wants to change their Phone

number, he or she has to get it updated in various sections. Similarly,

old records must be deleted from all sections representing that student.

 Inconsistency of Data: Data is said to be inconsistent if multiple

copies of the same data do not match each other. If the Phone number

is different in Accounts Section and Academics Section, it will be

inconsistent. Inconsistency may be because of typing errors or not

updating all copies of the same data.

 Difficult Data Access: A user should know the exact location of the

file to access data, so the process is very cumbersome and tedious. If

the user wants to search the student hostel allotment number of a

student from 10000 unsorted students’ records, how difficult it can be.

 Unauthorized Access: File Systems may lead to unauthorized access

to data. If a student gets access to a file having his marks, he can

change it in an unauthorized way.

 No Concurrent Access: The access of the same data by multiple users

at the same time is known as concurrency. The file system does not

allow concurrency as data can be accessed by only one user at a time.

 No Backup and Recovery: The file system does not incorporate any

backup and recovery of data if a file is lost or corrupted.

Advantages of DBMS

 Data organization: A DBMS allows for the organization and storage

of data in a structured manner, making it easy to retrieve and query the

data as needed.

 Data integrity: A DBMS provides mechanisms for enforcing data

integrity constraints, such as constraints on the values of data and

access controls that restrict who can access the data.

 Concurrent access: A DBMS provides mechanisms for controlling

concurrent access to the database, to ensure that multiple users can

access the data without conflicting with each other.

 Data security: A DBMS provides tools for managing the security of

the data, such as controlling access to the data and encrypting sensitive

data.

 Backup and recovery: A DBMS provides mechanisms for backing

up and recovering the data in the event of a system failure.

 Data sharing: A DBMS allows multiple users to access and share the

same data, which can be useful in a collaborative work environment.

Disadvantages of DBMS

 Complexity: DBMS can be complex to set up and maintain, requiring

specialized knowledge and skills.

 Performance overhead: The use of a DBMS can add overhead to the

performance of an application, especially in cases where high levels

of concurrency are required.

 Scalability: The use of a DBMS can limit the scalability of an

application since it requires the use of locking and other

synchronization mechanisms to ensure data consistency.

 Cost: The cost of purchasing, maintaining, and upgrading a DBMS

can be high, especially for large or complex systems.

 Limited Use Cases: Not all use cases are suitable for a DBMS, some

solutions do not need high reliability, consistency or security and may

be better served by other types of data storage.

These are the main reasons which made a shift from file system to DBMS.

Also, see.

A Database Management System (DBMS) is a software system that allows users

to create, maintain, and manage databases. It is a collection of programs that

enables users to access and manipulate data in a database. A DBMS is used to

store, retrieve, and manipulate data in a way that provides security, privacy, and

reliability.

Several Types of DBMS

 Relational DBMS (RDBMS): An RDBMS stores data in tables with

rows and columns and uses SQL (Structured Query Language) to

manipulate the data.

 Object-Oriented DBMS (OODBMS): An OODBMS stores data as

objects, which can be manipulated using object-oriented programming

languages.

 NoSQL DBMS: A NoSQL DBMS stores data in non-relational data

structures, such as key-value pairs, document-based models, or graph

models.

2. Database Architecture
A Database stores a lot of critical information to access data quickly and

securely. Hence it is important to select the correct architecture for efficient data

management. DBMS Architecture helps users to get their requests done while

connecting to the database. We choose database architecture depending on

several factors like the size of the database, number of users, and relationships

between the users. There are two types of database models that we generally

use, logical model and physical model. Several types of architecture are there in

the database which we will deal with in the next section.

Types of DBMS Architecture

There are several types of DBMS Architecture that we use according to the

usage requirements. Types of DBMS Architecture are discussed here.

 1-Tier Architecture

 2-Tier Architecture

 3-Tier Architecture

 1-Tier Architecture

In 1-Tier Architecture the database is directly available to the user, the user can

directly sit on the DBMS and use it that is, the client, server, and Database are

all present on the same machine. For Example: to learn SQL we set up an SQL

server and the database on the local system. This enables us to directly interact

with the relational database and execute operations. The industry won’t use this

architecture they logically go for 2-tier and 3-tier Architecture.

Advantages of 1-Tier Architecture

Below mentioned are the advantages of 1-Tier Architecture.

 Simple Architecture: 1-Tier Architecture is the simplest architecture

to set up, as only a single machine is required to maintain it.

 Cost-Effective: No additional hardware is required for implementing

1-Tier Architecture, which makes it cost-effective.

 Easy to Implement: 1-Tier Architecture can be easily deployed, and

hence it is mostly used in small projects.

 2-Tier Architecture

The 2-tier architecture is like a basic client-server model. The application at

the client end directly communicates with the database on the server side.

APIs like ODBC and JDBC are used for this interaction. The server side is

responsible for providing query processing and transaction management

functionalities. On the client side, the user interfaces and application programs

are run. The application on the client side establishes a connection with the

server side to communicate with the DBMS.

An advantage of this type is that maintenance and understanding are easier,

and compatible with existing systems. However, this model gives poor

performance when there are many users.

 Figure 1: 2-Tire Architecture

Advantages of 2-Tier Architecture

 Easy to Access: 2-Tier Architecture makes easy access to the

database, which makes fast retrieval.

 Scalable: We can scale the database easily, by adding clients or

upgrading hardware.

 Low Cost: 2-Tier Architecture is cheaper than 3-Tier Architecture

and Multi-Tier Architecture.

 Easy Deployment: 2-Tier Architecture is easier to deploy than 3-Tier

Architecture.

 Simple: 2-Tier Architecture is easily understandable as well as simple

because of only two components.

3-Tier Architecture

In 3-Tier Architecture, there is another layer between the client and the server.

The client does not directly communicate with the server. Instead, it interacts

with an application server which further communicates with the database system

and then the query processing and transaction management takes place. This

intermediate layer acts as a medium for the exchange of partially processed data

between the server and the client. This type of architecture is used in the case of

large web applications.

 Figure 1: 3-Tire Architecture

Advantages of 3-Tier Architecture

 Enhanced scalability: Scalability is enhanced due to the distributed

deployment of application servers. Now, individual connections need

not be made between the client and server.

 Data Integrity: 3-Tier Architecture maintains Data Integrity. Since

there is a middle layer between the client and the server, data

corruption can be avoided/removed.

 Security: 3-Tier Architecture Improves Security. This type of model

prevents direct interaction of the client with the server thereby

reducing access to unauthorized data.

Disadvantages of 3-Tier Architecture

 More Complex: 3-Tier Architecture is more complex in comparison

to 2-Tier Architecture. Communication Points are also doubled in 3-

Tier Architecture.

 Difficult to Interact: It becomes difficult for this sort of interaction

to take place due to the presence of middle layers.

3. Need for DBMS

A Data Base Management System is a system software for easy, efficient and

reliable data processing and management. It can be used for:

 Creation of a database.

 Retrieval of information from the database.

 Updating the database.

 Managing a database.

 Multiple User Interface
 Data scalability, expandability, and flexibility: We can

change schema of the database, all schema will be updated

according to it.

 Overall, the time for developing an application is reduced.

 Security: Simplifies data storage as it is possible to assign

security permissions allowing restricted access to data.

Data organization: DBMS allow users to organize large amounts of data in a

structured and systematic way. Data is organized into tables, fields, and records,

making it easy to manage, store, and retrieve information.

Data scalability: DBMS are designed to handle large amounts of data and are

scalable to meet the growing needs of organizations. As organizations grow,

DBMS can scale up to handle increasing amounts of data and user traffic.

 Data Organization and Management:
One of the primary needs for a DBMS is data organization and management.

DBMSs allow data to be stored in a structured manner, which helps in easier

retrieval and analysis. A well-designed database schema enables faster access

to information, reducing the time required to find relevant data. A DBMS also

provides features like indexing and searching, which make it easier to locate

specific data within the database. This allows organizations to manage their data

more efficiently and effectively.

 Data Security and Privacy:
DBMSs provide a robust security framework that ensures the confidentiality,

integrity, and availability of data. They offer authentication and authorization

features that control access to the database. DBMSs also provide encryption

capabilities to protect sensitive data from unauthorized access. Moreover,

DBMSs comply with various data privacy regulations such as the GDPR,

HIPAA, and CCPA, ensuring that organizations can store and manage their data

in compliance with legal requirements.

 Data Integrity and Consistency:
Data integrity and consistency are crucial for any database. DBMSs provide

mechanisms that ensure the accuracy and consistency of data. These

mechanisms include constraints, triggers, and stored procedures that enforce

data integrity rules. DBMSs also provide features like transactions that ensure

that data changes are atomic, consistent, isolated, and durable (ACID).

 Concurrent Data Access:
A DBMS provides a concurrent access mechanism that allows multiple users to

access the same data simultaneously. This is especially important for

organizations that require real-time data access. DBMSs use locking

mechanisms to ensure that multiple users can access the same data without

causing conflicts or data corruption.

 Data Analysis and Reporting:
DBMSs provide tools that enable data analysis and reporting. These tools allow

organizations to extract useful insights from their data, enabling better decision-

making. DBMSs support various data analysis techniques such as OLAP, data

mining, and machine learning. Moreover, DBMSs provide features like data

visualization and reporting, which enable organizations to present their data in

a visually appealing and understandable way.

 Scalability and Flexibility:
DBMSs provide scalability and flexibility, enabling organizations to handle

increasing amounts of data. DBMSs can be scaled horizontally by adding more

servers or vertically by increasing the capacity of existing servers. This makes

it easier for organizations to handle large amounts of data without compromising

performance. Moreover, DBMSs provide flexibility in terms of data modeling,

enabling organizations to adapt their databases to changing business

requirements.

 Cost-Effectiveness:
DBMSs are cost-effective compared to traditional file-based systems. They

reduce storage costs by eliminating redundancy and optimizing data storage.

They also reduce development costs by providing tools for database design,

maintenance, and administration. Moreover, DBMSs reduce operational costs

by automating routine tasks and providing self-tuning capabilities.

4. Challenges of Database Security in DBMS

The vast increase in volume and speed of threats to databases and many

information assets, research efforts need to be consider to the following issues

such as data quality, intellectual property rights, and database survivability.

Let us discuss them one by one.

i) Data quality –

 The database community basically needs techniques and some

organizational solutions to assess and attest the quality of data. These

techniques may include the simple mechanism such as quality stamps

that are posted on different websites. We also need techniques that will

provide us more effective integrity semantics verification tools for

assessment of data quality, based on many techniques such as record

linkage.

 We also need application-level recovery techniques to automatically

repair the incorrect data.

 The ETL that is extracted transform and load tools widely used for

loading the data in the data warehouse are presently grappling with

these issues.

ii) Intellectual property rights –

As the use of Internet and intranet is increasing day by day, legal and

informational aspects of data are becoming major concerns for many

organizations. To address this concerns watermark technique are used which

will help to protect content from unauthorized duplication and distribution by

giving the provable power to the ownership of the content. Traditionally they

are dependent upon the availability of a large domain within which the objects

can be altered while retaining its essential or important properties. However,

research is needed to access the robustness of many such techniques and the

study and investigate many different approaches or methods that aimed to

prevent intellectual property rights violation.

iii) Database survivability –

Database systems need to operate and continued their functions even with the

reduced capabilities, despite disruptive events such as information warfare

attacks A DBMS in addition to making every effort to prevent an attack and

detecting one in the event of the occurrence should be able to do the following:

 Confident: We should take immediate action to eliminate the

attacker’s access to the system and to isolate or contain the problem to

prevent further spread.

 Damage assessment: Determine the extent of the problem, including

failed function and corrupted data.

 Recover: Recover corrupted or lost data and repair or reinstall failed

function to reestablish a normal level of operation.

 Reconfiguration: Reconfigure to allow the operation to continue in a

degraded mode while recovery proceeds.

 Fault treatment: To the extent possible, identify the weakness

exploited in the attack and takes steps to prevent a recurrence.

Database security
It is an essential aspect of database management systems (DBMS) as it involves

protecting the confidentiality, integrity, and availability of the data stored in the

database. The challenges of database security in DBMS include:

 Authentication and Authorization: One of the biggest challenges of

database security is ensuring that only authorized users can access the

database. The DBMS must authenticate users and grant them appropriate

access rights based on their roles and responsibilities.

 Encryption: Data encryption is an effective way to protect sensitive data

in transit and at rest. However, it can also be a challenge to implement

and manage encryption keys and ensure that encrypted data is not

compromised.

 Access Control: Access control involves regulating the access to data

within the database. It can be challenging to implement access control

mechanisms that allow authorized users to access the data they need while

preventing unauthorized users from accessing it.

 Auditing and Logging: DBMS must maintain an audit trail of all

activities in the database. This includes monitoring who accesses the

database, what data is accessed, and when it is accessed. This can be a

challenge to implement and manage, especially in large databases.

 Database Design: The design of the database can also impact security. A

poorly designed database can lead to security vulnerabilities, such as SQL

injection attacks, which can compromise the confidentiality, integrity,

and availability of data.

 Malicious attacks: Cyberattacks such as hacking, malware, and phishing

pose a significant threat to the security of databases. DBMS must have

robust security measures in place to prevent and detect such attacks.

 Physical Security: Physical security of the database is also important, as

unauthorized physical access to the server can lead to data breaches.

Features that are used to enhance database security:

 Backup and Recovery: DBMS systems include backup and recovery

features that ensure that data can be restored in the event of a system

failure or security breach. Backups can be created at regular intervals and

stored securely to prevent unauthorized access.

 Access Controls: Access controls can be used to restrict access to certain

parts of the database based on user roles or permissions. For example, a

DBMS can enforce rules such as not allowing a user to drop tables or

granting read-only access to some users.

 Database Auditing and Testing Tools: Database auditing and testing

tools allow security personnel to monitor and test the security of the

database. This helps in identifying security gaps and weaknesses in the

system.

 Data Masking: DBMS systems support data masking features which are

used to protect sensitive data by obscuring it from view. This is especially

useful in cases where sensitive data needs to be accessed by third-party

vendors or contractors.

5. Advantage of DBMS over File system

File System: A File Management system is a DBMS that allows access to single

files or tables at a time. In a File System, data is directly stored in a set of files.

It contains flat files that have no relation to other files (when only one table is

stored in a single file, then this file is known as a flat file).

DBMS: A Database Management System (DBMS) is application software that

allows users to efficiently define, create, maintain, and share databases.

Defining a database involves specifying the data types, structures and

constraints of the data to be stored in the database. Creating a database involves

storing the data on some storage medium that is controlled by DBMS.

Maintaining a database involves updating the database whenever required to

evolve and reflect changes in the Mini world and also generating reports for

each change. Sharing a database involves allowing multiple users to access the

database. DBMS also serves as an interface between the database and end users

or application programs. It provides control access to the data and ensures that

data is consistent and correct by defining rules on them.

An application program accesses the database by sending queries or requests for

data to the DBMS. A query causes some data to be retrieved from the database.

Advantages of DBMS over File system are:
 Data redundancy and inconsistency: Redundancy is the concept of

repetition of data i.e. each data may have more than a single copy. The

file system cannot control the redundancy of data as each user defines

and maintains the needed files for a specific application to run. There

may be a possibility that two users are maintaining the data of the same

file for different applications. Hence changes made by one user do not

reflect in files used by second users, which leads to inconsistency of

data. Whereas DBMS controls redundancy by maintaining a single

repository of data that is defined once and is accessed by many users.

As there is no or less redundancy, data remains consistent.

 Data sharing: The file system does not allow sharing of data or

sharing is too complex. Whereas in DBMS, data can be shared easily

due to a centralized system.

 Data concurrency: Concurrent access to data means more than one

user is accessing the same data at the same time. Anomalies occur

when changes made by one user get lost because of changes made by

another user. The file system does not provide any procedure to stop

anomalies. Whereas DBMS provides a locking system to stop

anomalies to occur.

 Data searching: For every search operation performed on the file

system, a different application program has to be written. While

DBMS provides inbuilt searching operations. The user only has to

write a small query to retrieve data from the database.

 Data integrity: There may be cases when some constraints need to be

applied to the data before inserting it into the database. The file system

does not provide any procedure to check these constraints

automatically. Whereas DBMS maintains data integrity by enforcing

user-defined constraints on data by itself.

 System crashing: In some cases, systems might have crashed due to

various reasons. It is a bane in the case of file systems because once

the system crashes, there will be no recovery of the data that’s been

lost. A DBMS will have the recovery manager which retrieves the data

making it another advantage over file systems.

 Data security: A file system provides a password mechanism to

protect the database but how long can the password be protected? No

one can guarantee that. This doesn’t happen in the case of DBMS.

DBMS has specialized features that help provide shielding to its data.

 Backup: It creates a backup subsystem to restore the data if required.

 Interfaces: It provides different multiple user interfaces like graphical

user interface and application program interface.

 Easy Maintenance: It is easily maintainable due to its centralized

nature.

6. Data Abstraction and Data Independence

Database systems comprise complex data structures. To make the system

efficient in terms of retrieval of data, and reduce complexity in terms of usability

of users, developers use abstraction i.e. hide irrelevant details from the users.

This approach simplifies database design.

Level of Abstraction in a DBMS

There are mainly 3 levels of data abstraction:

 Physical or Internal Level

 Logical or Conceptual Level

 View or External Level

Physical or Internal Level

This is the lowest level of data abstraction. It tells us how the data is stored in

memory. Access methods like sequential or random access and file

organization methods like B+ trees and hashing are used for the same.

Usability, size of memory, and the number of times the records are factors that

we need to know while designing the database.

Suppose we need to store the details of an employee. Blocks of storage and the

amount of memory used for these purposes are kept hidden from the user.

Logical or Conceptual Level
This level comprises the information that is stored in the database in the form

of tables. It also stores the relationship among the data entities in relatively

simple structures. At this level, the information available to the user at the

view level is unknown.

We can store the various attributes of an employee and relationships, e.g. with

the manager can also be stored.

View or External Level
This is the highest level of abstraction. Only a part of the actual database is

viewed by the users. This level exists to ease the accessibility of the database by

an individual user. Users view data in the form of rows and columns. Tables and

relations are used to store data. Multiple views of the same database may exist.

Users can just view the data and interact with the database, storage and

implementation details are hidden from them.

Example: In case of storing customer data,

 Physical level – it will contain block of storages (bytes, GB, TB, etc)

 Logical level – it will contain the fields and the attributes of data.

 View level – it works with CLI or GUI access of database

 Figure 3: Data Abstraction

The main purpose of data abstraction is to achieve data independence in order

to save the time and cost required when the database is modified or altered.

Data Independence
It is mainly defined as a property of DBMS that helps you to change the

database schema at one level of a system without requiring to change the

schema at the next level. it helps to keep the data separated from all programs

that makes use of it.

We have namely two levels of data independence arising from these levels of

abstraction:
 Physical level data independence

 Logical level data independence

Physical Level Data Independence
It refers to the characteristic of being able to modify the physical schema without

any alterations to the conceptual or logical schema, done for optimization

purposes, e.g., the Conceptual structure of the database would not be affected

by any change in storage size of the database system server. Changing from

sequential to random access files is one such example. These alterations or

modifications to the physical structure may include:

 Utilizing new storage devices.

 Modifying data structures used for storage.

 Altering indexes or using alternative file organization techniques etc.

Logical Level Data Independence
It refers characteristic of being able to modify the logical schema without

affecting the external schema or application program. The user view of the data

would not be affected by any changes to the conceptual view of the data. These

changes may include insertion or deletion of attributes, altering table structures

entities or relationships to the logical schema, etc.

ER-Model

7. Introduction to ER-Model
The Entity Relational Model is a model for identifying entities to be represented

in the database and representation of how those entities are related. The ER data

model specifies enterprise schema that represents the overall logical structure of

a database graphically.

The Entity Relationship Diagram explains the relationship among the entities

present in the database. ER models are used to model real-world objects like a

person, a car, or a company and the relation between these real-world objects.

In short, the ER Diagram is the structural format of the database.

Symbols Used in ER Model

ER Model is used to model the logical view of the system from a data

perspective which consists of these symbols:

 Rectangles: Rectangles represent Entities in the ER Model.

 Ellipses: Ellipses represent Attributes in the ER Model.

 Diamond: Diamonds represent Relationships among Entities.

 Lines: Lines represent attributes to entities and entity sets with other

relationship types.

 Double Ellipse: Double Ellipses represent Multi-Valued Attributes.

 Double Rectangle: Double Rectangle represents a Weak Entity.

Components of ER Diagram

ER Model consists of Entities, Attributes, and Relationships among Entities in

a Database System.

i) Entity
An Entity may be an object with a physical existence – a particular person, car,

house, or employee – or it may be an object with a conceptual existence – a

company, a job, or a university course.

Entity Set: An Entity is an object of Entity Type, and a set of all entities is

called an entity set. For Example, E1 is an entity having Entity Type Student

and the set of all students is called Entity Set.

 Figure 4: Entity Set

a. Strong Entity

A Strong Entity is a type of entity that has a key Attribute. Strong Entity does

not depend on other Entity in the Schema. It has a primary key, that helps in

identifying it uniquely, and it is represented by a rectangle. These are called

Strong Entity Types.

b. Weak Entity

An Entity type has a key attribute that uniquely identifies each entity in the

entity set. But some entity type exists for which key attributes cannot be defined.

These are called Weak Entity types.

For Example, A company may store the information of dependents (Parents,

Children, Spouse) of an Employee. But the dependents do not have existed

without the employee. So Dependent will be a Weak Entity Type and

Employee will be Identifying Entity type for Dependent, which means it

is Strong Entity Type.

A weak entity type is represented by a Double Rectangle. The participation of

weak entity types is always total. The relationship between the weak entity type

and its identifying strong entity type is called identifying relationship and it is

represented by a double diamond.

1) Attributes

Attributes are the properties that define the entity type. For example, Roll_No,

Name, DOB, Age, Address, and Mobile_No are the attributes that define entity

type Student. In ER diagram, the attribute is represented by an oval.

 Figure 5: Attribute

a) Key Attribute

The attribute which uniquely identifies each entity in the entity set is called

the key attribute. For example, Roll_No will be unique for each student. In ER

diagram, the key attribute is represented by an oval with underlying lines.

 Figure 6: Key Attribute

b) Composite Attribute

An attribute composed of many other attributes is called a composite

attribute. For example, the Address attribute of the student Entity type consists

of Street, City, State, and Country. In ER diagram, the composite attribute is

represented by an oval comprising of ovals.

 Figure 7: Composite Attribute

c) Multivalued Attribute

An attribute consisting of more than one value for a given entity. For example,

Phone_No (can be more than one for a given student). In ER diagram, a

multivalued attribute is represented by a double oval.

 Figure 8. Multivalued Attribute

d) Derived Attribute

An attribute that can be derived from other attributes of the entity type is known

as a derived attribute. e.g., Age (can be derived from DOB). In ER diagram, the

derived attribute is represented by a dashed oval.

7.1. Recursive Relationships in ER diagram
A relationship between two entities of a similar entity type is called

a recursive relationship. Here the same entity type participates more than once

in a relationship type with a different role for each instance. In other words, a

relationship has always been between occurrences in two different entities.

However, the same entity can participate in the relationship. This is termed

a recursive relationship.

Recursive relationships are often used to represent hierarchies or networks,

where an entity can be connected to other entities of the same type.

For example, in an organizational chart, an employee can have a relationship

with other employees who are also in a managerial position. Similarly, in a

social network, a user can have a relationship with other users who are their

friends.

To represent a recursive relationship in an ER diagram, we use a self-join, which

is a join between a table and itself. In other words, we create a relationship

between the same entity type. The self-join involves creating two instances of

the same entity and connecting them with a relationship. One instance is

considered the parent, and the other instance is considered the child.

We use cardinality constraints to specify the number of instances of the entity

that can participate in the relationship. For example, in an organizational chart,

an employee can have many subordinates, but each subordinate can only have

one manager. This is represented as a one-to-many (1:N) relationship between

the employee entity and itself.

Overall, recursive relationships are an important concept in ER modeling, and

they allow us to represent complex relationships between entities of the same

type. They are particularly useful in modeling hierarchical data structures and

networks.

 Figure 9: Recursive Relationship

Example: Let us suppose that we have an employee table. A manager

supervises a subordinate. Every employee can have a supervisor except the CEO

and there can be at most one boss for each employee. One employee may be the

boss of more than one employee. Let us suppose that REPORTS_TO is a

recursive relationship on the Employee entity type where each Employee plays

two roles.

i) Supervisor

ii) Subordinate

 Figure 10: Recursive Relation

Supervisors and subordinates are called “Role Names.” Here the degree of the

REPORTS_TO relationship is 1 i.e., a unary relationship.

 The minimum cardinality of the Supervisor entity is ZERO since the

lowest level employee may not be a manager for anyone.

 The maximum cardinality of the Supervisor entity is N since an

employee can manage many employees.

 Similarly, the Subordinate entity has a minimum cardinality of ZERO

to account for the case where CEO can never be a subordinate.

 Its maximum cardinality is ONE since a subordinate employee can

have at most one supervisor.

Note – Here none of the participants have total participation since both

minimum cardinalities are Zero. Hence, the relationships are connected by a

single line instead of a double line in the ER diagram.

Example

CREATE TABLE employee (

 id INT PRIMARY KEY,

 name VARCHAR (50),

 manager_id INT,

 FOREIGN KEY (manager_id) REFERENCES employee(id)

);

Here, the employee table has a foreign key column called manager_id that

references the id column of the same employee table. This allows you to create

a recursive relationship where an employee can have a manager who is also an

employee.

7.2. Minimization of ER Diagram

Entity-Relationship (ER) Diagram is a diagrammatic representation of data in

databases, it shows how data is related to one another. In this article, we require

previous knowledge of ER diagrams and how to draw ER diagrams.

Minimization of ER Diagram simply means reducing the quantity of the tables

in the ER Diagram. When there are so many tables present in the ER DIagram,

it decreases the readability and understandability of the ER Diagram, and it also

becomes difficult for the admin also to understand these. Minimizing the ER

Diagram helps in better understanding. We reduce tables depending on the

cardinality.

Cardinality

The number of times an entity of an entity set participates in a relationship set

is known as cardinality. Cardinality can be of different types:

i) One-to-One:

When each entity in each entity set can take part only once in the relationship,

the cardinality is one-to-one. Let, us assume that a male can marry one female

and a female can marry one male. So, the relationship will be one-to-one.

the total number of tables that can be used in this is 2.

 Figure 11. one to one cardinality

Using Sets, it can be represented as:

 Figure 12. Set Representation of One-to-One

ii) One-to-Many:

In one-to-many mapping as well where each entity can be related to more than

one relationship and the total number of tables that can be used in this is 2. Let

us assume that one surgeon department can accommodate many doctors. So, the

Cardinality will be 1 to M. It means one department has many Doctors.

total number of tables that can used is 3.

 Figure 13. one to many cardinality

iii) Many-to-One:

When entities in one entity set can take part only once in the relationship set and

entities in other entity sets can take part more than once in the relationship set,

cardinality is many to one. Let us assume that a student can take only one course

but one course can be taken by many students. So, the cardinality will be n to 1.

It means that for one course there can be n students but for one student, there

will be only one course.

The total number of tables that can be used in this is 3.

 Figure 14. many to one cardinality

Using Sets, it can be represented as:

 Figure 15. Set Representation of Many-to-One

iv) Many-to-Many:
When entities in all entity sets can take part more than once in the relationship

cardinality is many to many. Let us assume that a student can take more than

one course and one course can be taken by many students. So, the relationship

will be many to many.

the total number of tables that can be used in this is 3.

 Figure 16: many to many cardinality

Using Sets, it can be represented as:

 Figure 17: Many-to-Many Set Representation

In this example, student S1 is enrolled in C1 and C3 and Course C3 is enrolled

by S1, S3, and S4. So, it is many-to-many relationships.

7.3. Enhanced ER Model
Today the complexity of the data is increasing so it becomes more and more

difficult to use the traditional ER model for database modeling. To reduce this

complexity of modeling we must make improvements or enhancements to the

existing ER model to make it able to handle the complex application in a better

way.

Enhanced entity-relationship diagrams are advanced database diagrams very

similar to regular ER diagrams which represent the requirements and

complexities of complex databases.

It is a diagrammatic technique for displaying the Sub Class and Super Class;

Specialization and Generalization; Union or Category; Aggregation etc.

Generalization and Specialization: These are very common relationships

found in real entities. However, this kind of relationship was added later as an

enhanced extension to the classical ER model. Specialized classes are often

called subclass while a generalized class is called a superclass, probably

inspired by object-oriented programming. A sub-class is best understood

by “IS-A analysis”. The following statements hopefully make some sense to

your mind “Technician IS-A Employee”, and “Laptop IS-A Computer”.

An entity is a specialized type/class of another entity. For example, a Technician

is a special Employee in a university system Faculty is a special class of

Employees. We call this phenomenon generalization/specialization. In the

example here Employee is a generalized entity class while the Technician and

Faculty are specialized classes of Employee.

Example:
This example instance of “sub-class” relationships. Here we have four sets of

employees: Secretary, Technician, and Engineer. The employee is a super-class

of the rest three sets of individual sub-class is a subset of Employee set.

 Figure 18: ER Model

 An entity belonging to a sub-class is related to some super-class entity.

For instance, emp, no 1001 is a secretary, and his typing speed is 68.

Emp no 1009 is an engineer (sub-class) and her trade is “Electrical”,

so forth.

 Sub-class entity “inherits” all attributes of super-class; for example,

employee 1001 will have attributes eno, name, salary, and typing

speed.

Enhanced ER model of above example

 Figure 19: Enhanced ER Model

Constraints – There are two types of constraints on the “Sub-class”

relationship.

i) Total or Partial –

A sub-classing relationship is total if every super-class entity is to be associated

with some sub-class entity, otherwise partial. Sub-class “job type-based

employee category” is partial sub-classing – not necessary every employee is

one of (secretary, engineer, and technician), i.e. union of these three types is a

proper subset of all employees. Whereas other sub-classing “Salaried Employee

AND Hourly Employee” is total; the union of entities from sub-classes is equal

to the total employee set, i.e. every employee necessarily has to be one of them.

ii) Overlapped or Disjoint –
If an entity from a super-set can be related (can occur) in multiple sub-class sets,

then it is overlapped sub-classing, otherwise disjoint. Both the examples: job-

type based, and salaries/hourly employee sub-classing are disjoint.

Note – These constraints are independent of each other: can be “overlapped

and total or partial” or “disjoint and total or partial.” Also, sub-classing has

transitive properties.

Multiple Inheritance (sub-class of multiple superclasses) –

An entity can be a sub-class of multiple entity types; such entities are sub-class

of multiple entities and have multiple super-classes; Teaching Assistant can

subclass of Employee and Student both. A faculty in a university system can

be a subclass of Employee and Alumnus. In multiple inheritances, attributes of

sub-class are the union of attributes of all super-classes.

Union –

 Set of Library Members is UNION of Faculty, Student, and Staff. A

union relationship indicates either type; for example, a library member

is either Faculty or Staff or Student.

 Below are two examples that show how UNION can be depicted in

ERD – Vehicle Owner is UNION of PERSON and Company, and RTO

Registered Vehicle is UNION of Car and Truck.

Here are some of the key features of the EER model:

 Subtypes and Supertypes: The EER model allow for the creation of

subtypes and supertypes. A supertype is a generalization of one or

more subtypes, while a subtype is a specialization of a supertype. For

example, a vehicle could be a supertype, while car, truck, and

motorcycle could be subtypes.

 Generalization and Specialization: Generalization is the process of

identifying common attributes and relationships between entities and

creating a supertype based on these common features. Specialization

is the process of identifying unique attributes and relationships

between entities and creating subtypes based on these unique features.

 Inheritance: Inheritance is a mechanism that allows subtypes to

inherit attributes and relationships from their supertype. This means

that any attribute or relationship defined for a supertype is

automatically inherited by all its subtypes.

 Constraints: The EER model allows for the specification of

constraints that must be satisfied by entities and relationships.

Examples of constraints include cardinality constraints, which specify

the number of relationships that can exist between entities, and

participation constraints, which specify whether an entity is required

to participate in a relationship.

 Overall, the EER model provides a powerful and flexible way to model

complex data relationships, making it a popular choice for database

design. An Enhanced Entity-Relationship (EER) model is an extension

of the traditional Entity-Relationship (ER) model that includes

additional features to represent complex relationships between entities

more accurately. Some of the main features of the EER model are:

 Subclasses and Super classes: EER model allows for the creation of

a hierarchical structure of entities where a superclass can have one or

more subclasses. Each subclass inherits attributes and relationships

from its superclass, and it can also have its unique attributes and

relationships.

 Specialization and Generalization: EER model uses the concepts of

specialization and generalization to create a hierarchy of entities.

Specialization is the process of defining subclasses from a superclass,

while generalization is the process of defining a superclass from two

or more subclasses.

 Attribute Inheritance: EER model allows attributes to be inherited

from a superclass to its subclasses. This means that attributes defined

in the superclass are automatically inherited by all its subclasses.

 Union Types: EER model allows for the creation of a union type,

which is a combination of two or more entity types. The union type

can have attributes and relationships that are common to all the entity

types that make up the union.

 Aggregation: EER model allows for the creation of an aggregate

entity that represents a group of entities as a single entity. The

aggregate entity has its unique attributes and relationships.

 Multi-valued Attributes: EER model allows an attribute to have

multiple values for a single entity instance. For example, an entity

representing a person may have multiple phone numbers.

 Relationships with Attributes: EER model allows relationships

between entities to have attributes. These attributes can describe the

nature of the relationship or provide additional information about the

relationship.

7.4. Mapping from ER Model to Relational Model

After designing the ER diagram of system, we need to convert it to Relational

models which can directly be implemented by any RDBMS like Oracle, MySQL

etc. In this article we will discuss how to convert ER diagram to Relational

Model for different scenarios.

Case 1: Binary Relationship with 1:1 cardinality with total participation

of an entity

 Figure 20: Mapping ER Model to Relational Model

A person has 0 or 1 passport number and Passport is always owned by 1 person.

So, it is 1:1 cardinality with full participation constraint from Passport.

First Convert each entity and relationship to tables. Person table

corresponds to Person Entity with key as Per-Id. Similarly, Passport table

corresponds to Passport Entity with key as Pass-No. Has Table represents

relationship between Person and Passport (Which person has which passport).

So, it will take attribute Per-Id from Person and Pass-No from Passport.

Person Has Passport

Per-Id

Other

Person

Attribute

Per-

Id

Pass-

No

Pass-No
Other

PassportAttribute

PR1 – PR1 PS1 PS1 –

PR2 – PR2 PS2 PS2 –

PR3 –

 Table 1

As we can see from Table 1, each Per-Id and Pass-No has only one entry

in Has Table. So we can merge all three tables into 1 with attributes shown in

Table 2. Each Per-Id will be unique and not null. So it will be the key. Pass-No

can’t be key because for some person, it can be NULL.

Per-ID Other Person Attribute Pass-No Other Passport Attribute

 Table 2

Case 2: Binary Relationship with 1:1 cardinality and partial participation

of both entities

 Figure 21: Binary Relationship 1:1

A male marries 0 or 1 female and vice versa as well. So, it is 1:1 cardinality with

partial participation constraint from both. First Convert each entity and

relationship to tables. Male table corresponds to Male Entity with key as M-Id.

Similarly Female table corresponds to Female Entity with key as F-Id. Marry

Table represents relationship between Male and Female (Which Male marries

which female). So, it will take attribute M-Id from Male and F-Id from Female.

Male

Marry

Female

M-Id

Other

Male

Attribute

M-Id F-Id

F-Id
Other

FemaleAttribute

M1 – M1 F2 F1 –

M2 – M2 F1 F2 –

M3 – F3 –

 Table 3

As we can see from Table 3, some males and some females do not marry. If

we merge 3 tables into 1, for some M-Id, F-Id will be NULL. So, there is no

attribute which is always not NULL. So, we cannot merge all three tables into

1. We can convert into 2 tables. In table 4, M-Id who are married will have F-

Id associated. For others, it will be NULL. Table 5 will have information of all

females. Primary Keys have been underlined.

M-Id Other male Attribute F-Id

 Table 4

F-Id Other Female Attribute

 Table 5

Case 3: Binary Relationship with n: 1 cardinality

 Figure 22: Binary Relationship with n:1 cardinality

In this scenario, every student can enroll only in one elective course but for an

elective course there can be more than one student. First Convert each entity

and relationship to tables. Student table corresponds to Student Entity with key

as S-Id. Similarly Elective_Course table corresponds to Elective_Course Entity

with key as E-Id. Enrolls Table represents relationship between Student and

Elective_Course (Which student enrolls in which course). So it will take

attribute S-Id from Student and E-Id from Elective_Course.

Student

 Enrolls

Elective_Course

S-Id

Other

Student

Attribute

S-Id
E-

Id

E-Id
Other Elective

CourseAttribute

S1 – S1 E1 E1 –

S2 – S2 E2 E2 –

S3 – S3 E1 E3 –

S4 – S4 E1

 Table 6

As we can see from Table 6, S-Id is not repeating in Enrolls Table. So, it can

be considered as a key of Enrolls table. Both Student and Enrolls Table’s key

is same; we can merge it as a single table. The resultant tables are shown in

Table 7 and Table 8. Primary Keys have been underlined.

S-Id Other Student Attribute E-Id

 Table 7

E-Id Other Elective Course Attribute

 Table 8

Case 4: Binary Relationship with m: n cardinality

 Figure 23: Binary Relation with m: n cardinality

In this scenario, every student can enroll in more than 1 compulsory course and

for a compulsory course there can be more than 1 student. First Convert each

entity and relationship to tables. Student table corresponds to Student Entity

with key as S-Id. Similarly Compulsory_Courses table corresponds to

Compulsory Courses Entity with key as C-Id. Enrolls Table represents

relationship between Student and Compulsory_Courses (Which student enrolls

in which course). So, it will take attribute S-Id from Person and C-Id from

Compulsory_Courses.

Student

Enrolls

Compulsory_Courses

S-

Id

Other

Student

Attribute

S-Id
C-

Id

C-Id

Other

Compulsory

CourseAttribute

S1 – S1 C1 C1 –

S2 – S1 C2 C2 –

S3 – S3 C1 C3 –

S4 – S4 C3 C4 –

 S4 C2

 S3 C3

 Table 9

As we can see from Table 9, S-Id and C-Id both are repeating in Enrolls Table.

But its combination is unique; so it can be considered as a key of Enrolls table.

All tables’ keys are different, these can’t be merged. Primary Keys of all tables

have been underlined.

Case 5: Binary Relationship with weak entity

 Figure 24: Binary Relationship with weak entity

In this scenario, an employee can have many dependents and one dependent can

depend on one employee. A dependent does not have any existence without an

employee (e.g; you as a child can be dependent of your father in his company).

So, it will be a weak entity and its participation will always be total. Weak Entity

does not have key of its own. So, its key will be combination of key of its

identifying entity (E-Id of Employee in this case) and its partial key (D-Name).

First Convert each entity and relationship to tables. Employee table corresponds

to Employee Entity with key as E-Id. Similarly, Dependents table corresponds

to Dependent Entity with key as D-Name and E-Id. Has Table represents

relationship between Employee and Dependents (Which employee has which

dependents). So, it will take attribute E-Id from Employee and D-Name from

Dependents.

Employee Has Dependents

E-

Id

Other

Employee

Attribute

E-

Id
D-Name

D-Name
E-

Id

Other

DependentsAttribute

E1 – E1 RAM RAM E1 –

E2 – E1 SRINI SRINI E1 –

E3 – E2 RAM RAM E2 –

 E3 ASHISH ASHISH E3 –

 Table 10
As we can see from Table 10, E-Id, D-Name is key for Has as well as

Dependents Table. So, we can merge these two into 1. So the resultant tables

are shown in Tables 11 and 12. Primary Keys of all tables have been underlined.

E-Id Other Employee Attribute

 Table 11

D-Name E-Id Other DependentsAttribute

 Table 12

Relational Model

8. Introduction to Relational Model
E.F. Codd proposed the relational Model to model data in the form of relations

or tables. After designing the conceptual model of the Database using ER

diagram, we need to convert the conceptual model into a relational model which

can be implemented using any RDBMS language like Oracle SQL, MySQL, etc.

So, we will see what the Relational Model is.

What is the Relational Model?

The relational model represents how data is stored in Relational Databases. A

relational database consists of a collection of tables, each of which is assigned

a unique name. Consider a relation STUDENT with attributes ROLL_NO,

NAME, ADDRESS, PHONE, and AGE shown in the table.

Table Student

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 18

Important Terminologies
 Attribute: Attributes are the properties that define an entity.

e.g., ROLL_NO, NAME, ADDRESS

 Relation Schema: A relation schema defines the structure of the

relation and represents the name of the relation with its attributes. e.g.,

STUDENT (ROLL_NO, NAME, ADDRESS, PHONE, and AGE) is

the relation schema for STUDENT. If a schema has more than 1

relation, it is called Relational Schema.

 Tuple: Each row in the relation is known as a tuple. The above relation

contains 4 tuples, one of which is shown as:

1 RAM DELHI 9772667313 18

 Relation Instance: The set of tuples of a relation at a particular

instance of time is called a relation instance. Table 1 shows the relation

instance of STUDENT at a particular time. It can change whenever

there is an insertion, deletion, or update in the database.

 Degree: The number of attributes in the relation is known as the

degree of the relation. The STUDENT relation defined above has

degree 5.

 Cardinality: The number of tuples in a relation is known

as cardinality. The STUDENT relation defined above has cardinality

4.

 Column: The column represents the set of values for a particular

attribute. The column ROLL_NO is extracted from the relation

STUDENT.

ROLL_NO

1

2

3

4

 NULL Values: The value which is not known or unavailable is called

a NULL value. It is represented by blank space. e.g., PHONE of

STUDENT having ROLL_NO 4 is NULL.

 Relation Key: These are basically the keys that are used to identify

the rows uniquely or also help in identifying tables. These are of the

following types.

 Primary Key

 Candidate Key

 Super Key

 Foreign Key

 Alternate Key

 Composite Key

8.1. Coddy Rule and it’s Features

Features of the relational model and Codd’s Rules :

Tables/Relations: The basic building block of the relational model is the table

or relation, which represents a collection of related data. Each table consists of

columns, also known as attributes or fields, and rows, also known as tuples or

records.

Primary Keys: In the relational model, each row in a table must have a unique

identifier, which is known as the primary key. This ensures that each row is

unique, can be accessed, and manipulated easily.

Foreign Keys: Foreign keys are used to link tables together and enforce

referential integrity. They ensure that data in one table is consistent with data in

another table.

Normalization: The process of organizing data into tables and eliminating

redundancy is known as normalization. Normalization is important in the

relational model because it helps to ensure that data is consistent and easy to

maintain.

Codd’s Rules –

Codd’s Rules are a set of 12 rules that define the characteristics of a true

relational DBMS. These rules ensure that the DBMS is consistent, reliable, and

easy to use.

Atomicity, Consistency, Isolation, Durability (ACID): The ACID properties are

a set of properties that ensure that transactions are processed reliably in the

relational model. Transactions are sets of operations that are executed as a single

unit, ensuring that data is consistent and accurate.

Advantages of Relational Algebra

Relational Algebra is a formal language used to specify queries to retrieve data

from a relational database. It has several advantages that make it a popular

choice for managing and manipulating data. Here are some of the advantages of

Relational Algebra:

 Simplicity: Relational Algebra provides a simple and easy-to-understand

set of operators that can be used to manipulate data. It is based on a set of

mathematical concepts and principles, which makes it easy to learn and

use.

 Formality: Relational Algebra is a formal language that provides a

standardized and rigorous way of expressing queries. This makes it easier

to write and debug queries, and also ensures that queries are correct and

consistent.

 Abstraction: Relational Algebra provides a high-level abstraction of the

underlying database structure, which makes it easier to work with large

and complex databases. It allows users to focus on the logical structure of

the data, rather than the physical storage details.

 Portability: Relational Algebra is independent of any specific database

management system, which means that queries can be easily ported to

other systems. This makes it easy to switch between different databases

or vendors without having to rewrite queries.

 Efficiency: Relational Algebra is optimized for efficiency and

performance, which means that queries can be executed quickly and with

minimal resources. This is particularly important for large and complex

databases, where performance is critical.

 Extensibility: Relational Algebra provides a flexible and extensible

framework that can be extended with new operators and functions. This

allows developers to customize and extend the language to meet their

specific needs.

Disadvantages of Relational Algebra

While Relational Algebra has many advantages, it also has some limitations and

disadvantages that should be considered when using it.

Here are some of the disadvantages of Relational Algebra:

 Complexity: Although Relational Algebra is based on mathematical

principles, it can be complex and difficult to understand for non-experts.

The syntax and semantics of the language can be challenging, and it may

require significant training and experience to use it effectively.

 Limited Expressiveness: Relational Algebra has a limited set of

operators, which can make it difficult to express certain types of queries.

It may be necessary to use more advanced techniques, such as subqueries

or joins, to express complex queries.

 Lack of Flexibility: Relational Algebra is designed for use with

relational databases, which means that it may not be well-suited for other

types of data storage or management systems. This can limit its flexibility

and applicability in certain contexts.

 Performance Limitations: While Relational Algebra is optimized for

efficiency and performance, it may not be able to handle large or complex

datasets. Queries can become slow and resource-intensive when dealing

with large amounts of data or complex queries.

 Limited Data Types: Relational Algebra is designed for use with simple

data types, such as integers, strings, and dates. It may not be well-suited

for more complex data types, such as multimedia files or spatial data.

 Lack of Integration: Relational Algebra is often used in conjunction

with other programming languages and tools, which can create integration

challenges. It may require additional programming effort to integrate

Relational Algebra with other systems and tools.

Relational Algebra is a powerful and useful tool for managing and manipulating

data in relational databases, it has some limitations and disadvantages that

should be carefully considered when using it.

Codd’s Twelve Rules of Relational Database

Codd rules were proposed by E.F. Codd which should be satisfied by

the relational model. Codd’s Rules are basically used to check whether DBMS

has the quality to become Relational Database Management System (RDBMS).

But, it is rare to find that any product has fulfilled all the rules of Codd. They

generally follow the 8-9 rules of Codd. E.F. Codd has proposed 13 rules which

are popularly known as Codd’s 12 rules. These rules are stated as follows:

 Rule 0: Foundation Rule– For any system that is advertised as, or

claimed to be, a relational database management system, that system

must be able to manage databases entirely through its relational

capabilities.

 Rule 1: Information Rule– Data stored in the Relational model must

be a value of some cell of a table.

 Rule 2: Guaranteed Access Rule– Every data element must be

accessible by the table name, its primary key, and the name of the

attribute whose value is to be determined.

 Rule 3: Systematic Treatment of NULL values– NULL value in the

database must only correspond to missing, unknown, or not applicable

values.

 Rule 4: Active Online Catalog– The structure of the database must

be stored in an online catalog that can be queried by authorized users.

 Rule 5: Comprehensive Data Sub-language Rule- A database

should be accessible by a language supported for definition,

manipulation, and transaction management operation.

 Rule 6: View Updating Rule- Different views created for various

purposes should be automatically updatable by the system.

 Rule 7: High-level insert, update and delete rule- Relational Model

should support insert, delete, update, etc. operations at each level of

relations. Also, set operations like Union, Intersection, and minus

should be supported.

 Rule 8: Physical data independence- Any modification in the

physical location of a table should not enforce modification at the

application level.

 Rule 9: Logical data independence- Any modification in the logical

or conceptual schema of a table should not enforce modification at the

application level. For example, merging two tables into one should not

affect the application accessing it which is difficult to achieve.

 Rule 10: Integrity Independence- Integrity constraints modified at

the database level should not enforce modification at the application

level.

 Rule 11: Distribution Independence- Distribution of data over

various locations should not be visible to end-users.

 Rule 12: Non-Subversion Rule- Low-level access to data should not

be able to bypass the integrity rule to change data.

Question. Given the basic ER and relational models, which of the following is

INCORRECT? [GATE CS 2012]

(A) An attribute of an entity can have more than one value.

(B) An attribute of an entity can be a composite.

(C) In a row of a relational table, an attribute can have more than one value.

(D) In a row of a relational table, an attribute can have exactly one value or a

NULL value.

Answer: In the relation model, an attribute can’t have more than one value. So,

option 3 is the answer.

Constraints in Relational Model
While designing the Relational Model, we define some conditions which must

hold for data present in the database are called Constraints. These constraints

are checked before performing any operation (insertion, deletion, and updation)

in the database. If there is a violation of any of the constraints, the operation will

fail.

Domain Constraints

These are attribute-level constraints. An attribute can only take values that lie

inside the domain range. e.g.; If a constraint AGE>0 is applied to STUDENT

relation, inserting a negative value of AGE will result in failure.

Key Integrity

Every relation in the database should have at least one set of attributes that

defines a tuple uniquely. Those set of attributes is called keys. e.g.; ROLL_NO

in STUDENT is key. No two students can have the same roll number. So, a key

has two properties:

 It should be unique for all tuples.

 It cannot have NULL values.

Referential Integrity

When one attribute of a relation can only takes values from another attribute of

the same relation or any other relation, it is called referential integrity. Let us

suppose we have 2 relations.
Table Student

ROLL_NO NAME ADDRESS PHONE AGE BRANCH_CODE

1 RAM DELHI 9455123451 18 CS

2 RAMESH GURGAON 9652431543 18 CS

3 SUJIT ROHTAK 9156253131 20 ECE

4 SURESH DELHI 18 IT

Table Branch

BRANCH_CODE BRANCH_NAME

CS COMPUTER SCIENCE

IT INFORMATION TECHNOLOGY

ECE ELECTRONICS AND COMMUNICATION ENGINEERING

CV CIVIL ENGINEERING

BRANCH_CODE of STUDENT can only take the values which are present in

BRANCH_CODE of BRANCH which is called referential integrity constraint.

The relation which is referencing another relation is called REFERENCING

RELATION (STUDENT in this case) and the relation to which other relations

refer is called REFERENCED RELATION (BRANCH in this case).

Relational Schema and Instances

Relational Schema

In the context of databases, a relational schema represents the blueprint or

structure of a relational database. It defines the organization of data in the form

of tables, specifying the names of the tables, the names of the attributes

(columns), and the data types associated with each attribute. The relational

schema essentially outlines the framework that governs how data is stored and

organized within the database.

Instances

Instances, refer to the actual data contained within the tables of a relational

database at a specific point in time. They represent the rows or records within

the tables, each row corresponding to a unique set of values that align with the

defined attributes in the schema. These instances reflect the real-world data that

is stored, retrieved, and manipulated within the database system.

Understanding the distinction between the relational schema, which outlines the

structure, and instances, which represent the actual data entries, is crucial for

comprehending how data is organized and managed within a relational database

system.

8.2. Anomalies in Relational Model
Anomalies in the relational model refer to inconsistencies or errors that can arise

when working with relational databases, specifically in the context of data

insertion, deletion, and modification. There are different types of anomalies that

can occur in referencing and referenced relations which can be discussed as:

These anomalies can be categorized into three types:

 Insertion Anomalies

 Deletion Anomalies

 Update Anomalies.

How Are Anomalies Caused in DBMS?

Database anomalies are the faults in the database caused due to poor

management of storing everything in the flat database. It can be removed with

the process of Normalization, which generally splits the database which results

in reducing the anomalies in the database.

STUDENT Table 1

STUD_

NO

STUD_NA

ME

STUD_PH

ONE

STUD_ST

ATE

STUD-

COUNTRY STUD_AGE

1 RAM 9716271721 Haryana India 20

2 RAM 9898291281 Punjab India 19

3 SUJIT 7898291981 Rajasthan India 18

4 SURESH Punjab India 21

 Table 1

STUDENT_COURSE

STUD_NO COURSE_NO COURSE_NAME

1 C1 DBMS

2 C2 Computer Networks

1 C2 Computer Networks

 Table 2

Insertion Anomaly: If a tuple is inserted in referencing relation and referencing

attribute value is not present in referenced attribute, it will not allow insertion

in referencing relation.

Example:

If we try to insert a record in STUDENT_COURSE with STUD_NO =7, it will

not allow it.

Deletion and Updation Anomaly: If a tuple is deleted or updated from

referenced relation and the referenced attribute value is used by referencing

attribute in referencing relation, it will not allow deleting the tuple from

referenced relation.

Example: If we want to update a record from STUDENT_COURSE with

STUD_NO =1, We must update it in both rows of the table. If we try to delete

a record from STUDENT with STUD_NO =1, it will not allow it.

To avoid this, the following can be used in query:

 ON DELETE/UPDATE SET NULL: If a tuple is deleted or updated

from referenced relation and the referenced attribute value is used by

referencing attribute in referencing relation, it will delete/update the

tuple from referenced relation and set the value of referencing attribute

to NULL.

 ON DELETE/UPDATE CASCADE: If a tuple is deleted or updated

from referenced relation and the referenced attribute value is used by

referencing attribute in referencing relation, it will delete/update the

tuple from referenced relation and referencing relation as well.

How These Anomalies Occur?

 Insertion Anomalies: These anomalies occur when it is not possible

to insert data into a database because the required fields are missing or

because the data is incomplete. For example, if a database requires that

every record has a primary key, but no value is provided for a

particular record, it cannot be inserted into the database.

 Deletion anomalies: These anomalies occur when deleting a record

from a database and can result in the unintentional loss of data. For

example, if a database contains information about customers and

orders, deleting a customer record may also delete all the orders

associated with that customer.

 Update anomalies: These anomalies occur when modifying data in a

database and can result in inconsistencies or errors. For example, if a

database contains information about employees and their salaries,

updating an employee’s salary in one record but not in all related

records could lead to incorrect calculations and reporting.

Removal of Anomalies

These anomalies can be avoided or minimized by designing databases that

adhere to the principles of normalization. Normalization involves organizing

data into tables and applying rules to ensure data is stored in a consistent and

efficient manner. By reducing data redundancy and ensuring data integrity,

normalization helps to eliminate anomalies and improve the overall quality of

the database

According to E.F.Codd, who is the inventor of the Relational Database, the

goals of Normalization include:

 It helps in vacating all the repeated data from the database.

 It helps in removing undesirable deletion, insertion, and update

anomalies.

 It helps in making a proper and useful relationship between tables.

Advantages Anomalies in Relational Model

 Data Integrity: Relational databases enforce data integrity through

various constraints such as primary keys, foreign keys, and referential

integrity rules, ensuring that the data is accurate and consistent.

 Scalability: Relational databases are highly scalable and can handle

large amounts of data without sacrificing performance.

 Flexibility: The relational model allows for flexible querying of data,

making it easier to retrieve specific information and generate reports.

 Security: Relational databases provide robust security features to

protect data from unauthorized access.

Disadvantages of Anomalies in Relational Model

 Redundancy: When the same data is stored in various locations, a

relational architecture may cause data redundancy. This can result in

inefficiencies and even inconsistent data.

 Complexity: Establishing and keeping up a relational database calls

for specific knowledge and abilities and can be difficult and time-

consuming.

 Performance: Because more tables must be joined in order to access

information, performance may degrade as a database gets larger.

 Incapacity to manage unstructured data: Text documents, videos,

and other forms of semi-structured or unstructured data are not well-

suited for the relational paradigm.

8.3. Key and Superkey Concepts

Key:
In the context of a database, a key is a unique attribute or a set of attributes that

can uniquely identify each record in a table. It helps in maintaining the integrity

and consistency of data by ensuring that there are no duplicate records. In

simpler terms, a key act as a unique identifier for each row in a table, enabling

efficient retrieval, updating, and deletion of data. It serves as a primary means

of establishing relationships between different tables within the database.

Superkey:

A superkey refers to a set of one or more attributes that, when taken collectively,

can uniquely identify each record within a table. Unlike a key, a superkey may

contain additional attributes that are not necessary for uniquely identifying each

record. This means that a superkey can have more attributes than the minimum

required for uniqueness. In essence, a superkey acts as a broader identifier

encompassing one or more keys within it.

Understanding the distinction between a key and a superkey is crucial for

designing efficient and reliable databases. Keys are the minimal set of attributes

required for unique identification, while superkey represent a broader set of

attributes that include the key and possibly more. The proper identification and

utilization of keys and superkey are essential for maintaining data integrity and

establishing relationships within the database.

Any set of attributes that allows us to identify unique rows (tuples) in a given

relationship is known as super keys. Out of these super keys, we can always

choose a proper subset among these that can be used as a primary key. Such

keys are known as Candidate keys. If there is a combination of two or more

attributes that are being used as the primary key then we call it a Composite key.

8.4. Tuple Relational Calculus
Tuple Relational Calculus (TRC) is a non-procedural query language used in

relational database management systems (RDBMS) to retrieve data from tables.

TRC is based on the concept of tuples, which are ordered sets of attribute values

that represent a single row or record in a database table.

TRC is a declarative language, meaning that it specifies what data is required

from the database, rather than how to retrieve it. TRC queries are expressed as

logical formulas that describe the desired tuples.

Syntax: The basic syntax of TRC is as follows:

{ t | P(t) }

where it is a tuple variable and P(t) is a logical formula that describes the

conditions that the tuples in the result must satisfy. The curly braces {} are used

to indicate that the expression is a set of tuples.

For example, let’s say we have a table called “Employees” with the

following attributes:

Employee ID

Name

Salary

Department ID

To retrieve the names of all employees who earn more than $50,000 per year,

we can use the following TRC query:

{t | Employees(t) ∧ t.Salary > 50000 }

In this query, the “Employees(t)” expression specifies that the tuple variable t

represents a row in the “Employees” table. The “∧” symbol is the logical AND

operator, which is used to combine the condition “t.Salary > 50000” with the

table selection.

The result of this query will be a set of tuples, where each tuple contains the

Name attribute of an employee who earns more than $50,000 per year.

TRC can also be used to perform more complex queries, such as joins and nested

queries, by using additional logical operators and expressions.

While TRC is a powerful query language, it can be more difficult to write and

understand than other SQL-based query languages, such as Structured Query

Language (SQL). However, it is useful in certain applications, such as in the

formal verification of database schemas and in academic research.

Tuple Relational Calculus is a non-procedural query language, unlike

relational algebra. Tuple Calculus provides only the description of the query but

it does not provide the methods to solve it. Thus, it explains what to do but not

how to do it.

Tuple Relational Query

In Tuple Calculus, a query is expressed as {t| P(t)}

where t = resulting tuples,

P(t) = known as Predicate and these are the conditions that are used to fetch t.

Thus, it generates a set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (∨), AND (∧),

NOT(¬).

It also uses quantifiers:

∃ t ∈ r (Q(t)) =” there exists” a tuple in t in relation r such that predicate Q(t)

is true.

∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.

5.2 Tuple Relational Calculus Examples

Table Customer

Customer Name Street City

Saurabh A7 Patiala

Mehak B6 Jalandhar

Sumiti D9 Ludhiana

Ria A5 Patiala

Table Branch

Branch Name Branch City

ABC Patiala

DEF Ludhiana

GHI Jalandhar

Table Account

Account number Branch name Balance

1111 ABC 50000

1112 DEF 10000

1113 GHI 9000

1114 ABC 7000

Table Loan

Loan number Branch name Amount

L33 ABC 10000

L35 DEF 15000

L49 GHI 9000

L98 DEF 65000

Table Borrower

Customer name Loan number

Saurabh L33

Mehak L49

Ria L98

Table Depositor

Customer name Account number

Saurabh 1111

Mehak 1113

Suniti 1114

Example 1: Find the loan number, branch, and amount of loans greater than or

equal to 10000 amounts.

{t| t ∈ loan ∧ t[amount]>=10000}

Resulting relation:

Loan number Branch name Amount

L33 ABC 10000

L35 DEF 15000

L98 DEF 65000

In the above query, t[amount] is known as a tuple variable.

8.5. Extended Operation in Relational Algebra
Extended operators are those operators which can be derived from basic

operators. There are mainly three types of extended operators in Relational

Algebra:

 Join

 Intersection
 Divide

The relations used to understand extended operators are STUDENT,

STUDENT_SPORTS, ALL_SPORTS and EMPLOYEE which are shown in

Table 1, Table 2, Table 3, and Table 4, respectively.

STUDENT Table (Table 1)

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

 STUDENT_SPORTS (Table 2)

ROLL_NO SPORTS

1 Badminton

2 Cricket

2 Badminton

4 Badminton

 ALL_SPORTS (Table 3)

SPORTS

Badminton

Cricket

EMPLOYEE (Table 4)

EMP_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

5 NARESH HISAR 9782918192 22

6 SWETA RANCHI 9852617621 21

4 SURESH DELHI 9156768971 18

Intersection (?): Intersection on two relations R1 and R2 can only be computed

if R1 and R2 are union compatible (These two relations should have same

number of attributes and corresponding attributes in two relations have same

domain). Intersection operator when applied on two relations as R1? R2 will

give a relation with tuples which are in R1 as well as R2. Syntax:

 Relation1? Relation2
Example: Find a person who is student as well as employee- STUDENT?

EMPLOYEE
In terms of basic operators (union and minus):

STUDENT ? EMPLOYEE = STUDENT + EMPLOYEE - (STUDENT U

EMPLOYEE)

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18

Conditional Join(?c): Conditional Join is used when you want to join two or

more relation based on some conditions. Example: Select students whose

ROLL_NO is greater than EMP_NO of employees

STUDENT?c STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE
In terms of basic operators (cross product and selection) :

? (STUDENT.ROLL_NO>EMPLOYEE.EMP_NO)(STUDENT×EMPLOYEE)

RESULT:
ROL

L_NO
NAME ADDRESS PHONE AGE EMP_NO NAME ADDRESS

2 RAMESH GURGAON 9652431543 18 1 RAM DELHI

3 SUJIT ROHTAK 9156253131 20 1 RAM DELHI

4 SURESH DELHI 9156768971 18 1 RAM DELHI

Equijoin(?): Equijoin is a special case of conditional join where only equality

condition holds between a pair of attributes. As values of two attributes will be

equal in result of equijoin, only one attribute will be appeared in result.

Example: Select students whose ROLL_NO is equal to EMP_NO of

employees.

STUDENT?STUDENT.ROLL_NO=EMPLOYEE.EMP_NOEMPLOYEE

In terms? of basic operators (cross product, selection and projection) :

?(STUDENT.ROLL_NO, STUDENT.NAME, STUDENT.ADDRESS, STUDENT.PHONE, STUDENT.AGE

EMPLOYEE.NAME, EMPLOYEE.ADDRESS, EMPLOYEE.PHONE, EMPLOYEE>AGE)(?

(STUDENT.ROLL_NO=EMPLOYEE.EMP_NO) (STUDENT×EMPLOYEE))
RESULT:

RO

LL_NO
NAME

ADD

RESS
PHONE AGE NAME

ADD

RESS
PHONE AGE

1 RAM DELHI 9455123451 18 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18 SURESH DELHI 9156768971 18

Natural Join(?): It is a special case of equijoin in which equality condition hold

on all attributes which have same name in relations R and S (relations on which

join operation is applied). While applying natural join on two relations, there is

no need to write equality condition explicitly. Natural Join will also return the

similar attributes only once as their value will be same in resulting relation.

Example: Select students whose ROLL_NO is equal to ROLL_NO of

STUDENT_SPORTS as:

STUDENT?STUDENT_SPORTS
In terms of basic operators (cross product, selection and projection) :

?(STUDENT.ROLL_NO, STUDENT.NAME, STUDENT.ADDRESS, STUDENT.PHONE, STUDENT.AGE

STUDENT_SPORTS.SPORTS)(? (STUDENT.ROLL_NO=STUDENT_SPORTS.ROLL_NO)

(STUDENT×STUDENT_SPORTS))

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE SPORTS

1 RAM DELHI 9455123451 18 Badminton

2 RAMESH GURGAON 9652431543 18 Cricket

2 RAMESH GURGAON 9652431543 18 Badminton

4 SURESH DELHI 9156768971 18 Badminton

Natural Join is by default inner join because the tuples which does not satisfy

the conditions of join does not appear in result set. e.g.; The tuple having

ROLL_NO 3 in STUDENT does not match with any tuple in

STUDENT_SPORTS, so it has not been a part of result set.

Left Outer Join(?): When applying join on two relations R and S, some tuples

of R or S does not appear in result set which does not satisfy the join conditions.

But Left Outer Joins gives all tuples of R in the result set. The tuples of R which

do not satisfy join condition will have values as NULL for attributes of S.

Example:Select students whose ROLL_NO is greater than EMP_NO of

employees and details of other students as well

STUDENT?STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT

ROL

L_N

O

NA

ME

ADD

RESS

PHO

NE

A

G

E

EMP

_NO

NA

M

E

ADD

RES

S

PHO

NE

A

G

E

2

RA

MES

H

GUR

GAO

N

96524

31543
18 1

RA

M

DEL

HI

94551

23451
18

3
SUJI

T

ROH

TAK

91562

53131
20 1

RA

M

DEL

HI

94551

23451
18

4
SUR

ESH

DEL

HI

91567

68971
18 1

RA

M

DEL

HI

94551

23451
18

1
RA

M

DEL

HI

94551

23451
18

NUL

L

NU

LL

NUL

L

NUL

L

N

UL

L

Right Outer Join(?): When applying join on two relations R and S, some tuples

of R or S does not appear in result set which does not satisfy the join conditions.

But Right Outer Joins gives all tuples of S in the result set. The tuples of S which

do not satisfy join condition will have values as NULL for attributes of R.

Example: Select students whose ROLL_NO is greater than EMP_NO of

employees and details of other Employees as well

STUDENT?STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT:

ROL

L_N

O

NA

ME

ADD

RESS

PHO

NE

A

G

E

EM

P_N

O

NA

ME

ADD

RES

S

PHO

NE

A

G

E

2

RA

MES

H

GUR

GAO

N

96524

31543
18 1

RA

M

DEL

HI

94551

23451
18

3
SUJI

T

ROH

TAK

91562

53131
20 1

RA

M

DEL

HI

94551

23451
18

4
SUR

ESH

DEL

HI

91567

68971
18 1

RA

M

DEL

HI

94551

23451
18

NUL

L

NUL

L

NUL

L

NUL

L

N

UL

L

5

NA

RES

H

HISA

R

97829

18192
22

NUL

L

NUL

L

NUL

L

NUL

L

N

UL

L

6
SW

ETA

RAN

CHI

98526

17621
21

NUL

L

NUL

L

NUL

L

NUL

L

N

UL

L

4
SUR

ESH

DEL

HI

91567

68971
18

Full Outer Join(?): When applying join on two relations R and S, some tuples

of R or S does not appear in result set which does not satisfy the join conditions.

But Full Outer Joins gives all tuples of S and all tuples of R in the result set. The

tuples of S which do not satisfy join condition will have values as NULL for

attributes of R and vice versa. Example:

Select students whose ROLL_NO is greater than EMP_NO of employees and

details of other Employees as well and other Students as well

STUDENT?STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT:

ROL

L_N

O

NA

ME

ADD

RESS

PHO

NE

A

G

E

EM

P_N

O

NA

ME

ADD

RES

S

PHO

NE

A

G

E

2

RA

MES

H

GUR

GAO

N

96524

31543
18 1

RA

M

DEL

HI

94551

23451
18

3
SUJI

T

ROH

TAK

91562

53131
20 1

RA

M

DEL

HI

94551

23451
18

4
SUR

ESH

DEL

HI

91567

68971
18 1

RA

M

DEL

HI

94551

23451
18

NUL

L

NUL

L

NUL

L

NUL

L

N

UL

L

5

NA

RES

H

HISA

R

97829

18192
22

NUL

L

NUL

L

NUL

L

NUL

L

N

UL

L

6
SW

ETA

RAN

CHI

98526

17621
21

NUL

L

NUL

L

NUL

L

NUL

L

N

UL

L

4
SUR

ESH

DEL

HI

91567

68971
18

1
RA

M

DEL

HI

94551

23451
18

NUL

L

NU

LL

NUL

L

NUL

L

N

UL

L

Advantages:

 Expressive Power: Extended operators allow for more complex queries

and transformations that cannot be easily expressed using basic relational

algebra operations.

 Data Reduction: Aggregation operators, such as SUM, AVG, COUNT,

and MAX, can reduce the amount of data that needs to be processed and

displayed.

 Data Transformation: Extended operators can be used to transform data

into different formats, such as pivoting rows into columns or vice versa.

 More Efficient: Extended operators can be more efficient than

expressing the same query in terms of basic relational algebra operations,

since they can take advantage of specialized algorithms and

optimizations.

Disadvantages:

 Complexity: Extended operators can be more difficult to understand and

use than basic relational algebra operations. They require a deeper

understanding of the underlying data and the operators themselves.

 Performance: Some extended operators, such as outer joins, can be

expensive in terms of performance, especially when dealing with large

data sets.

 Non-standardized: There is no universal set of extended operators, and

different relational database management systems may implement them

differently or not at all.

 Data Integrity: Some extended operators, such as aggregate functions,

can introduce potential problems with data integrity if not used properly.

For example, using AVG on a column that contains null values can result

in unexpected or incorrect results.

Database Design

9. Introduction to Database Normalization

Database normalization is the process of organizing the attributes of the

database to reduce or eliminate data redundancy (having the same data but

at different places).

Problems because of data redundancy: Data redundancy unnecessarily

increases the size of the database as the same data is repeated in many places.

Inconsistency problems also arise during insert, delete and update operations.

Functional Dependency: Functional Dependency is a constraint between two

sets of attributes in relation to a database. A functional dependency is denoted

by an arrow (?). If an attribute A functionally determines B, then it is written as

A ? B.

For example, employee_id ? name means employee_id functionally determines

the name of the employee. As another example in a timetable database,

{student_id, time} ? {lecture_room}, student ID and time determine the lecture

room where the student should be.

Advantages of Functional Dependency

 The database’s data quality is maintained using it.

 It communicates the database design’s facts.

 It aids in precisely outlining the limitations and implications of

databases.

 It is useful to recognize poor designs.

 Finding the potential keys in the relationship is the first step in

the normalization procedure. Identifying potential keys and

normalizing the database without functional dependencies is

impossible.

What does functionally dependent mean?

A function dependency A ? B means for all instances of a particular value of A,

there is the same value of B. For example, in the below table A ? B is true, but

B ? A is not true as there are different values of A for B = 3.

A B

1 3

2 3

4 0

1 3

4 0

The features of database normalization are as follows:

 Elimination of Data Redundancy: One of the main features of

normalization is to eliminate the data redundancy that can occur in a

database. Data redundancy refers to the repetition of data in different parts

of the database. Normalization helps in reducing or eliminating this

redundancy, which can improve the efficiency and consistency of the

database.

 Ensuring Data Consistency: Normalization helps in ensuring that the

data in the database is consistent and accurate. By eliminating

redundancy, normalization helps in preventing inconsistencies and

contradictions that can arise due to different versions of the same data.

 Simplification of Data Management: Normalization simplifies the

process of managing data in a database. By breaking down a complex data

structure into simpler tables, normalization makes it easier to manage the

data, update it, and retrieve it.

 Improved Database Design: Normalization helps in improving the

overall design of the database. By organizing the data in a structured and

systematic way, normalization makes it easier to design and maintain the

database. It also makes the database more flexible and adaptable to

changing business needs.

 Avoiding Update Anomalies: Normalization helps in avoiding update

anomalies, which can occur when updating a single record in a table

affects multiple records in other tables. Normalization ensures that each

table contains only one type of data and that the relationships between the

tables are clearly defined, which helps in avoiding such anomalies.

 Standardization: Normalization helps in standardizing the data in the

database. By organizing the data into tables and defining relationships

between them, normalization helps in ensuring that the data is stored in a

consistent and uniform manner.

9.1. Normal Forms & Dependency

Important Points Regarding Normal Forms in DBMS

 First Normal Form (1NF): This is the most basic level of

normalization. In 1NF, each table cell should contain only a single

value, and each column should have a unique name. The first normal

form helps to eliminate duplicate data and simplify queries.

 Second Normal Form (2NF): 2NF eliminates redundant data by

requiring that each non-key attribute be dependent on the primary key.

This means that each column should be directly related to the primary

key, and not to other columns.

 Third Normal Form (3NF): 3NF builds on 2NF by requiring that all

non-key attributes be independent of each other. This means that each

column should be directly related to the primary key, and not to any

other columns in the same table.

 Boyce-Codd Normal Form (BCNF): BCNF is a stricter form of 3NF

that ensures that each determinant in a table is a candidate key. In other

words, BCNF ensures that each non-key attribute is dependent only on

the candidate key.

 Fourth Normal Form (4NF): 4NF is a further refinement of BCNF

that ensures that a table does not contain any multi-valued

dependencies.

 Fifth Normal Form (5NF): 5NF is the highest level of normalization

and involves decomposing a table into smaller tables to remove data

redundancy and improve data integrity.

Normal forms help to reduce data redundancy, increase data consistency, and

improve database performance. However, higher levels of normalization can

lead to more complex database designs and queries. It is important to strike a

balance between normalization and practicality when designing a database.

First, Second and Third Normal Form

 First Normal Form

If a relation contains composite or multi-valued attribute, it violates first normal

form, or a relation is in first normal form if it does not contain any composite or

multi-valued attribute. A relation is in first normal form if every attribute in that

relation is singled valued attribute.

 Example 1 – Relation STUDENT in table 1 is not in 1NF because of

multi-valued attribute STUD_PHONE. Its decomposition into 1NF

has been shown in table 2.

 Second Normal Form
To be in second normal form, a relation must be in first normal form and relation

must not contain any partial dependency. A relation is in 2NF if it has No

Partial Dependency, i.e., no non-prime attribute (attributes which are not part

of any candidate key) is dependent on any proper subset of any candidate key

of the table. Partial Dependency – If the proper subset of candidate key

determines non-prime attribute, it is called partial dependency.

 Example 1 – Consider table-3 as following below.

STUD_NO COURSE_NO COURSE_FEE

1 C1 1000

2 C2 1500

1 C4 2000

4 C3 1000

4 C1 1000

2 C5 2000

{Note that, there are many courses having the same course fee} Here,

COURSE_FEE cannot alone decide the value of COURSE_NO or STUD_NO;

COURSE_FEE together with STUD_NO cannot decide the value of

COURSE_NO; COURSE_FEE together with COURSE_NO cannot decide the

value of STUD_NO; Hence, COURSE_FEE would be a non-prime attribute, as

it does not belong to the one only candidate key {STUD_NO, COURSE_NO} ;

But, COURSE_NO -> COURSE_FEE, i.e., COURSE_FEE is dependent on

COURSE_NO, which is a proper subset of the candidate key. Non-prime

attribute COURSE_FEE is dependent on a proper subset of the candidate key,

which is a partial dependency and so this relation is not in 2NF. To convert the

above relation to 2NF, we need to split the table into two tables such as :

Table 1: STUD_NO, COURSE_NO Table 2: COURSE_NO, COURSE_FEE

 Table 1 Table 2
STUD_NO COURSE_NO COURSE_NO COURSE_FEE

1 C1 C1 1000

2 C2 C2 1500

1 C4 C3 1000

4 C3 C4 2000

3 C1 C5 2000

NOTE: 2NF tries to reduce the redundant data getting stored in memory. For

instance, if there are 100 students taking C1 course, we don’t need to store its

Fee as 1000 for all the 100 records, instead, once we can store it in the second

table as the course fee for C1 is 1000.

 Third Normal Form
A relation is said to be in third normal form, if we did not have any transitive

dependency for non-prime attributes. The basic condition with the Third Normal

Form is that, the relation must be in Second Normal Form.

Below mentioned is the basic condition that must be hold in the non-trivial

functional dependency X -> Y:

 X is a Super Key.

 Y is a Prime Attribute (this means that element of Y is some part of

Candidate Key).

Boyce-Codd Normal Form (BCNF), Fourth and Fifth Normal Form

 BCNF (Boyce-Codd Normal Form)
BCNF (Boyce-Codd Normal Form) is just an advanced version of Third Normal

Form. Here we have some additional rules than Third Normal Form. The basic

condition for any relation to be in BCNF is that it must be in Third Normal

Form.

We must focus on some basic rules that are for BCNF:

 Table must be in Third Normal Form.

 In relation X->Y, X must be a superkey in a relation.

 Fourth Normal Form
Fourth Normal Form contains no non-trivial multivalued dependency except

candidate key. The basic condition with Fourth Normal Form is that the relation

must be in BCNF.

The basic rules are mentioned below.

 It must be in BCNF.

 It does not have any multi-valued dependency.

 Fifth Normal Form
Fifth Normal Form is also called as Projected Normal Form. The basic

conditions of Fifth Normal Form are mentioned below.

Relation must be in Fourth Normal Form.

The relation must not be further non loss decomposed.

 How To Find the Highest normal Form of a relation

Steps to find the highest normal form of relation:

Step 1. Find all possible candidate keys of the relation.

Step 2. Divide all attributes into two categories: prime attributes and non-prime

attributes.

Step 3. Check for 1st normal form then 2nd and so on. If it fails to satisfy the

nth normal form condition, the highest normal form will be n-1.

Example 1. Find the highest normal form of a relation R(A,B,C,D,E) with

FD set {A->D, B->A, BC->D, AC->BE}

Step 1. As we can see, (AC)+ ={A, C, B, E, D} but none of its subsets can

determine all attributes of relation, So AC will be the candidate key. A can be

derived from B, so we can replace A in AC with B. So BC will also be a

candidate key. So, there will be two candidate keys {AC, BC}.

Step 2. The prime attribute is that attribute which is part of candidate key {A,

B, C} in this example and others will be non-prime {D, E} in this example.

Step 3. The relation R is in 1st normal form as a relational DBMS does not

allow multi-valued or composite attributes.

The relation is not in the 2nd Normal form because A->D is partial dependency

(A which is a subset of candidate key AC is determining non-prime attribute D)

and the 2nd normal form does not allow partial dependency.

So, the highest normal form will be the 1st Normal Form.

Function Dependency

A functional dependency A->B in a relation holds if two tuples having the same

value of attribute A also have the same value for attribute B. For Example, in

relation to STUDENT shown in Table 1, Functional Dependencies

STUD_NO->STUD_NAME, STUD_NO->STUD_PHONE hold but

STUD_NAME->STUD_STATE do not hold.

Advantages of Functional Dependencies

 Through the identification and removal of redundant or unneeded data,

they aid in the reduction of data redundancy in databases.

 By guaranteeing that data is correct and consistent throughout the

database, they enhance data integrity.

 They make it simpler to add, edit, and remove data, which helps with

database management.

Disadvantages of Functional Dependencies

 The process of identifying functional dependencies can be time-

consuming and complex, especially in large databases with many

tables and relationships.

 Overly restrictive functional dependencies can result in slow query

performance or data inconsistencies, as data that should be related may

not be properly linked.

 Functional dependencies do not consider the semantic meaning of data

and may not always reflect the true relationships between data

elements.

9.2. Attribute Clouser and Candidate Key

Attribute Closure

Attribute closure of an attribute set can be defined as set of attributes which can

be functionally determined from it.

How to find attribute closure of an attribute set?
To find attribute closure of an attribute set:

 Add elements of attribute set to the result set.

 Recursively add elements to the result set which can be functionally

determined from the elements of the result set.

Using FD set of table 1, attribute closure can be determined as:

(STUD_NO) + = {STUD_NO, STUD_NAME, STUD_PHONE,

STUD_STATE, STUD_COUNTRY, STUD_AGE}

(STUD_STATE) + = {STUD_STATE, STUD_COUNTRY}

Advantages of Attribute Closure

 Attribute closures help to identify all possible attributes that can be

derived from a set of given attributes.

 They facilitate database design by identifying relationships between

attributes and tables, which can help to optimize query performance.

 They ensure data consistency by identifying all possible combinations

of attributes that can exist in the database.

Disadvantages of Attribute Closure

 The process of calculating attribute closures can be computationally

expensive, especially for large datasets.

 Attribute closures can become too complex to manage, especially as

the number of attributes and tables in a database grows.

 Attribute closures do not take into account the semantic meaning of

data and may not always accurately reflect the relationships between

data elements.

How to Find Candidate Keys and Super Keys Using Attribute Closure?

 If attribute closure of an attribute set contains all attributes of relation,

the attribute set will be super key of the relation.

 If no subset of this attribute set can functionally determine all

attributes of the relation, the set will be candidate key as well. For

Example, using FD set of tables 1,

(STUD_NO, STUD_NAME) + = {STUD_NO, STUD_NAME,

STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE,

STUD_STATE, STUD_COUNTRY, STUD_AGE}

(STUD_NO, STUD_NAME) will be super key but not candidate key because

its subset (STUD_NO)+ is equal to all attributes of the relation. So, STUD_NO

will be a candidate key.

Prime and Non-Prime Attributes

Attributes which are parts of any candidate key of relation are called as prime

attribute, others are non-prime attributes. For Example, STUD_NO in

STUDENT relation is prime attribute, others are non-prime attribute.

Candidate Key

Candidate keys play an essential role in Database Management Systems

(DBMS) by ensuring data integrity and efficient retrieval. A candidate key

refers to a set of attributes that can uniquely identify each record in a table. In

this article, we will explore the concept of candidate keys, their significance in

DBMS, and their crucial role in optimizing databases.

What is a Candidate Key?

A candidate key is a minimal set of attributes that uniquely identifies each tuple

within a table. In other words, there should not be any two rows in a table that

can have the same values for the columns that are the part of candidate key. It

is very important for establishing relationships between tables and maintaining

data integrity. Candidate keys play a pivotal role in database normalization as

they help us to eliminate data redundancy and anomalies.

 Figure 25: Key in DBMS

Example of Candidate Key

Let us try to understand, the concept of the candidate key with an example of a

student table.

Student_id Roll_no Name Mobile_no Email_id

A1 1 Dipak 9120 a@gmail.cpm

A2 2 Raja 8732 b@gmail.com

A3 3 Dipak 8344 c@gmail.com

In this table, each student can uniquely identify by any of the following attribute:

Student_id, Roll_no, Mobile_no, Email_id. So let primary key is Student_id

and Candidate keys are Student_id, Roll_no, Mobile_no, Email_id.

9.3. Lossless Decomposition and Dependency Preserving

Decomposition

What is Lossless Decomposition?

Lossless join decomposition is a decomposition of a relation R into relations R1,

and R2 such that if we perform a natural join of relation R1 and R2, it will return

the original relation R. This is effective in removing redundancy from databases

while preserving the original data.

In other words by lossless decomposition, it becomes feasible to reconstruct the

relation R from decomposed tables R1 and R2 by using Joins.

0 seconds of 17 seconds Volume 0%

Only 1NF,2NF,3NF, and BCNF are valid for lossless join decomposition.

In Lossless Decomposition, we select the common attribute and the criteria for

selecting a common attribute is that the common attribute must be a candidate

key or super key in either relation R1, R2, or both.

Decomposition of a relation R into R1 and R2 is a lossless-join decomposition

if at least one of the following functional dependencies is in F+ (Closure of

functional dependencies)

Example of Lossless Decomposition

— Employee (Employee_Id, Ename, Salary, Department_Id, Dname)

Can be decomposed using lossless decomposition as,

— Employee_desc (Employee_Id, Ename, Salary, Department_Id)

— Department_desc (Department_Id, Dname)

Alternatively the lossy decomposition would be as joining these tables is not

possible so not possible to get back original data.

– Employee_desc (Employee_Id, Ename, Salary)

– Department_desc (Department_Id, Dname)

R1 ∩ R2 → R1

 OR

R1 ∩ R2 → R2

In a database management system (DBMS), a lossless decomposition is a

process of decomposing a relation schema into multiple relations in such a way

that it preserves the information contained in the original relation. Specifically,

a lossless decomposition is one in which the original relation can be

reconstructed by joining the decomposed relations.

To achieve lossless decomposition, a set of conditions known as Armstrong’s

axioms can be used. These conditions ensure that the decomposed relations will

retain all the information present in the original relation. Specifically, the two

most important axioms for lossless decomposition are the reflexivity and the

decomposition axiom.

The reflexivity axiom states that if a set of attributes is a subset of another set

of attributes, then the larger set of attributes can be inferred from the smaller

set. The decomposition axiom states that if a relation R can be decomposed into

two relations R1 and R2, then the original relation R can be reconstructed by

taking the natural join of R1 and R2.

There are several algorithms available for performing lossless decomposition in

DBMS, such as the BCNF (Boyce-Codd Normal Form) decomposition and

the 3NF (Third Normal Form) decomposition. These algorithms use a set of

rules to decompose a relation into multiple relations while ensuring that the

original relation can be reconstructed without any loss of information.

Advantages of Lossless Decomposition

 Reduced Data Redundancy: Lossless decomposition helps in reducing

the data redundancy that exists in the original relation. This helps in

improving the efficiency of the database system by reducing storage

requirements and improving query performance.

 Maintenance and Updates: Lossless decomposition makes it easier to

maintain and update the database since it allows for more granular

control over the data.

 Improved Data Integrity: Decomposing a relation into smaller

relations can help to improve data integrity by ensuring that each

relation contains only data that is relevant to that relation. This can help

to reduce data inconsistencies and errors.

 Improved Flexibility: Lossless decomposition can improve the

flexibility of the database system by allowing for easier modification of

the schema.

Disadvantages of Lossless Decomposition

 Increased Complexity: Lossless decomposition can increase the

complexity of the database system, making it harder to understand

and manage.

 Increased Processing Overhead: The process of decomposing a

relation into smaller relations can result in increased processing

overhead. This can lead to slower query performance and reduced

efficiency.

 Join Operations: Lossless decomposition may require additional

join operations to retrieve data from the decomposed relations. This

can also result in slower query performance.

 Costly: Decomposing relations can be costly, especially if the

database is large and complex. This can require additional resources,

such as hardware and personnel.

Dependency Prevention Decomposition

Dependency Preservation
A Decomposition D = {R1, R2, R3…Rn } of R is dependency preserving wrt a

set F of Functional dependency if

(F1 ? F2 ? … ? Fm) + = F+.
Consider a relation R

R ---> F {...with some functional dependency (FD)....}

R is decomposed or divided into R1 with FD { f1 } and R2 with { f2 }, then

there can be three cases:

f1 U f2 = F -----> Decomposition is dependency preserving.

f1 U f2 is a subset of F -----> Not Dependency preserving.

f1 U f2 is a super set of F -----> This case is not possible.

Problem:
Let a relation R (A, B, C, D) and functional dependency {AB –> C, C –> D, D

–> A}. Relation R is decomposed into R1(A, B, C) and R2(C, D). Check

whether decomposition is dependency preserving or not.

Solution:
0 seconds of 17 seconds Volume 0%

R1(A, B, C) and R2(C, D)

Let us find closure of F1 and F2

To find closure of F1, consider all combination of

ABC. i.e., find closure of A, B, C, AB, BC and AC

Note ABC is not considered as it is always ABC

closure(A) = { A } // Trivial

closure(B) = { B } // Trivial

closure(C) = {C, A, D} but D can't be in closure as D is not present R1.

 = {C, A}

C--> A // Removing C from right side as it is trivial attribute

closure(AB) = {A, B, C, D} = {A, B, C}

AB --> C // Removing AB from right side as these are trivial attributes

closure(BC) = {B, C, D, A} = {A, B, C}

BC --> A // Removing BC from right side as these are trivial attributes

closure(AC) = {A, C, D}

NULL SET

F1 {C--> A, AB --> C, BC --> A}.

Similarly F2 { C--> D }

In the original Relation Dependency { AB --> C , C --> D , D --> A}.

AB --> C is present in F1.

C --> D is present in F2.

D --> A is not preserved.

F1 U F2 is a subset of F. So given decomposition is not dependency

preserving.

Lossless Join Decomposition

If we decompose a relation R into relations R1 and R2,

Decomposition is lossy if R1 ⋈ R2 ⊃ R

Decomposition is lossless if R1 ⋈ R2 = R

To check for lossless join decomposition using the FD set, the following

conditions must hold:
i) The Union of Attributes of R1 and R2 must be equal to the

attribute of R. Each attribute of R must be either in R1 or in R2.

0 seconds of 17 secondsVolume 0%

 Att(R1) U Att(R2) = Att(R)

ii) The intersection of Attributes of R1 and R2 must not be NULL.

 Att(R1) ∩ Att(R2) ≠ Φ

iii) The common attribute must be a key for at least one relation (R1

or R2)

 Att(R1) ∩ Att(R2) -> Att(R1) or Att(R1) ∩ Att(R2) -> Att(R2)

Dependency Preserving Decomposition

If we decompose a relation R into relations R1 and R2, All dependencies of R

either must be a part of R1 or R2 or must be derivable from a combination

of functional dependency of R1 and R2. For Example, A relation R (A, B, C, D)

with FD set{A->BC} is decomposed into R1(ABC) and R2(AD) which is

dependency preserving because FD A->BC is a part of R1(ABC).

Advantages of Lossless Join and Dependency Preserving Decomposition

 Improved Data Integrity: Lossless join and dependency preserving

decomposition help to maintain the data integrity of the original

relation by ensuring that all dependencies are preserved.

 Reduced Data Redundancy: These techniques help to reduce data

redundancy by breaking down a relation into smaller, more

manageable relations.

 Improved Query Performance: By breaking down a relation into

smaller, more focused relations, query performance can be improved.

 Easier Maintenance and Updates: The smaller, more focused

relations are easier to maintain and update than the original relation,

making it easier to modify the database schema and update the data.

 Better Flexibility: Lossless join and dependency preserving

decomposition can improve the flexibility of the database system by

allowing for easier modification of the schema.

Disadvantages of Lossless Join and Dependency Preserving Decomposition

 Increased Complexity: Lossless join and dependency-preserving

decomposition can increase the complexity of the database system,

making it harder to understand and manage.

 Costly: Decomposing relations can be costly, especially if the

database is large and complex. This can require additional resources,

such as hardware and personnel.

 Reduced Performance: Although query performance can be

improved in some cases, in others, lossless join and dependency-

preserving decomposition can result in reduced query performance

due to the need for additional join operations.

 Limited Scalability: These techniques may not scale well in larger

databases, as the number of smaller, focused relations can become

unwieldy.

9.4. Equivalence of Function Dependencies

For understanding the equivalence of Functional Dependencies Sets (FD sets),

the basic idea about Attribute Closure is given in this article Given a Relation

with different FD sets for that relation, we have to find out whether one FD set

is a subset of another or both are equal.

How To Find the Relationship Between Two Functional Dependency

Sets?

Let FD1 and FD2 be two FD sets for a relation R.

i) If all FDs of FD1 can be derived from FDs present in FD2, we can

say that FD2 ⊃ FD1.

ii) If all FDs of FD2 can be derived from FDs present in FD1, we can

say that FD1 ⊃ FD2.

iii) If 1 and 2 both are true, FD1=FD2.

Why We Need to Compare Functional Dependencies?

Suppose in the designing process we convert the ER diagram to a relational

model and this task is given to two different engineers.

Now those two engineers give two different sets of functional dependencies. So,

being an administrator, we need to ensure that we must have a good set of

Functional Dependencies. To ensure this we require to study the equivalence of

Functional Dependencies.

Advantages

 It can help to identify redundant functional dependencies, which can

be eliminated to reduce data redundancy and improve database

performance.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2015/12/fd1.png

 It can help to optimize database design by identifying equivalent sets

of functional dependencies that can be used interchangeably.

 It can ensure data consistency by identifying all possible

combinations of attributes that can exist in the database.

Disadvantages

 The process of determining the equivalence of functional

dependencies can be computationally expensive, especially for large

datasets.

 The process may require testing multiple candidates sets of

functional dependencies, which can be time-consuming and complex.

 The equivalence of functional dependencies may not always

accurately reflect the semantic meaning of data and may not always

reflect the true relationships between data elements.

Question.1 Let us take an example to show the relationship between two FD

sets. A relation R(A,B,C,D) having two FD sets FD1 = {A->B, B->C, AB->D}

and FD2 = {A->B, B->C, A->C, A->D}

Step 1: Checking whether all FDs of FD1 are present in FD2

 A->B in set FD1 is present in set FD2.

 B->C in set FD1 is also present in set FD2.

 AB->D is present in set FD1 but not directly in FD2 but we will

check whether we can derive it or not. For set FD2, (AB)+ = {A, B,

C, D}. It means that AB can functionally determine A, B, C, and D.

So AB->D will also hold in set FD2.

As all FDs in set FD1 also hold in set FD2, FD2 ⊃ FD1 is true.

9.5. Canonical Cover of Functional Dependencies

Whenever a user updates the database, the system must check whether any of

the functional dependencies are getting violated in this process. If there is a

violation of dependencies in the new database state, the system must roll back.

Working with a huge set of functional dependencies can cause unnecessary

added computational time. This is where the canonical cover comes into play.

A canonical cover of a set of functional dependencies F is a simplified set of

functional dependencies that has the same closure as the original set F.

An attribute of a functional dependency is said to be extraneous if we can

remove it without changing the closure of the set of functional dependencies

Canonical Cover

In DBMS, a canonical cover is a set of functional dependencies that is equivalent

to a given set of functional dependencies but is minimal in terms of the number

of dependencies. The process of finding the canonical cover of a set of

functional dependencies involves three main steps:

 Reduction: The first step is to reduce the original set of functional

dependencies to an equivalent set that has the same closure as the

original set, but with fewer dependencies. This is done by removing

redundant dependencies and combining dependencies that have

common attributes on the left-hand side.

 Elimination: The second step is to eliminate any extraneous

attributes from the left-hand side of the dependencies. An attribute is

considered extraneous if it can be removed from the left-hand side

without changing the closure of the dependencies.

 Minimization: The final step is to minimize the number of

dependencies by removing any dependencies that are implied by

other dependencies in the set.

 To illustrate the process, let’s consider a set of functional

dependencies: A -> BC, B -> C, and AB -> C. Here are the steps to

find the canonical cover:

 Reduction: We can reduce the set by removing the redundant

dependency B -> C and combining the two remaining dependencies

into one: A -> B, A -> C.

 Elimination: We can eliminate the extraneous attribute B from the

dependency A -> B, resulting in A -> C.

 Minimization: We can minimize the set by removing the

dependency AB -> C, which is implied by A -> C.

 The resulting canonical cover for the original set of functional

dependencies is A -> C.

A canonical cover Fc of a set of functional dependencies F such that all the

following properties are satisfied:

 F logically implies all dependencies in Fc.

 Fc logically implies all dependencies in F.

 No functional dependency in Fc contains an extraneous attribute.

 Each left side of a functional dependency in Fc is unique. That is,

there are no two dependencies α1 → β1 and α2 → β2 in such

that α1 → α2.

The canonical cover is useful because it provides a simplified representation of

the original set of functional dependencies that can be used to determine the key,

superkey, and candidate key for a relation, as well as to check

for normalization violations and perform other database design tasks.

How to Find Canonical Cover?

Below mentioned is the algorithm to compute canonical cover for set F.

i) Repeat
Use the union rule to replace any dependencies in α1 → β1 and α2 →

β2 with α1 → β1β2

ii) Find a functional dependency α → β with an extraneous attribute either

in α or in β.

iii) If an extraneous attribute is found, delete it from α → β. until F does

not change.

Example 1:
Consider the following set F of functional dependencies:

F= {A → BC, B → C A → B, AB → C}. Below mentioned are the steps to

find the canonical cover of the functional dependency given above.

Step 1: There are two functional dependencies with the same attributes on the

left: A → BC, A → B. These two can be combined to get A → BC. Now, the

revised set F becomes F= {A → BC, B → C, AB → C}.

Step 2: There is an extraneous attribute in AB → C because even after removing

AB → C from the set F, we get the same closures. This is because B → C is

already a part of F. Now, the revised set F becomes: F= {A → BC, B → C}

Step 3: C is an extraneous attribute in A → BC, also A → B is logically implied

by A → B and B → C (by transitivity). F= {A → B B → C}

Step 4: After this step, F does not change anymore. So, hence the required

canonical cover is, Fc = {A → B, B → C}

Features of the Canonical Cover

 Minimal: The canonical cover is the smallest set of dependencies

that can be derived from a given set of dependencies, i.e., it has the

minimum number of dependencies required to represent the same set

of constraints.

 Lossless: The canonical cover preserves all the functional

dependencies of the original set of dependencies, i.e., it does not lose

any information.

 Unique: The canonical cover is unique, i.e., there is only one

canonical cover for a given set of dependencies.

 Deterministic: The canonical cover is deterministic, i.e., it does not

contain any redundant or extraneous dependencies.

 Reduces data redundancy: The canonical cover helps to reduce

data redundancy by eliminating unnecessary dependencies that can

be inferred from other dependencies.

 Improves query performance: The canonical cover helps to

improve query performance by reducing the number of joins and

redundant data in the database.

Structured Query language (SQL)

10. SQL Overview
Structured Query Language is a standard Database language that is used to

create, maintain, and retrieve the relational database. In this article, we will

discuss this in detail about SQL. Following are some interesting facts about

SQL. Let us focus on that.

SQL is case insensitive. But it is a recommended practice to use keywords (like

SELECT, UPDATE, CREATE, etc.) in capital letters and use user-defined

things (like table name, column name, etc.) in small letters.

We can write comments in SQL using “–” (double hyphen) at the beginning of

any line. SQL is the programming language for relational databases (explained

below) like MySQL, Oracle, Sybase, SQL Server, Postgrad, etc. Other non-

relational databases (also called NoSQL) databases like MongoDB,

DynamoDB, etc. do not use SQL.

Although there is an ISO standard for SQL, most of the implementations slightly

vary in syntax. So, we may encounter queries that work in SQL Server but do

not work in MySQL.

What is Relational Database?

A relational database means the data is stored as well as retrieved in the form of

relations (tables). Table 1 shows the relational database with only one relation

called STUDENT which

stores ROLL_NO, NAME, ADDRESS, PHONE, and AGE of students.

STUDENT Table

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

Important Terminologies

These are some important terminologies that are used in terms of relation.

 Attribute: Attributes are the properties that define a relation.

e.g.; ROLL_NO, NAME etc.

 Tuple: Each row in the relation is known as tuple. The above relation

contains 4 tuples, one of which is shown as:

1 RAM DELHI 9455123451 18

 Degree: The number of attributes in the relation is known as degree

of the relation. The STUDENT relation defined above has degree 5.

 Cardinality: The number of tuples in a relation is known as

cardinality. The STUDENT relation defined above has cardinality 4.

 Column: Column represents the set of values for a particular

attribute. The column ROLL_NO is extracted from relation

STUDENT.

ROLL_NO

1

2

3

4

How Queries can be Categorized in Relational Database?

The queries to deal with relational database can be categorized as:

 Data Definition Language: It is used to define the structure of the

database. e.g., CREATE TABLE, ADD COLUMN, DROP COLUMN

and so on.

 Data Manipulation Language: It is used to manipulate data in the

relations. e.g., INSERT, DELETE, UPDATE and so on.

 Data Query Language: It is used to extract the data from the

relations. e.g., SELECT So first we will consider the Data Query

Language. A generic query to retrieve data from a relational database.

i) SELECT [DISTINCT] Attribute_List FROM R1, R2….RM

ii) [WHERE condition]

iii) [GROUP BY (Attributes)[HAVING condition]]

iv) [ORDER BY(Attributes)[DESC]];

Different Query Combinations

Case 1: If we want to retrieve attributes ROLL_NO and Name of all students,

the query will be:

SELECT ROLL_NO, NAME FROM STUDENT;

ROLL_NO NAME

1 RAM

2 RAMESH

3 SUJIT

4 SURESH

Case 2: If we want to retrieve ROLL_NO and NAME of the students

whose ROLL_NO is greater than 2, the query will be:

SELECT ROLL_NO, NAME FROM STUDENT

WHERE ROLL_NO>2;

ROLL_NO NAME

3 SUJIT

4 SURESH

CASE 3: If we want to retrieve all attributes of students, we can write * in

place of writing all attributes as:

SELECT * FROM STUDENT

WHERE ROLL_NO>2;

ROLL_NO NAME ADDRESS PHONE AGE

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

CASE 4: If we want to represent the relation in ascending order by AGE, we

can use ORDER BY clause as:

0 seconds of 0 secondsVolume 0%

SELECT * FROM STUDENT ORDER BY AGE;

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

4 SURESH DELHI 9156768971 18

3 SUJIT ROHTAK 9156253131 20

Note:

ORDER BY AGE is equivalent to ORDER BY AGE ASC.

If we want to retrieve the results in descending order of AGE, we can use

ORDER BY AGE DESC.

CASE 5: If we want to retrieve distinct values of an attribute or group of

attributes, DISTINCT is used as in:

SELECT DISTINCT ADDRESS FROM STUDENT;

ADDRESS

DELHI

GURGAON

ROHTAK

If DISTINCT is not used, DELHI will be repeated twice in result set. Before

understanding GROUP BY and HAVING, we need to understand aggregations

functions in SQL.

Aggregation Functions

Aggregation functions are used to perform mathematical operations on data

values of a relation. Some of the common aggregation functions used in SQL

are:

 COUNT: Count function is used to count the number of rows in a

relation. e.g.,

SELECT COUNT (PHONE) FROM STUDENT;

COUNT(PHONE)

4

 SUM: SUM function is used to add the values of an attribute in a

relation. e.g.,

SELECT SUM(AGE) FROM STUDENT;

SUM (AGE)

74

In the same way, MIN, MAX and AVG can be used. As we have seen above,

all aggregation functions return only 1 row. AVERAGE: It gives the average

values of the tuples. It is also defined as sum divided by count values.

Syntax:
AVG (attributename)

OR

SUM (attributename)/COUNT (attributename)

The above-mentioned syntax also retrieves the average value of tuples.

 MAXIMUM: It extracts the maximum value among the set of tuples.

Syntax:
MAX (attributename)

 MINIMUM: It extracts the minimum value amongst the set of all the

tuples.

Syntax:
MIN (attributename)

 GROUP BY: Group by is used to group the tuples of a relation based

on an attribute or group of attributes. It is always combined with

aggregation function which is computed on group. e.g.,

SELECT ADDRESS, SUM(AGE) FROM STUDENT

GROUP BY (ADDRESS);

In this query, SUM(AGE) will be computed but not for entire table but for each

address. i.e., sum of AGE for address DELHI (18+18=36) and similarly for

other address as well. The output is:

ADDRESS SUM(AGE)

DELHI 36

GURGAON 18

ROHTAK 20

If we try to execute the query given below, it will result in error because

although we have computed SUM(AGE) for each address, there are more than

1 ROLL_NO for each address we have grouped. So, it cannot be displayed in

result set. We need to use aggregate functions on columns after SELECT

statement to make sense of the resulting set whenever we are using GROUP BY.

SELECT ROLL_NO, ADDRESS, SUM(AGE) FROM STUDENT

GROUP BY (ADDRESS);

NOTE: An attribute which is not a part of GROUP BY clause can’t be used

for selection.

Any attribute which is part of GROUP BY CLAUSE can be used for selection

but it is not mandatory.

But we could use attributes which are not a part of the GROUP BY clause in

an aggregate function.

10.1. SQL Commands

Looking for one place where you can find all the SQL commands or SQL

sublanguage commands like DDL, DQL, DML, DCL, and TCL, then

bookmark this article. In this write-up, you will explore all the Structured

Query Language (SQL) commands with accurate syntax.

Structured Query Language (SQL), as we all know, is the database language by

the use of which we can perform certain operations on the existing database, and

also, we can use this language to create a database. SQL uses certain commands

like CREATE, DROP, INSERT, etc. to carry out the required tasks.

SQL commands are like instructions to a table. It is used to interact with the

database with some operations. It is also used to perform specific tasks,

functions, and queries of data. SQL can perform various tasks like creating a

table, adding data to tables, dropping the table, modifying the table, set

permission for users.

These SQL commands are mainly categorized into five categories:

 DDL – Data Definition Language

 DQL – Data Query Language

 DML – Data Manipulation Language

 DCL – Data Control Language

 TCL – Transaction Control Language

i) DDL (Data Definition Language)
DDL or Data Definition Language consists of the SQL commands that can be

used to define the database schema. It simply deals with descriptions of the

database schema and is used to create and modify the structure of database

objects in the database. DDL is a set of SQL commands used to create, modify,

and delete database structures but not data. These commands are normally not

used by a general user, who should be accessing the database via an application.

List of DDL commands:

 CREATE: This command is used to create the database or its objects

(like table, index, function, views, store procedure, and triggers).

 DROP: This command is used to delete objects from the database.

 ALTER: This is used to alter the structure of the database.

 TRUNCATE: This is used to remove all records from a table,

including all spaces allocated for the records are removed.

 COMMENT: This is used to add comments to the data dictionary.

 RENAME: This is used to rename an object existing in the database.

ii) DQL (Data Query Language)

DQL statements are used for performing queries on the data within schema

objects. The purpose of the DQL Command is to get some schema relation based

on the query passed to it. We can define DQL as follows it is a component of

SQL statement that allows getting data from the database and imposing order

upon it. It includes the SELECT statement. This command allows getting the

data out of the database to perform operations with it. When a SELECT is fired

against a table or tables the result is compiled into a further temporary table,

which is displayed or perhaps received by the program i.e., front-end.

List of DQL:

 SELECT: It is used to retrieve data from the database.

iii) DML (Data Manipulation Language)
The SQL commands that deal with the manipulation of data present in the

database belong to DML or Data Manipulation Language and this includes most

of the SQL statements. It is the component of the SQL statement that controls

access to data and to the database. Basically, DCL statements are grouped with

DML statements.

List of DML commands:

 INSERT: It is used to insert data into a table.

 UPDATE: It is used to update existing data within a table.

 DELETE: It is used to delete records from a database table.

 LOCK: Table control concurrency.

 CALL: Call a PL/SQL or JAVA subprogram.

 EXPLAIN PLAN: It describes the access path to data.

iv) DCL (Data Control Language)
DCL includes commands such as GRANT and REVOKE which mainly deal

with the rights, permissions, and other controls of the database system.

List of DCL commands:

 GRANT: This command gives users access privileges to the database.

Syntax:GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOT

HER_USER;

 REVOKE: This command withdraws the user’s access privileges given

by using the GRANT command.

Syntax:
REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

v) TCL (Transaction Control Language)
Transactions group a set of tasks into a single execution unit. Each transaction

begins with a specific task and ends when all the tasks in the group are

successfully completed. If any of the tasks fail, the transaction fails. Therefore,

a transaction has only two results: success or failure. Hence, the following TCL

commands are used to control the execution of a transaction:

BEGIN: Opens a Transaction.

COMMIT: Commits a Transaction.

Syntax:
COMMIT;

ROLLBACK: Rollbacks a transaction in case of any error occurs.

Syntax:
ROLLBACK;

SAVEPOINT: Sets a save point within a transaction.

Syntax: SAVEPOINT SAVEPOINT_NAME;

10.2. SQL | Join
SQL Join statement is used to combine data or rows from two or more tables

based on a common field between them. Different types of Joins are as

follows:

 INNER JOIN

 LEFT JOIN

 RIGHT JOIN

 FULL JOIN

 NATURAL JOIN

Consider the two tables below as follows:

Student

 StudentCourse

COURSE_ID ROLL_NO

1 1

2 2

2 3

3 4

1 5

4 9

5 10

4 11

The simplest Join is INNER JOIN.

i) INNER JOIN
The INNER JOIN keyword selects all rows from both the tables if the condition

is satisfied. This keyword will create the result-set by combining all rows from

both the tables where the condition satisfies i.e., value of the common field will

be the same.

Syntax:

SELECT table1.column1, table1.column2, table2.column1,....

FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as

INNER JOIN.

 Figure 26: Venn Diagram Inner Join

Example Queries (INNER JOIN)
This query will show the names and age of students enrolled in different

courses.

SELECT StudentCourse.COURSE_ID, Student.NAME, Student.AGE FROM

Student

INNER JOIN StudentCourse

ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:

COURSE_ID NAME Age

1 Harsh 18

2 Pratik 19

2 Riyanka 20

3 Deep 18

1 Saptarhi 19

ii) LEFT JOIN

This join returns all the rows of the table on the left side of the join and

matches rows for the table on the right side of the join. For the rows for which

there is no matching row on the right side, the result-set will contain null.

LEFT JOIN is also known as LEFT OUTER JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are

the same.

 Figure 27: Venn Diagram (Left Join)

Example Queries (LEFT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

LEFT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

NAME COURSE_ID

Harsh 1

Pratik 2

Riyanka 2

Deep 3

Saptarhi 1

Dhanraj NULL

Rohit NULL

Niraj NULL

iii) RIGHT JOIN

RIGHT JOIN is like LEFT JOIN. This join returns all the rows of the table on

the right side of the join and matching rows for the table on the left side of the

join. For the rows for which there is no matching row on the left side, the

result-set will contain null. RIGHT JOIN is also known as RIGHT OUTER

JOIN.

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Note: We can also use RIGHT OUTER JOIN instead of RIGHT JOIN, both are

the same.

 Figure 28: Venn Diagram (Right Join)

Example Queries (RIGHT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

RIGHT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

NAME COURSE_ID

Harsh 1

Pratik 2

Riyanka 2

Deep 3

Saptarhi 1

NULL 4

NULL 5

NULL 4

iv) FULL JOIN

FULL JOIN creates the result-set by combining results of both LEFT JOIN

and RIGHT JOIN. The result-set will contain all the rows from both tables.

For the rows for which there is no matching, the result-set will

contain NULL values.

 Figure 29: Venn Diagram (Full Join)

Syntax:

SELECT table1.column1,table1.column2,table2.column1,....

FROM table1

FULL JOIN table2

ON table1.matching_column = table2.matching_column;

table1: First table.

table2: Second table

matching_column: Column common to both the tables.

Example Queries (FULL JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID

FROM Student

FULL JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

NAME COURSE_ID

HARSH 1

PRATIK 2

RIYANKA 2

DEEP 3

SAPTARHI 1

DHANRAJ NULL

ROHIT NULL

NIRAJ NULL

NULL 4

NULL 5

NULL 4

10.3. Clause in SQL

Having vs. Where Clause

The difference between the having and where clause in SQL is that where clause

cannot be used with aggregates, but the having clause can.

The where clause works on row’s data, not on aggregated data. Let us consider

below table ‘Marks’.

Student Course Score

a c1 40

a c2 50

b c3 60

d c1 70

e c2 80

Consider the query.

SELECT Student, Score FROM Marks WHERE Score >= 40

This would select data row by row basis.

The having clause works on aggregated data.

For example, output of below query

SELECT Student, SUM (SCORE AS total FROM Marks GROUP BY Student

Student Total

a 90

b 60

c 70

d 80

When we apply having in above query, we get

SELECT Student, SUM (score) AS total FROM Marks Group BY Student HAVING

Student Total

a 90

c 80

Note: It is not a predefined rule but in a good number of the SQL queries, we

use WHERE prior to GROUP

BY and HAVING after GROUP BY. The Where clause acts as a pre

filter where as Having as a post filter.

10.4. Database Objects

A database object is any defined object in a database that is used to store or

reference data. Anything which we make from create command is known as

Database Object. It can be used to hold and manipulate the data. Some of the

examples of database objects are : view, sequence, indexes, etc.

 Table – Basic unit of storage; composed rows and columns.

 View – Logically represents subsets of data from one or more tables.

 Sequence – Generates primary key values.

 Index – Improves the performance of some queries.

 Synonym – Alternative name for an object

Different database Objects:

i) Table – This database object is used to create a table in database.

Syntax:
CREATE TABLE [schema.] table (column datatype [DEFAULT expr][, ...]);

Example:
CREATE TABLE dept

 (deptno NUMBER (2),

 dname VARCHAR2(14),

 loc VARCHAR2(13)) ;

Output:
DESCRIBE dept;

Name Null? Type

DEPT_NO NUMBER(2)

DNAME VARCHAR(14)

LOC VARCHAR(13)

ii) View – This database object is used to create a view in database. A view

is a logical table based on a table or another view. A view contains no

data of its own but is like a window through which data from tables can

be viewed or changed. The tables on which a view is based are called

base tables. The view is stored as a SELECT statement in the data

dictionary.

Syntax:

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view

 [(alias[, alias]...)]

 AS subquery

 [WITH CHECK OPTION [CONSTRAINT

constraint]]

 [WITH READ ONLY [CONSTRAINT constraint]];

Example:
CREATE VIEW salvu50

 AS SELECT employee_id ID_NUMBER, last_name

NAME,

 salary*12 ANN_SALARY

 FROM employees

 WHERE department_id = 50;

Output:
SELECT *

FROM salvu50;

ID_NUMBER NAME ANN_SALARY

124 Mourgous 69600

141 Rajs 42000

142 Davies 372000

143 Matos 312000

144 Vargas 300000

iii) Sequence –

This database object is used to create a sequence in database. A sequence is a

user created database object that can be shared by multiple users to generate

unique integers. A typical usage for sequences is to create a primary key value,

which must be unique for each row. The sequence is generated and

incremented (or decremented) by an internal Oracle routine.

Syntax:
CREATE SEQUENCE sequence

 [INCREMENT BY n]

 [START WITH n]

 [{MAXVALUE n | NOMAXVALUE}]

 [{MINVALUE n | NOMINVALUE}]

 [{CYCLE | NOCYCLE}]

 [{CACHE n | NOCACHE}];

Example:

CREATE SEQUENCE dept_deptid_seq

 INCREMENT BY 10

 START WITH 120

 MAXVALUE 9999

 NOCACHE

 NOCYCLE;

Check if sequence is created by:
SELECT sequence_name, min_value, max_value,

 increment_by, last_number

 FROM user_sequences;

iv) Index –

This database object is used to create an index in database. An Oracle server

index is a schema object that can speed up the retrieval of rows by using a

pointer. Indexes can be created explicitly or automatically. If you do not have

an index on the column, then a full table scan occurs.

An index provides direct and fast access to rows in a table. Its purpose is to

reduce the necessity of disk I/O by using an indexed path to locate data

quickly. The index is used and maintained automatically by the Oracle server.

Once an index is created, no direct activity is required by the user. Indexes are

logically and physically independent of the table they index. This means that

they can be created or dropped at any time and have no effect on the base

tables or other indexes.

Syntax:

CREATE INDEX index

 ON table (column [, column] ...);

Example:
CREATE INDEX emp_last_name_idx

 ON employees(last_name);

v) Synonym –

This database object is used to create a index in database. It simplify access to

objects by creating a synonym (another name for an object). With synonyms,

you can Ease referring to a table owned by another user and shorten lengthy

object names. To refer to a table owned by another user, you need to prefix the

table name with the name of the user who created it followed by a period.

Creating a synonym eliminates the need to qualify the object name with the

schema and provides you with an alternative name for a table, view, sequence,

procedure, or other objects. This method can be especially useful with lengthy

object names, such as views.

In the syntax:

PUBLIC: creates a synonym accessible to all users

synonym : is the name of the synonym to be created

object : identifies the object for which the synonym is created

Syntax:
CREATE [PUBLIC] SYNONYM synonym FOR object;

Example:

CREATE SYNONYM d_sum FOR dept_sum_vu;

10.5. Indexing

Indexing improves database performance by minimizing the number of disc

visits required to fulfil a query. It is a data structure technique used to locate and

quickly access data in databases. Several database fields are used to generate

indexes. The main key or candidate key of the table is duplicated in the first

column, which is the Search key. To speed up data retrieval, the values are also

kept in sorted order. It should be highlighted that sorting the data is not required.

The second column is the Data Reference or Pointer which contains a set of

pointers holding the address of the disk block where that particular key value

can be found.

Attributes of Indexing

 Access Types: This refers to the type of access such as value-based

search, range access, etc.

 Access Time: It refers to the time needed to find a particular data

element or set of elements.

 Insertion Time: It refers to the time taken to find the appropriate

space and insert new data.

 Deletion Time: Time taken to find an item and delete it as well as

update the index structure.

 Space Overhead: It refers to the additional space required by the

index.

In general, there are two types of file organization mechanisms that are followed

by the indexing methods to store the data:

Sequential File Organization or Ordered Index File

In this, the indices are based on a sorted ordering of the values. These are

generally fast and a more traditional type of storing mechanism. These Ordered

or Sequential file organizations might store the data in a dense or sparse format.

 Dense Index
For every search key value in the data file, there is an index record.

This record contains the search key and a reference to the first data record with

that search key value.

 Sparse Index

 The index record appears only for a few items in the data

file. Each item points to a block as shown.

 To locate a record, we find the index record with the largest

search key value less than or equal to the search key value

we are looking for.

 We start at that record pointed to by the index record and

proceed along with the pointers in the file (that is,

sequentially) until we find the desired record.

 Number of Accesses required=log₂(n)+1, (here n=number

of blocks acquired by index file)

Hash File Organization

Indices are based on the values being distributed uniformly across a range of

buckets. The buckets to which a value is assigned are determined by a function

called a hash function. There are primarily three methods of indexing:

 Clustered Indexing: When more than two records are stored in the

same file this type of storing is known as cluster indexing. By using

cluster indexing we can reduce the cost of searching reason being

multiple records related to the same thing are stored in one place and

it also gives the frequent joining of more than two tables (records).

The clustering index is defined on an ordered data file. The data file

is ordered on a non-key field. In some cases, the index is created on

non-primary key columns which may not be unique for each record.

In such cases, in order to identify the records faster, we will group

two or more columns together to get the unique values and create an

index out of them. This method is known as the clustering index.

Essentially, records with similar properties are grouped together, and

indexes for these groupings are formed.

Students studying each semester.

 Primary Indexing: This is a type of Clustered Indexing wherein the

data is sorted according to the search key and the primary key of the

database table is used to create the index. It is a default format of

indexing where it induces sequential file organization. As primary

keys are unique and are stored in a sorted manner, the performance of

the searching operation is quite efficient.

 Non-clustered or Secondary Indexing: A non-clustered index just

tells us where the data lies, i.e., it gives us a list of virtual pointers or

references to the location where the data is stored. Data is not

physically stored in the order of the index. Instead, data is present in

leaf nodes. For e.g., the contents page of a book. Each entry gives us

the page number or location of the information stored. The actual

data here (information on each page of the book) is not organized but

we have an ordered reference (contents page) to where the data

points lie. We can have only dense ordering in the non-clustered

index as sparse ordering is not possible because data is not physically

organized accordingly.

It requires more time as compared to the clustered index because

some amount of extra work is done in order to extract the data by

further following the pointer. In the case of a clustered index, data is

directly present in front of the index.

 Figure 30: Non-Cluster Indexing

 Multilevel Indexing: With the growth of the size of the database,

indices also grow. As the index is stored in the main memory, a

single-level index might become too large a size to store with

multiple disk accesses. The multilevel indexing segregates the main

block into various smaller blocks so that the same can be stored in a

single block. The outer blocks are divided into inner blocks which in

turn are pointed to the data blocks. This can be easily stored in the

main memory with fewer overheads.

10.6. SQL Views

Views in SQL are kind of virtual tables. A view also has rows and columns as

they are in a real table in the database. We can create a view by selecting fields

from one or more tables present in the database. A View can either have all the

rows of a table or specific rows based on certain condition. In this article we

will learn about creating, deleting and updating Views.

Sample Tables:

Table 1. StudentDetails

S_ID NAME ADDRESS

1 Harsh Kolkata

2 Ashish Durgapur

3 Pratik Delhi

4 Dhanraj Bihar

5 Ram Rajasthan

Table 2. StudentMarks

ID NAME MARKS AGE

1 Harsh 90 19

2 Suresh 50 20

3 Pratik 80 19

4 Dhanraj 95 21

5 Ram 85 18

CREATING VIEWS
We can create View using CREATE VIEW statement. A View can be created

from a single table or multiple tables. Syntax:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE condition;

view_name: Name for the View

table_name: Name of the table

condition: Condition to select rows

Examples:

Creating View from a single table:
 In this example we will create a View named DetailsView from the

table StudentDetails. Query:

CREATE VIEW DetailsView AS

SELECT NAME, ADDRESS

FROM StudentDetails

WHERE S_ID < 5;

 To see the data in the View, we can query the view in the same

manner as we query a table.

SELECT * FROM DetailsView;

Output:

NAME ADDRESS

Harsh Kolkata

Ashish Durgapur

Pratik Delhi

Dhanraj Bihar

In this example, we will create a view named StudentNames from the table

StudentDetails. Query:

CREATE VIEW StudentNames AS

SELECT S_ID, NAME

FROM StudentDetails

ORDER BY NAME;

If we now query the view as,

SELECT * FROM StudentNames;

Output:

S_ID NAMES

2 Ashish

4 Dhanraj

1 Harsh

3 Pratik

5 Ram

Creating View from multiple tables: In this example we will create a View

named MarksView from two tables StudentDetails and StudentMarks. To

create a View from multiple tables we can simply include multiple tables in

the SELECT statement. Query:

CREATE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS,

StudentMarks.MARKS

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

To display data of View MarksView:

SELECT * FROM MarksView;

Output:

NAME ADDRESS MARKS

Harsh Kolkata 90

Pratik Delhi 80

Dhanraj Bihar 95

Ram Rajasthan 85

LISTING ALL VIEWS IN A DATABASE
We can list View using the SHOW FULL TABLES statement or using the

information_schema table. A View can be created from a single table or

multiple tables.

Syntax (Using SHOW FULL TABLES):
use "database_name";

show full tables where table_type like "%VIEW";

Syntax (Using information_schema) :
select * from information_schema.views where table_schema =

"database_name";

OR

select table_schema,table_name,view_definition from

information_schema.views where table_schema = "database_name";

DELETING VIEWS

We have learned about creating a View, but what if a created View is not

needed any more? Obviously we will want to delete it. SQL allows us to delete

an existing View. We can delete or drop a View using the DROP

statement. Syntax:

DROP VIEW view_name;

view_name: Name of the View which we want to delete.

For example, if we want to delete the View MarksView, we can do this as:

DROP VIEW MarksView;

UPDATING VIEWS
There are certain conditions needed to be satisfied to update a view. If any one

of these conditions is not met, then we will not be allowed to update the view.

i) The SELECT statement which is used to create the view should not

include GROUP BY clause or ORDER BY clause.

ii) The SELECT statement should not have the DISTINCT keyword.

iii) The View should have all NOT NULL values.

iv) The view should not be created using nested queries or complex

queries.

v) The view should be created from a single table. If the view is created

using multiple tables then we will not be allowed to update the view.

We can use the CREATE OR REPLACE VIEW statement to add or remove

fields from a view. Syntax:

CREATE OR REPLACE VIEW view_name AS

SELECT column1,column2,..

FROM table_name

WHERE condition;

Inserting a row in a view: We can insert a row in a View in a same way as we

do in a table. We can use the INSERT INTO statement of SQL to insert a row

in a View.

Syntax:

INSERT INTO view_name(column1, column2 , column3,..)

VALUES(value1, value2, value3..);

view_name: Name of the View

Example: In the below example we will insert a new row in the View

DetailsView which we have created above in the example of “creating views

from a single table”.

INSERT INTO DetailsView(NAME, ADDRESS)

VALUES("Suresh","Gurgaon");

 If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

NAME ADDRESS

Harsh Kolkata

Ashish Durgapur

Pratik Delhi

Dhanraj Bihar

Suresh Gurgon

Deleting a row from a View: Deleting rows from a view is also as simple as

deleting rows from a table. We can use the DELETE statement of SQL to

delete rows from a view. Also deleting a row from a view first delete the row

from the actual table and the change is then reflected in the view.

Syntax:

DELETE FROM view_name

WHERE condition;

view_name:Name of view from where we want to delete rows

condition: Condition to select rows

Example: In this example, we will delete the last row from the view

DetailsView which we just added in the above example of inserting rows.

DELETE FROM DetailsView

WHERE NAME="Suresh";

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:
NAME ADDRESS

Harsh Kolkata

Ashish Durgapur

Pratik Delhi

Dhanraj Bihar

WITH CHECK OPTION
The WITH CHECK OPTION clause in SQL is a very useful clause for views.

It is applicable to an updatable view. If the view is not updatable, then there is

no meaning of including this clause in the CREATE VIEW statement.

 The WITH CHECK OPTION clause is used to prevent the insertion

of rows in the view where the condition in the WHERE clause in

CREATE VIEW statement is not satisfied.

 If we have used the WITH CHECK OPTION clause in the CREATE

VIEW statement, and if the UPDATE or INSERT clause does not

satisfy the conditions then they will return an error.

Example: In the below example we are creating a View SampleView from

StudentDetails Table with WITH CHECK OPTION clause.

CREATE VIEW SampleView AS

SELECT S_ID, NAME

FROM StudentDetails

WHERE NAME IS NOT NULL

WITH CHECK OPTION;

In this View if we now try to insert a new row with null value in the NAME

column then it will give an error because the view is created with the condition

for NAME column as NOT NULL. For example,though the View is updatable

but then also the below query for this View is not valid:

INSERT INTO SampleView(S_ID)

VALUES(6);

NOTE: The default value of NAME column is null.

Uses of a View: A good database should contain views due to the given

reasons:

i) Restricting data access – Views provide an additional level of table

security by restricting access to a predetermined set of rows and

columns of a table.

ii) Hiding data complexity – A view can hide the complexity that exists in

multiple tables join.

iii) Simplify commands for the user – Views allow the user to select

information from multiple tables without requiring the users to actually

know how to perform a join.

iv) Store complex queries – Views can be used to store complex queries.

v) Rename Columns – Views can also be used to rename the columns

without affecting the base tables provided the number of columns in

view must match the number of columns specified in select statement.

Thus, renaming helps to hide the names of the columns of the base

tables.

vi) Multiple view facility – Different views can be created on the same

table for different users.

10.7. SQL Indexes
An index is a schema object. It is used by the server to speed up the retrieval of

rows by using a pointer. It can reduce disk I/O(input/output) by using a rapid

path access method to locate data quickly.

An index helps to speed up select queries and where clauses, but it slows down

data input, with the update and the insert statements. Indexes can be created or

dropped with no effect on the data. In this article, we will see how

to create, delete, and use the INDEX in the database.

Creating an Index

Syntax

CREATE INDEX index

ON TABLE column;

where the index is the name given to that index TABLE is the name of the table

on which that index is created, and column is the name of that column for which

it is applied.

For Multiple Columns

Syntax:
CREATE INDEX index

ON TABLE (column1, column2,…..);

For Unique Indexes

Unique indexes are used for the maintenance of the integrity of the data present

in the table as well as for fast performance, it does not allow multiple values to

enter into the table.

Syntax:
CREATE UNIQUE INDEX index

ON TABLE column;

When Should Indexes be Created?

 A column contains a wide range of values.

 A column does not contain a large number of null values.

 One or more columns are frequently used together in a where clause

or a join condition.

When Should Indexes be Avoided?

 The table is small

 The columns are not often used as a condition in the query

 The column is updated frequently

Removing an Index

Remove an index from the data dictionary by using

the DROP INDEX command.

Syntax

DROP INDEX index;

To drop an index, you must be the owner of the index or have the DROP ANY

INDEX privilege.

Altering an Index

To modify an existing table’s index by rebuilding, or reorganizing the index.

ALTER INDEX IndexName

ON TableName REBUILD;

Confirming Indexes

You can check the different indexes present in a particular table given by the

user or the server itself and their uniqueness.

Syntax:

SELECT * from USER_INDEXES;

It will show you all the indexes present in the server, in which you can locate

your own tables too.

Renaming an Index

You can use the system-stored procedure sp_rename to rename any index in the

database.

Syntax:
EXEC sp_rename

index_name,

new_index_name,

N’INDEX’;

SQL Server Database

Syntax:
DROP INDEX TableName.IndexName;

Why SQL Indexing is Important?

Indexing is an important topic when considering advanced MySQL, although

most people know about its definition and usage they don’t understand when

and where to use it to change the efficiency of our queries or stored procedures

by a huge margin.

Here are some scenarios along with their explanation related to Indexing:

 When executing a query on a table having huge data

(> 100000 rows), MySQL performs a full table scan which takes

much time and the server usually gets timed out. To avoid this always

check the explain option for the query within MySQL which tells us

about the state of execution. It shows which columns are being used

and whether it will be a threat to huge data. On basis of the columns

repeated in a similar order in condition.

 The order of the index is of huge importance as we can use the

saitions, we can create an index for them in the same order to

maximize the speed of the query. me index in many scenarios. Using

only one index we can utilize it in more than one query which

different conditions. like for example, in a query, we make a join

with a table based on customer_id wards we also join another join

based on customer_id and order_date. Then we can simply create a

single index by the order of customer_id, order_date which would be

used in both cases. This also saves storage.

 We should also be careful to not make an index for each query as

creating indexes also take storage and when the amount of data is

huge it will create a problem. Therefore, it’s important to carefully

consider which columns to index based on the needs of your

application. In general, it’s a good practice to only create indexes on

columns that are frequently used in queries and to avoid creating

indexes on columns that are rarely used. It’s also a good idea to

periodically review the indexes in your database and remove any that

are no longer needed.

 Indexes can also improve performance when used in conjunction

with sorting and grouping operations. For example, if you frequently

sort or group data based on a particular column, creating an index on

that column can greatly improve performance. The index allows

MySQL to quickly access and sort or group the data, rather than

having to perform a full table scan.

 In some cases, MySQL may not use an index even if one exists. This

can happen if the query optimizer determines that a full table scan is

faster than using the index.

SQL Queries on Cluster and Non-Cluster Indexes

Indexing is a procedure that returns your requested data faster from the defined

table. Without indexing, the SQL server has to scan the whole table for your

data. By indexing, the SQL server will do the exact same thing you do when

searching for content in a book by checking the index page. In the same way, a

table’s index allows us to locate the exact data without scanning the whole table.

There are two types of indexing in SQL.

 Clustered index

 Non-clustered index

Clustered Index

A clustered index is the type of indexing that establishes a physical sorting order

of rows.

Suppose you have a table Student_info which contains ROLL_NO as a primary

key, then the clustered index which is self-created on that primary key will sort

the Student_info table as per ROLL_NO. A clustered index is like a Dictionary;

in the dictionary, the sorting order is alphabetical and there is no separate index

page.

Examples:
CREATE TABLE Student_info

(

ROLL_NO int(10) primary key,

NAME varchar(20),

DEPARTMENT varchar(20),

);

INSERT INTO Student_info values(1410110405, 'H Agarwal', 'CSE');

INSERT INTO Student_info values(1410110404, 'S Samadder', 'CSE');

INSERT INTO Student_info values(1410110403, 'MD Irfan', 'CSE');

SELECT * FROM Student_info;

Output:

ROLL_NO NAME DEPARTMENT

1410110403 MD Irfan CSE

1410110404 S Samadder CSE

1410110405 H Agarwal CSE

If we want to create a Clustered index on another column, first we have to

remove the primary key, and then we can remove the previous index. Note that

defining a column as a primary key makes that column the Clustered Index of

that table. To make any other column, the clustered index, first we have to

remove the previous one as follows below.

Syntax:

//Drop index
drop index table_name.index_name

//Create Clustered index index
create Clustered index IX_table_name_column_name

on table_name (column_name ASC)

Note: We can create only one clustered index in a table.

Non-Clustered Index
Non-Clustered index is an index structure separate from the data stored in a table

that reorders one or more selected columns. The non-clustered index is created

to improve the performance of frequently used queries not covered by a

clustered index. It’s like a textbook; the index page is created separately at the

beginning of that book.

Examples:
CREATE TABLE Student_info

(

ROLL_NO int(10),

NAME varchar(20),

DEPARTMENT varchar(20),

);

INSERT INTO Student_info values(1410110405, 'H Agarwal', 'CSE');

INSERT INTO Student_info values(1410110404, 'S Samadder', 'CSE');

INSERT INTO Student_info values(1410110403, 'MD Irfan', 'CSE');

SELECT * FROM Student_info;

Output:

ROLL_NO NAME DEPARTMENT

1410110405 H Agarwal CSE

1410110404 S Samadder CSE

1410110403 MD Irfan CSE

Note: We can create one or more Non_Clustered index in a table.

Syntax:

//Create Non-Clustered index
create NonClustered index IX_table_name_column_name

on table_name (column_name ASC)

Table: Student_info

ROLL_NO NAME DEPARTMENT

1410110405 H Agarwal CSE

1410110404 S Samadder CSE

1410110403 MD Irfan CSE

Input: create NonClustered index IX_Student_info_NAME on Student_info

(NAME ASC)

Output: Index

NAME ROW_ADDRESS

H Agarwal 1

MD Irfan 3

S Samadder 2

Clustered vs Non-Clustered Index

 In a table, there can be only one clustered index or one or more than

one non_clustered index.

 In Clustered index, there is no separate index storage but in Non-

Clustered index, there is separate index storage for the index.

 Clustered index offers faster data access, on the other hand, the Non-

clustered index is slower.

Clustered and non-clustered indexes in SQL Server can provide significant

performance benefits when querying large tables. Here are some examples of

SQL queries and the advantages of using clustered and non-clustered indexes:

SELECT Queries with WHERE Clause

 Clustered Index: When a SELECT query with a WHERE clause is

executed on a table with a clustered index, SQL Server can use the

clustered index to quickly locate the rows that match the WHERE

condition. This can be very efficient for large tables, as it allows the

database engine to minimize the number of disk reads required to

retrieve the desired data.

 Non-Clustered Index: If there is no clustered index on the table or

the WHERE clause references columns that are not part of the

clustered index, SQL Server can use a non-clustered index to find the

matching rows. However, this may require additional disk reads if

the non-clustered index does not include all the columns required by

the query.

UPDATE Queries

 Clustered Index: When an UPDATE query is executed on a table

with a clustered index, SQL Server can use the index to quickly

locate and modify the rows that match the query criteria. This can be

very efficient for large tables, as it allows the database engine to

minimize the number of disk writes required to modify the data.

 Non-Clustered Index: If the UPDATE query references columns

that are not part of the clustered index, SQL Server may need to

perform additional disk writes to update the non-clustered index as

well.

JOIN Queries

 Clustered Index: When performing a JOIN operation between two

large tables, SQL Server can use the clustered index on the join

column(s) to efficiently match the rows from both tables. This can

significantly reduce the time required to complete the query.

 Non-Clustered Index: If the JOIN operation references columns that

are not part of the clustered index, SQL Server can use a non-

clustered index to find the matching rows. However, this may require

additional disk reads and slow down the query.

 In general, the advantage of using clustered indexes is that they can

provide very efficient access to large tables, particularly when

querying on the index columns. The advantage of using non-

clustered indexes is that they can provide efficient access to columns

that are not part of the clustered index, or when querying multiple

tables with JOIN operations. However, non-clustered indexes can

also require additional disk reads or writes, which can slow down

queries. It is important to carefully design and tune indexes based on

the specific query patterns and data access patterns of your

application.

Advantages of Indexing

 Improved Query Performance: Indexing enables faster data

retrieval from the database. The database may rapidly discover rows

that match a specific value or collection of values by generating an

index on a column, minimizing the amount of time it takes to

perform a query.

 Efficient Data Access: Indexing can enhance data access efficiency

by lowering the amount of disk I/O required to retrieve data. The

database can maintain the data pages for frequently visited columns

in memory by generating an index on those columns, decreasing the

requirement to read from disk.

 Optimized Data Sorting: Indexing can also improve the

performance of sorting operations. By creating an index on the

columns used for sorting, the database can avoid sorting the entire

table and instead sort only the relevant rows.

 Consistent Data Performance: Indexing can assist ensure that the

database performs consistently even as the amount of data in the

database rises. Without indexing, queries may take longer to run as

the number of rows in the table grows, while indexing maintains a

roughly consistent speed.

 By ensuring that only unique values are inserted into columns that

have been indexed as unique, indexing can also be utilized to ensure

the integrity of data. This avoids storing duplicate data in the

database, which might lead to issues when performing queries or

reports.

Disadvantages of Indexing

 Indexing necessitates more storage space to hold the index data

structure, which might increase the total size of the database.

 Increased database maintenance overhead: Indexes must be

maintained as data is added, destroyed, or modified in the table,

which might raise database maintenance overhead.

 Indexing can reduce insert and update performance since the index

data structure must be updated each time data is modified.

 Choosing an index can be difficult: It can be challenging to choose

the right indexes for a specific query or application and may call for

a detailed examination of the data and access patterns.

Features of Indexing

 The development of data structures, such as B-trees or hash tables,

that provide quick access to certain data items is known as indexing.

The data structures themselves are built on the values of the indexed

columns, which are utilized to quickly find the data objects.

 The most important columns for indexing columns are selected based

on how frequently they are used and the sorts of queries they are

subjected to. The cardinality, selectivity, and uniqueness of the

indexing columns can be taken into account.

 There are several different index types used by databases, including

primary, secondary, clustered, and non-clustered indexes. Based on

the needs of the database system, each form of index offers benefits

and drawbacks.

 For the database system to function at its best, periodic index

maintenance is required. According to changes in the data and usage

patterns, maintenance work involves building, updating, and

removing indexes.

 Database query optimization involves indexing, which is essential.

The query optimizer utilizes the indexes to choose the best execution

strategy for a particular query based on the cost of accessing the data

and the selectivity of the indexing columns.

 Databases make use of a range of indexing strategies, including

covering indexes, index-only scans, and partial indexes. These

techniques maximize the utilization of indexes for particular types of

queries and data access.

 When non-contiguous data blocks are stored in an index, it can result

in index fragmentation, which makes the index less effective.

Regular index maintenance, such as defragmentation and

reorganization, can decrease fragmentation.

Transaction and Concurrency Control

11. Concurrency Control Overview

An index is a schema object. It is used by the server to speed up the retrieval of

rows by using a pointer. It can reduce disk I/O(input/output) by using a rapid

path access method to locate data quickly.

An index helps to speed up select queries and where clauses, but it slows down

data input, with the update and the insert statements. Indexes can be created or

dropped with no effect on the data. In this article, we will see how

to create, delete, and use the INDEX in the database.

Creating an Index

Syntax

CREATE INDEX index

ON TABLE column;

where the index is the name given to that index TABLE is the name of the table

on which that index is created, and column is the name of that column for which

it is applied.

For Multiple Columns

Syntax:
CREATE INDEX index

ON TABLE (column1, column2,…..);

For Unique Indexes

Unique indexes are used for the maintenance of the integrity of the data present

in the table as well as for fast performance, it does not allow multiple values to

enter the table.

Syntax:
CREATE UNIQUE INDEX index

ON TABLE column

When Should Indexes be Created?

 A column contains a wide range of values.

 A column does not contain a large number of null values.

 One or more columns are frequently used together in a where clause

or a join condition.

When Should Indexes be Avoided?

 The table is small

 The columns are not often used as a condition in the query

 The column is updated frequently

Removing an Index
Remove an index from the data dictionary by using

the DROP INDEX command.

Syntax

DROP INDEX index;

To drop an index, you must be the owner of the index or have the DROP ANY

INDEX privilege.

Altering an Index

To modify an existing table’s index by rebuilding or reorganizing the index.

ALTER INDEX IndexName

ON TableName REBUILD;

Confirming Indexes

You can check the different indexes present in a particular table given by the

user or the server itself and their uniqueness.

Syntax:

SELECT * from USER_INDEXES;

It will show you all the indexes present in the server, in which you can locate

your own tables too.

Renaming an Index

You can use the system-stored procedure sp_rename to rename any index in the

database.

Syntax:
EXEC sp_rename

index_name,

new_index_name,

N’INDEX’;

SQL Server Database

Syntax:
DROP INDEX TableName.IndexName;

Why SQL Indexing is Important?

Indexing is an important topic when considering advanced MySQL, although

most people know about its definition and usage they don’t understand when

and where to use it to change the efficiency of our queries or stored procedures

by a huge margin.

Here are some scenarios along with their explanation related to Indexing:

 When executing a query on a table having huge data

(> 100000 rows), MySQL performs a full table scan which

takes much time and the server usually gets timed out. To avoid

this always check the explain option for the query within

MySQL which tells us about the state of execution. It shows

which columns are being used and whether it will be a threat to

huge data. On basis of the columns repeated in a similar order in

condition.

 The order of the index is of huge importance as we can use the

saitions, we can create an index for them in the same order to

maximize the speed of the query. me index in many scenarios.

Using only one index we can utilize it in more than one query

which different conditions. like for example, in a query, we

make a join with a table based on customer_id wards we also

join another join based on customer_id and order_date. Then we

can simply create a single index by the order of customer_id,

order_date which would be used in both cases. This also saves

storage.

 We should also be careful to not make an index for each query

as creating indexes also take storage and when the amount of

data is huge it will create a problem. Therefore, it’s important to

carefully consider which columns to index based on the needs of

your application. In general, it’s a good practice to only create

indexes on columns that are frequently used in queries and to

avoid creating indexes on columns that are rarely used. It’s also

a good idea to periodically review the indexes in your database

and remove any that are no longer needed.

 Indexes can also improve performance when used in

conjunction with sorting and grouping operations. For example,

if you frequently sort or group data based on a particular

column, creating an index on that column can greatly improve

performance. The index allows MySQL to quickly access and

sort or group the data, rather than having to perform a full table

scan.

 In some cases, MySQL may not use an index even if one exists.

This can happen if the query optimizer determines that a full

table scan is faster than using the index.

Concurrency Control Problems

There are several problems that arise when numerous transactions are executed

simultaneously in a random manner. The database transaction consist of two

major operations “Read” and “Write”. It is very important to manage these

operations in the concurrent execution of the transactions in order to maintain

the consistency of the data.

Dirty Read Problem (Write-Read conflict)

Dirty read problem occurs when one transaction updates an item but due to some

unconditional events that transaction fails but before the transaction performs

rollback, some other transaction reads the updated value. Thus creates an

inconsistency in the database. Dirty read problem comes under the scenario of

Write-Read conflict between the transactions in the database.

 The lost update problem can be illustrated with the below scenario

between two transactions T1 and T2.

 Transaction T1 modifies a database record without committing the

changes.

 T2 reads the uncommitted data changed by T1

 T1 performs rollback

 T2 has already read the uncommitted data of T1 which is no longer

valid, thus creating inconsistency in the database.

Lost Update Problem

Lost update problem occurs when two or more transactions modify the same

data, resulting in the update being overwritten or lost by another transaction.

The lost update problem can be illustrated with the below scenario between two

transactions T1 and T2.

 T1 reads the value of an item from the database.

 T2 starts and reads the same database item.

 T1 updates the value of that data and performs a commit.

 T2 updates the same data item based on its initial read and performs

commit.

 This results in the modification of T1 gets lost by the T2’s writes which

causes a lost update problem in the database.

Concurrency Control Protocols

Concurrency control protocols are the set of rules which are maintained to solve

the concurrency control problems in the database. It ensures that the concurrent

transactions can execute properly while maintaining the database consistency.

The concurrent execution of a transaction is provided with atomicity,

consistency, isolation, durability, and serializability via the concurrency control

protocols.

 Locked based concurrency control protocol.

 Timestamp based concurrency control protocol.

Locked based Protocol.

In locked based protocol, each transaction needs to acquire locks before they

start accessing or modifying the data items. There are two types of locks used

in databases.

 Shared Lock: Shared lock is also known as read lock which allows

multiple transactions to read the data simultaneously. The transaction

which is holding a shared lock can only read the data item, but it cannot

modify the data item.

 Exclusive Lock: Exclusive lock is also known as the write lock.

Exclusive lock allows a transaction to update a data item. Only one

transaction can hold the exclusive lock on a data item at a time. While

a transaction is holding an exclusive lock on a data item, no other

transaction is allowed to acquire a shared/exclusive lock on the same

data item.

There are two kind of lock based protocol mostly used in database:

 Two Phase Locking Protocol: Two phase locking is a widely used

technique which ensures strict ordering of lock acquisition and

release. Two phase locking protocol works in two phases.

 Growing Phase: In this phase, the transaction starts acquiring locks

before performing any modification on the data items. Once a

transaction acquires a lock, that lock can not be released until the

transaction reaches the end of the execution.

 Shrinking Phase : In this phase, the transaction releases all the

acquired locks once it performs all the modifications on the data

item. Once the transaction starts releasing the locks, it can not

acquire any locks further.

 Strict Two Phase Locking Protocol : It is almost similar to the two

phase locking protocol the only difference is that in two phase

locking the transaction can release its locks before it commits, but in

case of strict two phase locking the transactions are only allowed to

release the locks only when they performs commits.

Timestamp based Protocol

 In this protocol each transaction has a timestamp attached to it.

Timestamp is nothing but the time in which a transaction enters into

the system.

 The conflicting pairs of operations can be resolved by the timestamp

ordering protocol through the utilization of the timestamp values of

the transactions. Therefore, guaranteeing that the transactions take

place in the correct order.

Advantages of Concurrency

In general, concurrency means, that more than one transaction can work on a

system. The advantages of a concurrent system are:

 Waiting Time: It means if a process is in a ready state but still the

process does not get the system to get execute is called waiting time.

So, concurrency leads to less waiting time.

 Response Time: The time wasted in getting the response from the

cpu for the first time, is called response time. So, concurrency leads

to less Response Time.

 Resource Utilization: The amount of Resource utilization in a

particular system is called Resource Utilization. Multiple

transactions can run parallel in a system. So, concurrency leads to

more Resource Utilization.

 Efficiency: The amount of output produced in comparison to given

input is called efficiency. So, Concurrency leads to more Efficiency.

Disadvantages of Concurrency

 Overhead: Implementing concurrency control requires additional

overhead, such as acquiring and releasing locks on database objects.

This overhead can lead to slower performance and increased resource

consumption, particularly in systems with high levels of concurrency.

 Deadlocks: Deadlocks can occur when two or more transactions are

waiting for each other to release resources, causing a circular

dependency that can prevent any of the transactions from completing.

Deadlocks can be difficult to detect and resolve, and can result in

reduced throughput and increased latency.

 Reduced concurrency: Concurrency control can limit the number of

users or applications that can access the database simultaneously.

This can lead to reduced concurrency and slower performance in

systems with high levels of concurrency.

 Complexity: Implementing concurrency control can be complex,

particularly in distributed systems or in systems with complex

transactional logic. This complexity can lead to increased

development and maintenance costs.

 Inconsistency: In some cases, concurrency control can lead to

inconsistencies in the database. For example, a transaction that is

rolled back may leave the database in an inconsistent state, or a long-

running transaction may cause other transactions to wait for extended

periods, leading to data staleness and reduced accuracy.

12. ACID Properties in DBMS

A transaction is a single logical unit of work that accesses and possibly

modifies the contents of a database. Transactions access data using read and

write operations.

To maintain consistency in a database, before and after the transaction, certain

properties are followed. These are called ACID properties.

 Figure 31: ACID Property

Atomicity:

By this, we mean that either the entire transaction takes place at once or does

not happen at all. There is no midway i.e. transactions do not occur partially.

Each transaction is considered as one unit and either runs to completion or is

not executed at all. It involves the following two operations.

—Abort: If a transaction aborts, changes made to the database are not visible.

—Commit: If a transaction commits, changes made are visible.

Atomicity is also known as the ‘All or nothing rule’.

Consider the following transaction T consisting of T1 and T2: Transfer of 100

from account X to account Y.

If the transaction fails after completion of T1 but before completion of T2.(

say, after write(X) but before write(Y)), then the amount has been deducted

from X but not added to Y. This results in an inconsistent database state.

Therefore, the transaction must be executed in its entirety in order to ensure

the correctness of the database state.

Consistency:

This means that integrity constraints must be maintained so that the database is

consistent before and after the transaction. It refers to the correctness of a

database. Referring to the example above,

The total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs = 400 + 300 = 700.

Therefore, the database is consistent. Inconsistency occurs in

case T1 completes but T2 fails. As a result, T is incomplete.

Isolation:

This property ensures that multiple transactions can occur concurrently

without leading to the inconsistency of the database state. Transactions occur

independently without interference. Changes occurring in a particular

transaction will not be visible to any other transaction until that particular

change in that transaction is written to memory or has been committed. This

property ensures that the execution of transactions concurrently will result in a

state that is equivalent to a state achieved these were executed serially in some

order.

Let X= 500, Y = 500.

Consider two transactions T and T”.

Suppose T has been executed till Read (Y) and then T’’ starts. As a result,

interleaving of operations takes place due to which T’’ reads the correct value

of X but the incorrect value of Y and sum computed by

T’’: (X+Y = 50, 000+500=50, 500)

is thus not consistent with the sum at end of the transaction:

T: (X+Y = 50, 000 + 450 = 50, 450).

This results in database inconsistency, due to a loss of 50 units. Hence,

transactions must take place in isolation and changes should be visible only

after they have been made to the main memory.

Durability:

This property ensures that once the transaction has completed execution, the

updates and modifications to the database are stored in and written to disk and

they persist even if a system failure occurs. These updates now become

permanent and are stored in non-volatile memory. The effects of the transaction,

thus, are never lost.

Some important points:

Property Responsibility for maintaining properties

Atomicity Transaction Manager

Consistency Application programmer

Isolation Concurrency Control Manager

Durability Recovery Manager

The ACID properties, in totality, provide a mechanism to ensure the correctness

and consistency of a database in a way such that each transaction is a group of

operations that acts as a single unit, produces consistent results, acts in isolation

from other operations, and updates that it makes are durably stored.

ACID properties are the four key characteristics that define the reliability and

consistency of a transaction in a Database Management System (DBMS). The

acronym ACID stands for Atomicity, Consistency, Isolation, and Durability.

Here is a brief description of each of these properties:

 Atomicity: Atomicity ensures that a transaction is treated as a single,

indivisible unit of work. Either all the operations within the transaction

are completed successfully, or none of them are. If any part of the

transaction fails, the entire transaction is rolled back to its original

state, ensuring data consistency and integrity.

 Consistency: Consistency ensures that a transaction takes the database

from one consistent state to another consistent state. The database is

in a consistent state both before and after the transaction is executed.

Constraints, such as unique keys and foreign keys, must be maintained

to ensure data consistency.

 Isolation: Isolation ensures that multiple transactions can execute

concurrently without interfering with each other. Each transaction

must be isolated from other transactions until it is completed. This

isolation prevents dirty reads, non-repeatable reads, and phantom

reads.

 Durability: Durability ensures that once a transaction is committed,

its changes are permanent and will survive any subsequent system

failures. The transaction’s changes are saved to the database

permanently, and even if the system crashes, the changes remain intact

and can be recovered.

Overall, ACID properties provide a framework for ensuring data consistency,

integrity, and reliability in DBMS. They ensure that transactions are executed

in a reliable and consistent manner, even in the presence of system failures,

network issues, or other problems. These properties make DBMS a reliable

and efficient tool for managing data in modern organizations.

Advantages of ACID Properties in DBMS:

 Data Consistency: ACID properties ensure that the data remains

consistent and accurate after any transaction execution.

 Data Integrity: ACID properties maintain the integrity of the data by

ensuring that any changes to the database are permanent and cannot be

lost.

 Concurrency Control: ACID properties help to manage multiple

transactions occurring concurrently by preventing interference

between them.

 Recovery: ACID properties ensure that in case of any failure or crash,

the system can recover the data up to the point of failure or crash.

Disadvantages of ACID Properties in DBMS:

 Performance: The ACID properties can cause a performance overhead

in the system, as they require additional processing to ensure data

consistency and integrity.

 Scalability: The ACID properties may cause scalability issues in large

distributed systems where multiple transactions occur concurrently.

 Complexity: Implementing the ACID properties can increase the

complexity of the system and require significant expertise and

resources.

Overall, the advantages of ACID properties in DBMS outweigh the

disadvantages. They provide a reliable and consistent approach to data.

 management, ensuring data integrity, accuracy, and reliability.

However, in some cases, the overhead of implementing ACID

properties can cause performance and scalability issues. Therefore, it’s

important to balance the benefits of ACID properties against the

specific needs and requirements of the system.

13. Database Recovery Techniques
Database Systems like any other computer system, are subject to failures but the

data stored in them must be available as and when required. When a database

fails it must possess the facilities for fast recovery. It must also have atomicity

i.e. either transactions are completed successfully and committed (the effect is

recorded permanently in the database) or the transaction should have no effect

on the database.

Types of Recovery Techniques in DBMS

Database recovery techniques are used in database management systems

(DBMS) to restore a database to a consistent state after a failure or error has

occurred. The main goal of recovery techniques is to ensure data integrity and

consistency and prevent data loss.

There are mainly two types of recovery techniques used in DBMS.

 Rollback/Undo Recovery Technique

 Commit/Redo Recovery Technique

Rollback/Undo Recovery Technique

The rollback/undo recovery technique is based on the principle of backing out

or undoing the effects of a transaction that has not been completed successfully

due to a system failure or error. This technique is accomplished by undoing the

changes made by the transaction using the log records stored in the transaction

log. The transaction log contains a record of all the transactions that have been

performed on the database. The system uses the log records to undo the changes

made by the failed transaction and restore the database to its previous state.

Commit/Redo Recovery Technique

The commit/redo recovery technique is based on the principle of reapplying the

changes made by a transaction that has been completed successfully to the

database. This technique is accomplished by using the log records stored in the

transaction log to redo the changes made by the transaction that was in progress

at the time of the failure or error. The system uses the log records to reapply the

changes made by the transaction and restore the database to its most recent

consistent state.

In addition to these two techniques, there is also a third technique

called checkpoint recovery.

Checkpoint Recovery is a technique used to reduce the recovery time by

periodically saving the state of the database in a checkpoint file. In the event of

a failure, the system can use the checkpoint file to restore the database to the

most recent consistent state before the failure occurred, rather than going

through the entire log to recover the database.

Overall, recovery techniques are essential to ensure data consistency and

availability in Database Management System, and each technique has its own

advantages and limitations that must be considered in the design of a recovery

system.

Database Systems

There are both automatic and non-automatic ways for both, backing up data and

recovery from any failure situations. The techniques used to recover lost data

due to system crashes, transaction errors, viruses, catastrophic failure, incorrect

command execution, etc. are database recovery techniques. So to prevent data

loss recovery techniques based on deferred updates and immediate updates or

backing up data can be used. Recovery techniques are heavily dependent upon

the existence of a special file known as a system log. It contains information

about the start and end of each transaction and any updates which occur during

the transaction. The log keeps track of all transaction operations that affect the

values of database items. This information is needed to recover from transaction

failure.

 The log is kept on disk start_transaction(T): This log entry records

that transaction T starts the execution.

 read_item(T, X): This log entry records that transaction T reads the

value of database item X.

 write_item(T, X, old_value, new_value): This log entry records that

transaction T changes the value of the database item X from old_value

to new_value. The old value is sometimes known as a before an image

of X, and the new value is known as an afterimage of X.

 commit(T): This log entry records that transaction T has completed

all accesses to the database successfully and its effect can be

committed (recorded permanently) to the database.

 abort(T): This records that transaction T has been aborted.

 checkpoint: A checkpoint is a mechanism where all the previous logs

are removed from the system and stored permanently in a storage disk.

Checkpoint declares a point before which the DBMS was in a

consistent state, and all the transactions were committed.

A transaction T reaches its commit point when all its operations that access the

database have been executed successfully i.e. the transaction has reached the

point at which it will not abort (terminate without completing). Once

committed, the transaction is permanently recorded in the database.

Commitment always involves writing a commit entry to the log and writing the

log to disk. At the time of a system crash, the item is searched back in the log

for all transactions T that have written a start_transaction(T) entry into the log

but have not written a commit(T) entry yet; these transactions may have to be

rolled back to undo their effect on the database during the recovery process.

 Undoing: If a transaction crashes, then the recovery manager may

undo transactions i.e. reverse the operations of a transaction. This

involves examining a transaction for the log entry write_item(T, x,

old_value, new_value) and setting the value of item x in the database

to old-value. There are two major techniques for recovery from non-

catastrophic transaction failures: deferred updates and immediate

updates.

 Deferred Update: This technique does not physically update the

database on disk until a transaction has reached its commit point.

Before reaching commit, all transaction updates are recorded in the

local transaction workspace. If a transaction fails before reaching its

commit point, it will not have changed the database in any way so

UNDO is not needed. It may be necessary to REDO the effect of the

operations that are recorded in the local transaction workspace,

because their effect may not yet have been written in the database.

Hence, a deferred update is also known as the No-undo/redo

algorithm.
 Immediate Update: In the immediate update, the database may be

updated by some operations of a transaction before the transaction

reaches its commit point. However, these operations are recorded in a

log on disk before they are applied to the database, making recovery

still possible. If a transaction fails to reach its commit point, the effect

of its operation must be undone i.e., the transaction must be rolled back

hence we require both undo and redo. This technique is known

as undo/redo algorithm.

 Caching/Buffering: In these one or more disk pages that include data

items to be updated are cached into main memory buffers and then

updated in memory before being written back to disk. A collection of

in-memory buffers called the DBMS cache is kept under the control of

DBMS for holding these buffers. A directory is used to keep track of

which database items are in the buffer. A dirty bit is associated with

each buffer, which is 0 if the buffer is not modified else 1 if modified.

 Shadow Paging: It provides atomicity and durability. A directory with

n entries is constructed, where the ith entry points to the ith database

page on the link. When a transaction began executing the current

directory is copied into a shadow directory. When a page is to be

modified, a shadow page is allocated in which changes are made and

when it is ready to become durable, all pages that refer to the original

are updated to refer new replacement page.

 Backward Recovery: The term “Rollback” and “UNDO” can also

refer to backward recovery. When a backup of the data is not available

and previous modifications need to be undone, this technique can be

helpful. With the backward recovery method, unused modifications

are removed, and the database is returned to its prior condition. All

adjustments made during the previous traction are reversed during the

backward recovery. In other words, it reprocesses valid transactions

and undoes the erroneous database updates.

 Forward Recovery: “Roll forward “and “REDO” refers to

forwarding recovery. When a database needs to be updated with all

changes verified, this forward recovery technique is helpful. Some

failed transactions in this database are applied to the database to roll

those modifications forward. In other words, the database is restored

using preserved data and valid transactions counted by their past saves.

Backup Techniques

There are different types of Backup Techniques. Some of them are listed below.

 Full database Backup: In this full database including data and

database, Meta information needed to restore the whole database,

including full-text catalogs are backed up in a predefined time series.

 Differential Backup: It stores only the data changes that have

occurred since the last full database backup. When some data has

changed many times since the last full database backup, a differential

backup stores the most recent version of the changed data. For this

first, we need to restore a full database backup.

 Transaction Log Backup: In this, all events that have occurred in the

database, like a record of every single statement executed is backed

up. It is the backup of transaction log entries and contains all

transactions that had happened to the database. Through this, the

database can be recovered to a specific point in time. It is even possible

to perform a backup from a transaction log if the data files are

destroyed and not even a single committed transaction is lost.

Log based recovery

The atomicity property of DBMS states that either all the operations of

transactions must be performed or none. The modifications done by an aborted

transaction should not be visible to the database and the modifications done by

the committed transaction should be visible. To achieve our goal of atomicity,

the user must first output stable storage information describing the

modifications, without modifying the database itself. This information can help

us ensure that all modifications performed by committed transactions are

reflected in the database. This information can also help us ensure that no

modifications made by an aborted transaction persist in the database.

 Figure 32: Log Based Recovery

Log and log records

The log is a sequence of log records, recording all the updated activities in the

database. In stable storage, logs for each transaction are maintained. Any

operation which is performed on the database is recorded on the log. Prior to

performing any modification to the database, an updated log record is created to

reflect that modification. An update log record represented as: <Ti, Xj, V1, V2>

has these fields:

i) Transaction identifier: Unique Identifier of the transaction that

performed the write operation.

ii) Data item: Unique identifier of the data item written.

iii) Old value: Value of data item prior to write.

iv) New value: Value of data item after write operation.

Other types of log records are:

i) <Ti start>: It contains information about when a transaction Ti starts.

ii) <Ti commit>: It contains information about when a transaction Ti

commits.

iii) <Ti abort>: It contains information about when a transaction Ti

aborts.

Undo and Redo Operations

Because all database modifications must be preceded by the creation of a log

record, the system has available both the old value prior to the modification of

the data item and new value that is to be written for data item. This allows

system to perform redo and undo operations as appropriate:

i) Undo: using a log record sets the data item specified in log record to

old value.

ii) Redo: using a log record sets the data item specified in log record to

new value.

The database can be modified using two approaches –

i) Deferred Modification Technique: If the transaction does not

modify the database until it has partially committed, it is said to use

deferred modification technique.

ii) Immediate Modification Technique: If database modification occur

while the transaction is still active, it is said to use immediate

modification technique.

Recovery using Log records

After a system crash has occurred, the system consults the log to determine

which transactions need to be redone and which need to be undone.

i) Transaction Ti needs to be undone if the log contains the record <Ti

start> but does not contain either the record <Ti commit> or the record

<Ti abort>.

ii) Transaction Ti needs to be redone if log contains record <Ti start> and

either the record <Ti commit> or the record <Ti abort>.

Advantages of Log based Recovery

 Durability: In the event of a breakdown, the log file offers a

dependable and long-lasting method of recovering data. It guarantees

that in the event of a system crash, no committed transaction is lost.

 Faster Recovery: Since log-based recovery recovers databases by

replaying committed transactions from the log file, it is typically faster

than alternative recovery methods.

 Incremental Backup: Backups can be made in increments using log-

based recovery. Just the changes made since the last backup are kept

in the log file, rather than creating a complete backup of the database

each time.

 Lowers the Risk of Data Corruption: By making sure that all

transactions are correctly committed or canceled before they are

written to the database, log-based recovery lowers the risk of data

corruption.

Disadvantages of Log based Recovery

 Additional overhead: Maintaining the log file incurs an additional

overhead on the database system, which can reduce the performance

of the system.

 Complexity: Log-based recovery is a complex process that requires

careful management and administration. If not managed properly, it

can lead to data inconsistencies or loss.

 Storage space: The log file can consume a significant amount of

storage space, especially in a database with many transactions.

 Time-Consuming: The process of replaying the transactions from the

log file can be time-consuming, especially if there are many

transactions to recover.

Why Recovery is Required in Database?

Here are some of the reasons why recovery is needed in DBMS.

 System failures: The DBMS can experience various types of failures,

such as hardware failures, software bugs, or power outages, which can

lead to data corruption or loss. Recovery mechanisms can help restore

the database to a consistent state after such failures.

 Transaction failures: Transactions can fail due to various reasons,

such as network failures, deadlock, or errors in application logic.

Recovery mechanisms can help roll back or undo the effects of such

failed transactions to ensure data consistency.

 Human errors: Human errors such as accidental deletion, updating or

overwriting data, or incorrect data entry can cause data

inconsistencies. Recovery mechanisms can help recover the lost or

corrupted data and restore it to the correct state.

 Security breaches: Security breaches such as hacking or

unauthorized access can compromise the integrity of data. Recovery

mechanisms can help restore the database to a consistent state and

prevent further data breaches.

 Hardware upgrades: When a DBMS is upgraded to a new hardware

system, the migration process can potentially lead to data loss or

corruption. Recovery mechanisms can help ensure that the data is

successfully migrated and the integrity of the database is maintained.

 Natural disasters: Natural disasters such as earthquakes, floods, or

fires can damage the hardware on which the database is stored, leading

to data loss. Recovery mechanisms can help restore the data from

backups and minimize the impact of the disaster.

 Compliance regulations: Many industries have regulations that

require businesses to retain data for a certain period. Recovery

mechanisms can help ensure that the data is available for compliance

purposes even if it was deleted or lost accidentally.

 Data corruption: Data corruption can occur due to various reasons

such as hardware failure, software bugs, or viruses. Recovery

mechanisms can help restore the database to a consistent state and

recover any lost or corrupted data.

14. Transaction and Isolation Levels

As we know, to maintain consistency in a database, it follows ACID properties.

Among these four properties (Atomicity, Consistency, Isolation, and Durability)

Isolation determines how transaction integrity is visible to other users and

systems. It means that a transaction should take place in a system in such a way

that it is the only transaction that is accessing the resources in a database

system.

Isolation levels define the degree to which a transaction must be isolated from

the data modifications made by any other transaction in the database system. A

transaction isolation level is defined by the following phenomena:

 Dirty Read – A Dirty read is a situation when a transaction reads data

that has not yet been committed. For example, Let’s say transaction 1

updates a row and leaves it uncommitted, meanwhile, Transaction 2

reads the updated row. If transaction 1 rolls back the change,

transaction 2 will have read data that is considered never to have

existed.

 Non-Repeatable read – Non-Repeatable read occurs when a

transaction reads the same row twice and gets a different value each

time. For example, suppose transaction T1 reads data. Due to

concurrency, another transaction T2 updates the same data and

commit, now if transaction T1 rereads the same data, it will retrieve a

different value.

 Phantom Read – Phantom Read occurs when two same queries are

executed, but the rows retrieved by the two, are different. For example,

suppose transaction T1 retrieves a set of rows that satisfy some search

criteria. Now, Transaction T2 generates some new rows that match the

search criteria for transaction T1. If transaction T1 re-executes the

statement that reads the rows, it gets a different set of rows this time.

Based on these phenomena, The SQL standard defines four isolation

levels:

 Read Uncommitted – Read Uncommitted is the lowest isolation level.

In this level, one transaction may read not yet committed changes made

by other transactions, thereby allowing dirty reads. At this level,

transactions are not isolated from each other.

 Read Committed – This isolation level guarantees that any data read is

committed at the moment it is read. Thus it does not allow dirty read. The

transaction holds a read or write lock on the current row, and thus prevents

other transactions from reading, updating, or deleting it.

 Repeatable Read – This is the most restrictive isolation level. The

transaction holds read locks on all rows it references and writes locks on

referenced rows for update and delete actions. Since other transactions

cannot read, update or delete these rows, consequently it avoids non-

repeatable read.

 Serializable – This is the highest isolation level. A serializable execution

is guaranteed to be serializable. Serializable execution is defined to be an

execution of operations in which concurrently executing transactions

appears to be serially executing.

The Table given below clearly depicts the relationship between isolation levels,

read phenomena, and locks:

Anomaly Serializable is not the same as Serializable. That is, it is necessary, but

not sufficient that a Serializable schedule should be free of all three phenomena

types.

Transaction isolation levels are used in database management systems (DBMS)

to control the level of interaction between concurrent transactions.

The four standard isolation levels are:

 Read Uncommitted: This is the lowest level of isolation where a

transaction can see uncommitted changes made by other transactions.

This can result in dirty reads, non-repeatable reads, and phantom reads.

 Read Committed: In this isolation level, a transaction can only see

changes made by other committed transactions. This eliminates dirty

reads but can still result in non-repeatable reads and phantom reads.

 Repeatable Read: This isolation level guarantees that a transaction will

see the same data throughout its duration, even if other transactions

commit changes to the data. However, phantom reads are still possible.

 Serializable: This is the highest isolation level where a transaction is

executed as if it were the only transaction in the system. All transactions

must be executed sequentially, which ensures that there are no dirty reads,

non-repeatable reads, or phantom reads.

The choice of isolation level depends on the specific requirements of the

application. Higher isolation levels offer stronger data consistency but can also

result in longer lock times and increased contention, leading to decreased

concurrency and performance. Lower isolation levels provide more concurrency

but can result in data inconsistencies.

In addition to the standard isolation levels, some DBMS may also support

additional custom isolation levels or features such as snapshot isolation and

multi-version concurrency control (MVCC) that provide alternative solutions to

the problems addressed by the standard isolation levels.

Advantages of Transaction Isolation Levels:

Improved concurrency: Transaction isolation levels can improve concurrency

by allowing multiple transactions to run concurrently without interfering with

each other.

Control over data consistency: Isolation levels provide control over the level

of data consistency required by a particular application.

Reduced data anomalies: The use of isolation levels can reduce data anomalies

such as dirty reads, non-repeatable reads, and phantom reads.

Flexibility: The use of different isolation levels provides flexibility in designing

applications that require different levels of data consistency.

Disadvantages of Transaction Isolation Levels:

 Increased overhead: The use of isolation levels can increase overhead

because the database management system must perform additional checks

and acquire more locks.

 Decreased concurrency: Some isolation levels, such as Serializable, can

decrease concurrency by requiring transactions to acquire more locks,

which can lead to blocking.

 Limited support: Not all database management systems support all

isolation levels, which can limit the portability of applications across

different systems.

 Complexity: The use of different isolation levels can add complexity to

the design of database applications, making them more difficult to

implement and maintain.

14.1. Types of Schedules in DBMS

Schedule, as the name suggests, is a process of lining the transactions and

executing them one by one. When there are multiple transactions that are

running in a concurrent manner and the order of operation is needed to be set so

that the operations do not overlap each other, Scheduling is brought into play

and the transactions are timed accordingly. The basics of Transactions and

Schedules is discussed in Concurrency Control (Introduction), and Transaction

Isolation Levels in DBMS articles.

Here we will discuss various types of schedules.

 Figure 33: Types of Schedule in DBMS

1) Serial Schedules:
Schedules in which the transactions are executed non-interleaved, i.e., a serial

schedule is one in which no transaction starts until a running transaction has

ended are called serial schedules.

Example:

Consider the following schedule involving two transactions T1 and T2.

T1 T2

R(A)

W(A)

R(B)

 W(B)

 R(A)

 R(B)

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190813142109/Types-of-schedules-in-DBMS-1.jpg

where R(A) denotes that a read operation is performed on some data item ‘A’

This is a serial schedule since the transactions perform serially in the order

T1 —> T2

2) Non-Serial Schedule:
This is a type of Scheduling where the operations of multiple transactions are

interleaved. This might lead to a rise in the concurrency problem. The

transactions are executed in a non-serial manner, keeping the end result correct

and same as the serial schedule. Unlike the serial schedule where one

transaction must wait for another to complete all its operation, in the non-serial

schedule, the other transaction proceeds without waiting for the previous

transaction to complete. This sort of schedule does not provide any benefit of

the concurrent transaction. It can be of two types namely, Serializable and

Non-Serializable Schedule.

The Non-Serial Schedule can be divided further into Serializable and Non-

Serializable.

3) Serializable:
This is used to maintain the consistency of the database. It is mainly used in

the non-serial scheduling to verify whether the scheduling will lead to any

inconsistency or not. On the other hand, a serial schedule does not need the

serializability because it follows a transaction only when the previous

transaction is complete. The non-serial schedule is said to be in a serializable

schedule only when it is equivalent to the serial schedules, for an n number of

transactions. Since concurrency is allowed in this case thus, multiple

transactions can execute concurrently. A serializable schedule helps in

improving both resource utilization and CPU throughput. These are of two

types:

 Conflict Serializable:
A schedule is called conflict serializable if it can be transformed into a

serial schedule by swapping non-conflicting operations. Two operations

are said to be conflicting if all conditions satisfy:

 They belong to different transactions

 They operate on the same data item

 At Least one of them is a write operation

 View Serializable:
A Schedule is called view serializable if it is view equal to a serial

schedule (no overlapping transactions). A conflict schedule is a view

serializable but if the serializability contains blind writes, then the view

serializable does not conflict serializable.

4) Non-Serializable:
The non-serializable schedule is divided into two types,

Recoverable and Non-recoverable Schedule.

 Recoverable Schedule:

Schedules in which transactions commit only after all transactions

whose changes they read commit are called recoverable schedules. In

other words, if some transaction Tj is reading value updated or written

by some other transaction Ti, then the commit of Tj must occur after the

commit of Ti.

Example –

Consider the following schedule involving two transactions T1 and T2.

T1 T2

R(A)

W(A)

 W(A)

 R(A)

commit

 commit

This is a recoverable schedule since T1 commits before T2, that makes the value

read by T2 correct.

There can be three types of recoverable schedule:

a) Cascading Schedule:
Also called Avoids cascading aborts/rollbacks (ACA). When there is a failure

in one transaction and this leads to the rolling back or aborting other

dependent transactions, then such scheduling is referred to as Cascading

rollback or cascading abort. Example:

 Figure 34: Cascading Abort

b) Cascadeless Schedule:
Schedules in which transactions read values only after all transactions whose

changes they are going to read commit are called cascadeless schedules. Avoids

that a single transaction abort leads to a series of transaction rollbacks. A

strategy to prevent cascading aborts is to disallow a transaction from reading

uncommitted changes from another transaction in the same schedule.

In other words, if some transaction Tj wants to read value updated or written by

some other transaction Ti, then the commit of Tj must read it after the commit

of Ti.

Example:

Consider the following schedule involving two transactions T1 and T2.

T1 T2

R(A)

W(A)

 W(A)

commit

 R(A)

 commit

This schedule is cascadeless. Since the updated value of A is read by T2 only

after the updating transaction i.e. T1 commits.

c) Strict Schedule:
A schedule is strict if for any two transactions Ti, Tj, if a write operation of

Ti precedes a conflicting operation of Tj (either read or write), then the commit

or abort event of Ti also precedes that conflicting operation of Tj.

In other words, Tj can read or write updated or written value of Ti only after

Ti commits/aborts.

Example:

Consider the following schedule involving two transactions T1 and T2.

T1 T2

R(A)

 R(A)

W(A)

commit

 W(A)

 R(A)

 commit

This is a strict schedule since T2 reads and writes A which is written by T1 only

after the commit of T1.

 Non-Recoverable Schedule:
Example: Consider the following schedule involving two transactions

T1 and T2.

T1 T2

R(A)

W(A)

 W(A)

 R(A)

 commit

abort

T2 read the value of A written by T1, and committed. T1 later aborted, therefore

the value read by T2 is wrong, but since T2 committed, this schedule is non-

recoverable.

Note – It can be seen that:

 Cascadeless schedules are stricter than recoverable schedules or are a

subset of recoverable schedules.

 Strict schedules are stricter than cascadeless schedules or are a subset

of cascadeless schedules.

 Serial schedules satisfy constraints of all recoverable, cascadeless and

strict schedules and hence is a subset of strict schedules.

The relation between various types of schedules can be depicted as:

 Figure 35: Relation between Schedules

14.2. Types of Schedules based Recoverability

we are going to deal with the types of Schedules based on the Recoverability in

Database Management Systems (DBMS). Generally, there are three types of

schedules given as follows:

Schedules Based on Recoverability

 Recoverable Schedule: A schedule is recoverable if it allows for the

recovery of the database to a consistent state after a transaction failure.

In a recoverable schedule, a transaction that has updated the database

must commit before any other transaction reads or writes the same

data. If a transaction fails before committing, its updates must be rolled

back, and any transactions that have read its uncommitted data must

also be rolled back.

 Cascadeless Schedule: A schedule is cascaded less if it does not result

in a cascading rollback of transactions after a failure. In a cascade-less

schedule, a transaction that has read uncommitted data from another

transaction cannot commit before that transaction commits. If a

transaction fails before committing, its updates must be rolled back,

but any transactions that have read its uncommitted data need not be

rolled back.

 Strict Schedule: A schedule is strict if it is both recoverable and

cascades. In a strict schedule, a transaction that has read uncommitted

data from another transaction cannot commit before that transaction

commits, and a transaction that has updated the database must commit

before any other transaction reads or writes the same data. If a

transaction fails before committing, its updates must be rolled back,

and any transactions that have read its uncommitted data must also be

rolled back.

These types of schedules are important because they affect the consistency and

reliability of the database system. It is essential to ensure that schedules are

recoverable, cascaded, or strict to avoid inconsistencies and data loss in the

database.

Recoverable Schedule

A schedule is said to be recoverable if it is recoverable as the name suggests.

Only reads are allowed before write operations on the same data. Only reads

(Ti->Tj) are permissible.

Example:
S1: R1(x), W1(x), R2(x), R1(y), R2(y),

 W2(x), W1(y), C1, C2;

The given schedule follows the order of Ti->Tj => C1->C2. Transaction T1 is

executed before T2 hence there is no chance of conflict occurring. R1(x) appears

before W1(x) and transaction T1 is committed before T2 i.e. completion of the

first transaction performed the first update on data item x, hence given schedule

is recoverable.

Let us see an example of an unrecoverable schedule to clear the concept more.

S2: R1(x), R2(x), R1(z), R3(x), R3(y), W1(x),

 W3(y), R2(y), W2(z), W2(y), C1, C2, C3;

Ti->Tj => C2->C3 but W3(y) executed before W2(y) which leads to conflicts

thus it must be committed before the T2 transaction. So given schedule is

unrecoverable. if Ti->Tj => C3->C2 is given in the schedule then it will

become a recoverable schedule.

Note: A committed transaction should never be rollback. It means that reading

value from uncommitted transaction and commit it will enter the current

transaction into inconsistent or unrecoverable state this is called Dirty Read

problem.

Cascadeless Schedule

When no read or write-write occurs before the execution of the transaction

then the corresponding schedule is called a cascadeless schedule.

Example:
S3: R1(x),

 R2(z), R3(x), R1(z), R2(y), R3(y), W1(x), C1,

 W2(z), W3(y), W2(y), C3, C2;

In this schedule W3(y) and W2(y) overwrite conflicts and there is no read,

therefore given schedule is cascade less schedule.

Special Case: A committed transaction desired to abort. As given below all the

transactions are reading committed data hence it’s cascadeless schedule.

Strict Schedule

If the schedule contains no read or write before commit, then it is known as a

strict schedule. A strict schedule is strict in nature.

Example:

S4: R1(x), R2(x), R1(z), R3(x), R3(y),

 W1(x), C1, W3(y), C3, R2(y), W2(z), W2(y), C2;

In this schedule, no read-write or write-write conflict arises before committing

hence its strict schedule:

Cascading Abort:

Cascading Abort can also be rollback. If transaction T1 aborts as T2 read data

that is written by T1 it is not committed. Hence its cascading rollback.

Co-Relation between Strict, Cascadeless, and Recoverable schedules

Below is the picture showing the correlation between Strict Schedules,

Cascadeless Schedules, and Recoverable Schedules.

So, we can conclude that:

 Strict schedules are all recoverable and cascade schedules.

 All cascade-less schedules are recoverable.

14.3. Conflict Serializability

in Concurrency control, serial schedules have less resource utilization and low

throughput. To improve it, two or more transactions are run concurrently.

However, concurrency of transactions may lead to inconsistency in the database.

To avoid this, we need to check whether these concurrent schedules are

serializable or not.

Conflict Serializable

Concurrency serializability, also known as conflict serializability, is a type of

concurrency control that guarantees that the outcome of concurrent transactions

is the same as if the transactions were executed consecutively.

Conflict serializable schedules: A schedule is called conflict serializable if it

can be transformed into a serial schedule by swapping non-conflicting

operations.

Non-conflicting operations: When two operations operate on separate data

items or the same data item but at least one of them is a read operation, they are

said to be non-conflicting.

Conflicting Operations

Two operations are said to be conflicting if all conditions are satisfied:

 They belong to different transactions

 They operate on the same data item

 At Least one of them is a write operation

Example:
Conflicting operations pair (R1(A), W2(A)) because they belong to two

different transactions on the same data item A and one of them is a write

operation.

Similarly, (W1(A), W2(A)) and (W1(A), R2(A)) pairs are also conflicting.

On the other hand, the (R1(A), W2(B)) pair is non-conflicting because they

operate on different data items.

Similarly, ((W1(A), W2(B)) pair is non-conflicting.

Consider the following schedule:

S1: R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)

If Oi and Oj are two operations in a transaction and Oi< Oj (Oi is executed

before Oj), same order will follow in the schedule as well. Using this property,

we can get two transactions of schedule S1:

T1: R1(A), W1(A), R1(B), W1(B)

T2: R2(A), W2(A), R2(B), W2(B)

Possible Serial Schedules are: T1->T2 or T2->T1
-> Swapping non-conflicting operations R2(A) and R1(B) in S1, the schedule

becomes,

S11: R1(A), W1(A), R1(B), W2(A), R2(A), W1(B), R2(B), W2(B)

-> Similarly, swapping non-conflicting operations W2(A) and W1(B) in S11,

the schedule becomes,

S12: R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)

S12 is a serial schedule in which all operations of T1 are performed before

starting any operation of T2. Since S has been transformed into a serial schedule

S12 by swapping non-conflicting operations of S1, S1 is conflict serializable.

Let us take another Schedule:

S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)

Two transactions will be:

T1: R1(A), W1(A), R1(B), W1(B)

T2: R2(A), W2(A), R2(B), W2(B)

Possible Serial Schedules are: T1->T2 or T2->T1

Original Schedule is as:

S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)

Swapping non-conflicting operations R1(A) and R2(B) in S2, the schedule

becomes,

S21: R2(A), W2(A), R2(B), W1(A), R1(B), W1(B), R1(A), W2(B)

Similarly, swapping non-conflicting operations W1(A) and W2(B) in S21, the

schedule becomes,

S22: R2(A), W2(A), R2(B), W2(B), R1(B), W1(B), R1(A), W1(A)

In schedule S22, all operations of T2 are performed first, but operations of T1

are not in order (order should be R1(A), W1(A), R1(B), W1(B)). So S2 is not

conflict serializable.

Conflict Equivalent

Two schedules are said to be conflict equivalent when one can be transformed

to another by swapping non-conflicting operations. In the example discussed

above, S11 is conflict equivalent to S1 (S1 can be converted to S11 by swapping

non-conflicting operations). Similarly, S11 is conflict equivalent to S12, and so

on.

Note 1: Although S2 is not conflict serializable, still it is conflict equivalent to

S21 and S21 because S2 can be converted to S21 and S22 by swapping non-

conflicting operations.

Note 2: The schedule which is conflict serializable is always conflict equivalent

to one of the serial schedules. S1 schedule discussed above (which is conflict

serializable) is equivalent to the serial schedule (T1->T2).

14.4. Precedence Graph for Testing Conflict Serializability

A Precedence Graph or Serialization Graph is used commonly to test the

Conflict Serializability of a schedule. It is a directed Graph (V, E) consisting of

a set of nodes V = {T1, T2, T3………. Tn} and a set of directed edges E = {e1,

e2, e3………………em}. The graph contains one node for each Transaction Ti.

An edge ei is of the form Tj –> Tk where Tj is the starting node of ei and Tk is

the ending node of ei. An edge ei is constructed between nodes Tj to Tk if one

of the operations in Tj appears in the schedule before some conflicting operation

in Tk. The Algorithm can be written as:

 Create a node T in the graph for each participating transaction in the

schedule.

 For the conflicting operation read_item(X) and write_item(X) – If a

Transaction Tj executes a read_item (X) after Ti executes a write_item

(X), draw an edge from Ti to Tj in the graph.

 For the conflicting operation write_item(X) and read_item(X) – If a

Transaction Tj executes a write_item (X) after Ti executes a read_item

(X), draw an edge from Ti to Tj in the graph.

 For the conflicting operation write_item(X) and write_item(X) – If a

Transaction Tj executes a write_item (X) after Ti executes a

write_item (X), draw an edge from Ti to Tj in the graph.

 Schedule S is serializable if there is no cycle in the precedence graph.

If there is no cycle in the precedence graph, it means we can construct a serial

schedule S’ which is conflict equivalent to schedule S. The serial schedule S’

can be found by Topological Sorting of the acyclic precedence graph. Such

schedules can be more than 1. For example, Consider the schedule S:

 S: r1(x) r1(y) w2(x) w1(x) r2(y)

What are the Steps to Construct a Precedence Graph?

Step 1: Draw a node for each transaction in the schedule.

Step 2: For each pair of conflicting operations (i.e., operations on the same data

item by different transactions), draw an edge from the transaction that

performed the first operation to the transaction that performed the second

operation. The edge represents a dependency between the two transactions.

Step 3: If there are multiple conflicting operations between two transactions,

draw multiple edges between the corresponding nodes.

Step 4: If there are no conflicting operations between two transactions, do not

draw an edge between them.

Step 5: Once all the edges have been added to the graph, check if the graph

contains any cycles. If the graph contains cycles, then the schedule is not conflict

serializable. Otherwise, the schedule is conflict serializable.

The precedence graph provides a visual representation of the dependencies

between transactions in a schedule and allows us to determine whether the

schedule is a conflict serializable or not. By constructing the precedence graph,

we can identify the transactions that have conflicts and reorder them to produce

a conflict serializable schedule, which is a schedule that can be transformed into

a serial schedule by swapping non-conflicting operations.

Advantages of Precedence Graphs for Testing Conflict Serializability

 Simple to comprehend: Because precedence graphs show the

connections between transactions visually, they are simple to

comprehend.

 Quick analysis: You can rapidly ascertain whether or not a series of

transactions can be conflict serialized by using precedence graphs.

 Finding anomalies: Anomalies like cycles or deadlocks that might

not be seen right away might be found using precedence graphs.

 Assists with optimization: By identifying transactions that can be

carried out in parallel, precedence graphs can be utilized to enhance a

database system’s performance.

Disadvantages of Precedence Graphs for Testing Conflict Serializability

 Complex for large systems: It can be challenging to discern

dependencies between transactions in large database systems due to

the complexity of precedence graphs.

 Potential for inaccurate results: It is possible that some conflicts

between transactions will be unnoticed by precedence graphs.

 Require Manual efforts: Building precedence graphs by hand can be

labour-intensive and time-consuming, particularly in the case of big

systems.

 Limited applicability: Data races and deadlocks cannot be detected

with precedence graphs; they are only useful for assessing conflict

serializability.

14.5. Recoverability

Recoverability is a property of database systems that ensures that, in the event

of a failure or error, the system can recover the database to a consistent state.

Recoverability guarantees that all committed transactions are durable and that

their effects are permanently stored in the database, while the effects of

uncommitted transactions are undone to maintain data consistency.

The recoverability property is enforced through the use of transaction logs,

which record all changes made to the database during transaction processing.

When a failure occurs, the system uses the log to recover the database to a

consistent state, which involves either undoing the effects of uncommitted

transactions or redoing the effects of committed transactions.

There are several levels of recoverability that can be supported by a database

system:

 No-undo logging: This level of recoverability only guarantees that

committed transactions are durable, but does not provide the ability to

undo the effects of uncommitted transactions.

 Undo logging: This level of recoverability provides the ability to undo

the effects of uncommitted transactions but may result in the loss of

updates made by committed transactions that occur after the failed

transaction.

 Redo logging: This level of recoverability provides the ability to redo the

effects of committed transactions, ensuring that all committed updates are

durable and can be recovered in the event of failure.

 Undo-redo logging: This level of recoverability provides both undo and

redo capabilities, ensuring that the system can recover to a consistent state

regardless of whether a transaction has been committed or not.

In addition to these levels of recoverability, database systems may also use

techniques such as checkpointing and shadow paging to improve recovery

performance and reduce the overhead associated with logging.

Recoverable Schedules:
Schedules in which transactions commit only after all transactions whose

changes they read commit are called recoverable schedules. In other words, if

some transaction Tj is reading value updated or written by some other

transaction Ti, then the commit of Tj must occur after the commit of Ti.

Example 1: S1: R1(x), W1(x), R2(x), R1(y), R2(y),

 W2(x), W1(y), C1, C2;

Given schedule follows order of Ti->Tj => C1->C2. Transaction T1 is executed

before T2 hence there is no chances of conflict occur. R1(x) appears before

W1(x) and transaction T1 is committed before T2 i.e. completion of first

transaction performed first update on data item x, hence given schedule is

recoverable.

14.6. Cascadeless in DBMS

 Generally, there are 3 types of schedule based on recoverbility given as follows:

 Recoverable schedule:
Transactions must be committed in order. Dirty Read problem and

Lost Update problem may occur.

 Cascadeless Schedule:
Dirty Read not allowed, means reading the data written by an

uncommitted transaction is not allowed. Lost Update problem may

occur.

 Strict schedule:
Neither Dirty read nor Lost Update problem allowed, means reading

or writing the data written by an uncommitted transaction is not

allowed.

Cascading Rollback:
If in a schedule, failure of one transaction causes several other dependent

transactions to rollback or abort, then such a schedule is called as a Cascading

Rollback or Cascading Abort or Cascading Schedule. It simply leads to the

wastage of CPU time.

These Cascading Rollbacks occur because of Dirty Read problems.

For example, transaction T1 writes uncommitted x that is read by Transaction

T2. Transaction T2 writes uncommitted x that is read by Transaction T3.

Suppose at this point T1 fails.

T1 must be rolled back, since T2 is dependent on T1, T2 must be rolled back,

and since T3 is dependent on T2, T3 must be rolled back.

Because of T1 rollback, all T2, T3, and T4 should also be rollback (Cascading

dirty read problem).

This phenomenon, in which a single transaction failure leads to a series of

transaction rollbacks is called Cascading rollback.

Cascadeless Schedule:
This schedule avoids all possible Dirty Read Problem.

In Cascadeless Schedule, if a transaction is going to perform read operation on a

value, it has to wait until the transaction who is performing write on that value

commits. That means there must not be Dirty Read. Because Dirty Read Problem

can cause Cascading Rollback, which is inefficient.

Cascadeless Schedule avoids cascading aborts/rollbacks (ACA). Schedules in

which transactions read values only after all transactions whose changes they are

going to read commit are called cascadeless schedules. Avoids that a single

transaction abort leads to a series of transaction rollbacks. A strategy to prevent

cascading aborts is to disallow a transaction from reading uncommitted changes

from another transaction in the same schedule.

In other words, if some transaction Tj wants to read value updated or written by

some other transaction Ti, then the commit of Tj must read it after the commit of

Ti.

 Figure 36: No Sirty Read Problem

Note: Cascadeless schedule allows only committed read operations. However, it

allows uncommitted write operations.

14.7. Concurrency Control

Concurrently control is a very important concept of DBMS which ensures the

simultaneous execution or manipulation of data by several processes or user

without resulting in data inconsistency. Concurrency Control deals

with interleaved execution of more than one transaction.

What is Transaction?

A transaction is a collection of operations that performs a single logical function

in a database application. Each transaction is a unit of both atomicity and

consistency. Thus, we require that transactions do not violate any database

consistency constraints. That is, if the database was consistent when a

transaction started, the database must be consistent when the transaction

successfully terminates. However, during the execution of a transaction, it may

be necessary temporarily to allow inconsistency, since either the debit of A or

the credit of B must be done before the other. This temporary inconsistency,

although necessary, may lead to difficulty if a failure occurs.

It is the programmer’s responsibility to define properly the various transactions,

so that each preserves the consistency of the database. For example, the

transaction to transfer funds from the account of department A to the account of

department B could be defined to be composed of two separate programs: one

that debits account A, and another that credits account B. The execution of these

two programs one after the other will indeed preserve consistency. However,

each program by itself does not transform the database from a consistent state

to a new consistent state. Thus, those programs are not transactions.

The concept of a transaction has been applied broadly in database systems and

applications. While the initial use of transactions was in financial applications,

the concept is now used in real-time applications in telecommunication, as well

as in the management of long-duration activities such as product design or

administrative workflows.

A set of logically related operations is known as a transaction. The main

operations of a transaction are:

 Read(A): Read operations Read(A) or R(A) reads the value of A from

the database and stores it in a buffer in the main memory.

 Write (A): Write operation Write(A) or W(A) writes the value back to

the database from the buffer.

(Note: It doesn’t always need to write it to a database back it just writes the

changes to buffer this is the reason where dirty read comes into the picture)

Let us take a debit transaction from an account that consists of the following

operations:

 R(A);

 A=A-1000;

 W(A);

Assume A’s value before starting the transaction is 5000.

 The first operation reads the value of A from the database and stores it

in a buffer.

 the Second operation will decrease its value by 1000. So buffer will

contain 4000.

 the Third operation will write the value from the buffer to the database.

So A’s final value will be 4000.

But it may also be possible that the transaction may fail after executing some of

its operations. The failure can be because of hardware, software or power, etc.

For example, if the debit transaction discussed above fails after executing

operation 2, the value of A will remain 5000 in the database which is not

acceptable by the bank. To avoid this, Database has two important operations:

 Commit: After all instructions of a transaction are successfully

executed, the changes made by a transaction are made permanent in

the database.

 Rollback: If a transaction is not able to execute all operations

successfully, all the changes made by a transaction are undone.

Properties of a Transaction

 Atomicity: As a transaction is a set of logically related operations, either

all of them should be executed or none. A debit transaction discussed

above should either execute all three operations or none. If the debit

transaction fails after executing operations 1 and 2 then its new value of

4000 will not be updated in the database which leads to inconsistency.

 Consistency: If operations of debit and credit transactions on the same

account are executed concurrently, it may leave the database in an

inconsistent state.

Isolation: The result of a transaction should not be visible to others before the

transaction is committed. For example, let us assume that A’s balance is Rs.

5000 and T1 debits Rs. 1000 from A. A’s new balance will be 4000. If T2 credits

Rs. 500 to A’s new balance, A will become 4500, and after this T1 fails. Then

we have to roll back T2 as well because it is using the value produced by T1. So

transaction results are not made visible to other transactions before it commits.

Durable: Once the database has committed a transaction, the changes made by

the transaction should be permanent. e.g.; If a person has credited $500000 to

his account, the bank can’t say that the update has been lost. To avoid this

problem, multiple copies of the database are stored at different locations.

What is a Schedule?

A schedule is a series of operations from one or more transactions.

A schedule can be of two types:

1) Serial Schedule: When one transaction completely executes before

starting another transaction, the schedule is called a serial schedule. A

serial schedule is always consistent. e.g.; If a schedule S has debit

transaction T1 and credit transaction T2, possible serial schedules are T1

followed by T2 (T1->T2) or T2 followed by T1 ((T2->T1). A serial

schedule has low throughput and less resource utilization.

2) Concurrent Schedule: When operations of a transaction are interleaved

with operations of other transactions of a schedule, the schedule is called

a Concurrent schedule. e.g.; the Schedule of debit and credit transactions

shown in Table 1 is concurrent. But concurrency can lead to inconsistency

in the database. The above example of a concurrent schedule is also

inconsistent.

Difference between Serial Schedule and Serializable Schedule

 Serial Schedule Serializable Schedule

In Serial schedule, transactions will

be executed one after other.

In Serializable schedule transaction

are executed concurrently.

Serial schedule are less efficient.
Serializable schedule are more

efficient.

In serial schedule only one transaction

executed at a time.

In Serializable schedule multiple

transactions can be executed at a time.

Serial schedule takes more time for

execution.

In Serializable schedule execution is

fast.

Concurrency Control in DBMS

 Executing a single transaction at a time will increase the waiting time

of the other transactions which may result in delay in the overall

execution. Hence for increasing the overall throughput and efficiency

of the system, several transactions are executed.

 Concurrently control is a very important concept of DBMS which

ensures the simultaneous execution or manipulation of data by several

processes or user without resulting in data inconsistency.

 Concurrency control provides a procedure that is able to control

concurrent execution of the operations in the database.

 The fundamental goal of database concurrency control is to ensure that

concurrent execution of transactions does not result in a loss of

database consistency. The concept of serializability can be used to

achieve this goal, since all serializable schedules preserve consistency

of the database. However, not all schedules that preserve consistency

of the database are serializable.

In general it is not possible to perform an automatic analysis of low-level

operations by transactions and check their effect on database consistency

constraints. However, there are simpler techniques. One is to use the database

consistency constraints as the basis for a split of the database into sub databases

on which concurrency can be managed separately.

Another is to treat some operations besides read and write as fundamental low-

level operations and to extend concurrency control to deal with them.

Concurrency Control Problems

There are several problems that arise when numerous transactions are executed

simultaneously in a random manner. The database transaction consist of two

major operations “Read” and “Write”. It is very important to manage these

operations in the concurrent execution of the transactions in order to maintain

the consistency of the data.

Dirty Read Problem(Write-Read conflict)

Dirty read problem occurs when one transaction updates an item but due to some

unconditional events that transaction fails but before the transaction performs

rollback, some other transaction reads the updated value. Thus creates an

inconsistency in the database. Dirty read problem comes under the scenario of

Write-Read conflict between the transactions in the database.

 The lost update problem can be illustrated with the below scenario

between two transactions T1 and T2.

 Transaction T1 modifies a database record without committing the

changes.

 T2 reads the uncommitted data changed by T1.

 T1 performs rollback.

 T2 has already read the uncommitted data of T1 which is no longer valid,

thus creating inconsistency in the database.

Lost Update Problem

Lost update problem occurs when two or more transactions modify the same

data, resulting in the update being overwritten or lost by another transaction.

The lost update problem can be illustrated with the below scenario between two

transactions T1 and T2.

 T1 reads the value of an item from the database.

 T2 starts and reads the same database item.

 T1 updates the value of that data and performs a commit.

 T2 updates the same data item based on its initial read and performs

commit.

 This results in the modification of T1 gets lost by the T2’s writes which

causes a lost update problem in the database.

Concurrency Control Protocols

Concurrency control protocols are the set of rules which are maintained in order

to solve the concurrency control problems in the database. It ensures that the

concurrent transactions can execute properly while maintaining the database

consistency. The concurrent execution of a transaction is provided with

atomicity, consistency, isolation, durability, and serializability via the

concurrency control protocols.

 Locked based concurrency control protocol

 Timestamp based concurrency control protocol

Locked based Protocol

In locked based protocol, each transaction needs to acquire locks before they

start accessing or modifying the data items. There are two types of locks used

in databases.

 Shared Lock : Shared lock is also known as read lock which allows

multiple transactions to read the data simultaneously. The transaction

which is holding a shared lock can only read the data item but it can

not modify the data item.

 Exclusive Lock : Exclusive lock is also known as the write lock.

Exclusive lock allows a transaction to update a data item. Only one

transaction can hold the exclusive lock on a data item at a time. While

a transaction is holding an exclusive lock on a data item, no other

transaction is allowed to acquire a shared/exclusive lock on the same

data item.

There are two kinds of lock-based protocol mostly used in database:

 Two Phase Locking Protocol: Two phase locking is a widely used

technique which ensures strict ordering of lock acquisition and release.

Two phase locking protocol works in two phases.

 Growing Phase: In this phase, the transaction starts

acquiring locks before performing any modification on the

data items. Once a transaction acquires a lock, that lock

cannot be released until the transaction reaches the end of the

execution.

 Shrinking Phase: In this phase, the transaction releases all

the acquired locks once it performs all the modifications on

the data item. Once the transaction starts releasing the locks,

it cannot acquire any locks further.

 Strict Two Phase Locking Protocol : It is almost similar to the two

phase locking protocol the only difference is that in two phase locking

the transaction can release its locks before it commits, but in case of

strict two phase locking the transactions are only allowed to release

the locks only when they performs commits.

Timestamp based Protocol.

In this protocol each transaction has a timestamp attached to it. Timestamp is

nothing but the time in which a transaction enters the system.

The conflicting pairs of operations can be resolved by the timestamp ordering

protocol through the utilization of the timestamp values of the transactions.

Therefore, guaranteeing that the transactions take place in the correct order.

Advantages of Concurrency

In general, concurrency means, that more than one transaction can work on a

system. The advantages of a concurrent system are:

 Waiting Time: It means if a process is in a ready state but still the

process does not get the system to get execute is called waiting time.

So, concurrency leads to less waiting time.

 Response Time: The time wasted in getting the response from the

CPU for the first time, is called response time. So, concurrency leads

to less Response Time.

 Resource Utilization: The amount of Resource utilization in a

particular system is called Resource Utilization. Multiple transactions

can run parallel in a system. So, concurrency leads to more Resource

Utilization.

 Efficiency: The amount of output produced in comparison to given

input is called efficiency. So, Concurrency leads to more Efficiency.

Disadvantages of Concurrency

 Overhead: Implementing concurrency control requires additional

overhead, such as acquiring and releasing locks on database objects.

This overhead can lead to slower performance and increased resource

consumption, particularly in systems with high levels of concurrency.

 Deadlocks: Deadlocks can occur when two or more transactions are

waiting for each other to release resources, causing a circular

dependency that can prevent any of the transactions from completing.

Deadlocks can be difficult to detect and resolve and can result in

reduced throughput and increased latency.

 Reduced concurrency: Concurrency control can limit the number of

users or applications that can access the database simultaneously. This

can lead to reduced concurrency and slower performance in systems

with high levels of concurrency.

 Complexity: Implementing concurrency control can be complex,

particularly in distributed systems or in systems with complex

transactional logic. This complexity can lead to increased

development and maintenance costs.

14.8. Concurrency Control Techniques

Concurrency control is provided in a database to:

 enforce isolation among transactions.

 preserve database consistency through consistency preserving

execution of transactions.

 resolve read-write and write-read conflicts.

Various concurrency control techniques are:

i) Two-phase locking Protocol

ii) Time stamp ordering Protocol

iii) Multi version concurrency control

iv) Validation concurrency control

These are briefly explained below.

i) Two-Phase Locking Protocol:

Locking is an operation which secures permission to read, OR permission to

write a data item. Two phase locking is a process used to gain ownership of

shared resources without creating the possibility of deadlock. The 3 activities

taking place in the two-phase update algorithm are:

 Lock Acquisition

 Modification of Data

 Release Lock

Two phase locking prevents deadlock from occurring in distributed systems by

releasing all the resources it has acquired, if it is not possible to acquire all the

resources required without waiting for another process to finish using a lock.

This means that no process is ever in a state where it is holding some shared

resources, and waiting for another process to release a shared resource which it

requires. This means that deadlock cannot occur due to resource contention. A

transaction in the Two-Phase Locking Protocol can assume one of the 2 phases:

1st Phase: Growing Phase: In this phase a transaction can only acquire locks

but cannot release any lock. The point when a transaction acquires all the locks

it needs is called the Lock Point.

2nd Phase: Shrinking Phase: In this phase a transaction can only release locks

but cannot acquire any.

iv) Time Stamp Ordering Protocol:

A timestamp is a tag that can be attached to any transaction or any data item,

which denotes a specific time on which the transaction or the data item had been

used in any way. A timestamp can be implemented in 2 ways. One is to directly

assign the current value of the clock to the transaction or data item. The other is

to attach the value of a logical counter that keeps increment as new timestamps

are required.

 The timestamp of a data item can be of 2 types:

 W-timestamp(X): This means the latest time when the data item X

has been written into.

 R-timestamp(X): This means the latest time when the data item X has

been read from. These 2 timestamps are updated each time a successful

read/write operation is performed on the data item X.

iii) Mult version Concurrency Control:

Mult version schemes keep old versions of data item to increase concurrency.

Mult version 2 phase locking: Each successful write results in the creation of

a new version of the data item written. Timestamps are used to label the

versions. When a read(X) operation is issued, select an appropriate version of X

based on the timestamp of the transaction.

iv) Validation Concurrency Control:

The optimistic approach is based on the assumption that the majority of the

database operations do not conflict. The optimistic approach requires neither

locking nor time stamping techniques. Instead, a transaction is executed without

restrictions until it is committed. Using an optimistic approach, each transaction

moves through 2 or 3 phases, referred to as read, validation and write.

 During read phase, the transaction reads the database, executes the

needed computations and makes the updates to a private copy of the

database values. All update operations of the transactions are recorded

in a temporary update file, which is not accessed by the remaining

transactions.

 During the validation phase, the transaction is validated to ensure that

the changes made will not affect the integrity and consistency of the

database. If the validation test is positive, the transaction goes to a

write phase. If the validation test is negative, he transaction is restarted

and the changes are discarded.

 During the write phase, the changes are permanently applied to the

database.

15. Deadlock and Starvation

DEADLOCK

In a database management system (DBMS), a deadlock occurs when two or

more transactions are waiting for each other to release resources, such as locks

on database objects, that they need to complete their operations. As a result,

none of the transactions can proceed, leading to a situation where they are stuck

or “deadlocked.”

Deadlocks can happen in multi-user environments when two or more

transactions are running concurrently and try to access the same data in a

different order. When this happens, one transaction may hold a lock on a

resource that another transaction needs, while the second transaction may hold

a lock on a resource that the first transaction needs. Both transactions are then

blocked, waiting for the other to release the resource they need.

DBMSs often use various techniques to detect and resolve deadlocks

automatically. These techniques include timeout mechanisms, where a

transaction is forced to release its locks after a certain period of time, and

deadlock detection algorithms, which periodically scan the transaction log for

deadlock cycles and then choose a transaction to abort to resolve the deadlock.

It is also possible to prevent deadlocks by careful design of transactions, such

as always acquiring locks in the same order or releasing locks as soon as

possible. Proper design of the database schema and application can also help to

minimize the likelihood of deadlocks.

In a database, a deadlock is an unwanted situation in which two or more

transactions are waiting indefinitely for one another to give up locks. Deadlock

is said to be one of the most feared complications in DBMS as it brings the

whole system to a Halt.

Example – let us understand the concept of Deadlock with an example:

Suppose, Transaction T1 holds a lock on some rows in the students table

and needs to update some rows in the Grades table. Simultaneously,

Transaction T2 holds locks on those very rows (Which T1 needs to update) in

the Grades table but needs to update the rows in the student table held by

Transaction T1.

Now, the main problem arises. Transaction T1 will wait for transaction T2 to

give up the lock, and similarly, transaction T2 will wait for transaction T1 to

give up the lock. As a consequence, All activity comes to a halt and remains at

a standstill forever unless the DBMS detects the deadlock and aborts one of the

transactions.

 Figure 36: Deadlock in DBMS

Deadlock Avoidance: When a database is stuck in a deadlock, It is always

better to avoid the deadlock rather than restarting or aborting the database. The

deadlock avoidance method is suitable for smaller databases whereas the

deadlock prevention method is suitable for larger databases.

One method of avoiding deadlock is using application-consistent logic. In the

above-given example, Transactions that access Students and Grades should

always access the tables in the same order. In this way, in the scenario

described above, Transaction T1 simply waits for transaction T2 to release the

lock on Grades before it begins. When transaction T2 releases the lock,

Transaction T1 can proceed freely.

Another method for avoiding deadlock is to apply both the row-level locking

mechanism and the READ COMMITTED isolation level. However, It does

not guarantee to remove deadlocks completely.

Deadlock Detection: When a transaction waits indefinitely to obtain a lock,

The database management system should detect whether the transaction is

involved in a deadlock or not.

Wait-for-graph is one of the methods for detecting the deadlock situation.

This method is suitable for smaller databases. In this method, a graph is drawn

based on the transaction and its lock on the resource. If the graph created has a

closed loop or a cycle, then there is a deadlock.

For the above-mentioned scenario, the Wait-For graph is drawn below:

 Figure 37: Deadlock Situation

Deadlock prevention: For a large database, the deadlock prevention method is

suitable. A deadlock can be prevented if the resources are allocated in such a

way that a deadlock never occurs. The DBMS analyses the operations whether

they can create a deadlock situation or not, If they do, that transaction is never

allowed to be executed.

Deadlock prevention mechanism proposes two schemes:

 Wait-Die Scheme:
In this scheme, If a transaction requests a resource that is locked by another

transaction, then the DBMS simply checks the timestamp of both transactions

and allows the older transaction to wait until the resource is available for

execution.

Suppose, there are two transactions T1 and T2, and Let the timestamp of any

transaction T be TS (T). Now, If there is a lock on T2 by some other transaction

and T1 is requesting resources held by T2, then DBMS performs the following

actions:

Checks if TS (T1) < TS (T2) – if T1 is the older transaction and T2 has held

some resource, then it allows T1 to wait until resource is available for

execution. That means if a younger transaction has locked some resource and

an older transaction is waiting for it, then an older transaction is allowed to

wait for it till it is available. If T1 is an older transaction and has held some

resource with it and if T2 is waiting for it, then T2 is killed and restarted later

with random delay but with the same timestamp. i.e. if the older transaction

has held some resource and the younger transaction waits for the resource,

then the younger transaction is killed and restarted with a very minute delay

with the same timestamp.

 Wound Wait Scheme:

In this scheme, if an older transaction requests for a resource held by a younger

transaction, then an older transaction forces a younger transaction to kill the

transaction and release the resource. The younger transaction is restarted with a

minute delay but with the same timestamp. If the younger transaction is

requesting a resource that is held by an older one, then the younger transaction

is asked to wait till the older one releases it.

The following table lists the differences between Wait – Die and Wound -Wait

scheme prevention schemes:

Wait – Die Wound -Wait

It is based on a non-pre-emptive technique. It is based on a pre-emptive technique.

In this, older transactions must wait for the

younger one to release its data items.

In this, older transactions never wait for

younger transactions.

The number of aborts and rollbacks is higher

in these techniques.

In this, the number of aborts and rollback is

lesser.

Applications:

 Delayed Transactions: Deadlocks can cause transactions to be delayed,

as the resources they need are being held by other transactions. This can

lead to slower response times and longer wait times for users.

 Lost Transactions: In some cases, deadlocks can cause transactions to

be lost or aborted, which can result in data inconsistencies or other issues.

 Reduced Concurrency: Deadlocks can reduce the level of concurrency

in the system, as transactions are blocked waiting for resources to become

available. This can lead to slower transaction processing and reduced

overall throughput.

 Increased Resource Usage: Deadlocks can result in increased resource

usage, as transactions that are blocked waiting for resources to become

available continue to consume system resources. This can lead to

performance degradation and increased resource contention.

 Reduced User Satisfaction: Deadlocks can lead to a perception of poor

system performance and can reduce user satisfaction with the application.

This can have a negative impact on user adoption and retention.

Features of deadlock in a DBMS:

 Mutual Exclusion: Each resource can be held by only one transaction at

a time, and other transactions must wait for it to be released.

 Hold and Wait: Transactions can request resources while holding on to

resources already allocated to them.

 No Preemption: Resources cannot be taken away from a transaction

forcibly, and the transaction must release them voluntarily.

 Circular Wait: Transactions are waiting for resources in a circular chain,

where each transaction is waiting for a resource held by the next

transaction in the chain.

 Indefinite Blocking: Transactions are blocked indefinitely, waiting for

resources to become available, and no transaction can proceed.

 System Stagnation: Deadlock leads to system stagnation, where no

transaction can proceed, and the system is unable to make any progress.

 Inconsistent Data: Deadlock can lead to inconsistent data if transactions

are unable to complete and leave the database in an intermediate state.

 Difficult to Detect and Resolve: Deadlock can be difficult to detect and

resolve, as it may involve multiple transactions, resources, and

dependencies.

Disadvantages:

 System downtime: Deadlock can cause system downtime, which can

result in loss of productivity and revenue for businesses that rely on the

DBMS.

 Resource waste: When transactions are waiting for resources, these

resources are not being used, leading to wasted resources and decreased

system efficiency.

 Reduced concurrency: Deadlock can lead to a decrease in system

concurrency, which can result in slower transaction processing and

reduced throughput.

 Complex resolution: Resolving deadlock can be a complex and time-

consuming process, requiring system administrators to intervene and

manually resolve the deadlock.

 Increased system overhead: The mechanisms used to detect and resolve

deadlock, such as timeouts and rollbacks, can increase system overhead,

leading to decreased performance.

STARVATION

Starvation or Livelock is the situation when a transaction has to wait for an

indefinite period of time to acquire a lock.

Reasons for Starvation:

 If the waiting scheme for locked items is unfair. (priority queue)

 Victim selection (the same transaction is selected as a victim

repeatedly)

 Resource leak.

 Via denial-of-service attack.

Starvation can be best explained with the help of an example –

Suppose there are 3 transactions namely T1, T2, and T3 in a database that is

trying to acquire a lock on data item ‘ I ‘. Now, suppose the scheduler grants the

lock to T1(maybe due to some priority), and the other two transactions are

waiting for the lock. As soon as the execution of T1 is over, another transaction

T4 also comes over and requests a lock on data item I. Now, this time the

scheduler grants lock to T4, and T2, T3 has to wait again. In this way, if new

transactions keep on requesting the lock, T2 and T3 may have to wait for an

indefinite period of time, which leads to Starvation.

Solutions to starvation:

 Increasing Priority: Starvation occurs when a transaction has to wait for

an indefinite time, In this situation, we can increase the priority of that

particular transaction/s. But the drawback with this solution is that it may

happen that the other transaction may have to wait longer until the highest

priority transaction comes and proceeds.

 Modification in Victim Selection algorithm: If a transaction has been a

victim of repeated selections, then the algorithm can be modified by

lowering its priority over other transactions.

 First Come First Serve approach: A fair scheduling approach i.e FCFS

can be adopted, In which the transaction can acquire a lock on an item in

the order, in which the requested lock.

 Wait-die and wound wait scheme: These are the schemes that use the

timestamp ordering mechanism of transactions.

 Timeout Mechanism: A timeout mechanism can be implemented in

which a transaction is only allowed to wait for a certain amount of time

before it is aborted or restarted. This ensures that no transaction waits

indefinitely, and prevents the possibility of starvation.

 Resource Reservation: A resource reservation scheme can be used to

allocate resources to a transaction before it starts execution. This ensures

that the transaction has access to the necessary resources and reduces the

chances of waiting for a resource indefinitely.

 Preemption: Preemption involves the forcible removal of a lock from a

transaction that has been waiting for a long time, in favor of another

transaction that has a higher priority or has been waiting for a shorter

time. Preemption ensures that no transaction waits indefinitely, and

prevents the possibility of starvation.

 Dynamic Lock Allocation: In this approach, locks are allocated

dynamically based on the current state of the system. The system may

analyze the current lock requests and allocate locks in such a way that

prevents deadlocks and reduces the chances of starvation.

 Parallelism: By allowing multiple transactions to execute in parallel, the

system can ensure that no transaction waits indefinitely, and reduces the

chances of starvation. This approach requires careful consideration of the

potential for conflicts and race conditions between transactions.

In a database management system (DBMS), starvation occurs when a

transaction or process is not able to get the resources it needs to proceed and is

continuously delayed or blocked. This can happen when other transactions or

processes are given priority over the one that is experiencing starvation.

In DBMSs, resources such as locks, memory, and CPU time are typically shared

among multiple transactions or processes. If some transactions or processes are

given priority over others, it is possible for one or more transactions or processes

to experience starvation.

For example, if a transaction is waiting for a lock that is held by another

transaction, it may be blocked indefinitely if the other transaction never releases

the lock. This can lead to the first transaction experiencing starvation if it is

continuously blocked and unable to proceed.

DBMSs typically use various techniques to prevent or mitigate starvation,

such as:

Resource allocation policies: DBMSs can use policies to allocate resources in a

fair manner, ensuring that no transaction or process is consistently given priority

over others.

Priority-based scheduling: DBMSs can use scheduling algorithms that take into

account the priority of transactions or processes, ensuring that high-priority

transactions or processes are executed before low-priority ones.

Timeout mechanisms: DBMSs can use timeout mechanisms to prevent

transactions or processes from being blocked indefinitely, by releasing

resources if a transaction or process waits for too long.

Resource management: DBMSs can also use techniques such as resource quotas

and limits to prevent any single transaction or process from monopolizing

resources, thus reducing the likelihood of starvation.

Disadvantages of Starvation:

 Decreased performance: Starvation can cause decreased performance in

a DBMS by preventing transactions from making progress and causing a

bottleneck.

 Increased response time: Starvation can increase response time for

transactions that are waiting for resources, leading to poor user experience

and decreased productivity.

 Inconsistent data: If a transaction is unable to complete due to

starvation, it may leave the database in an inconsistent state, which can

lead to data corruption and other problems.

 Difficulty in troubleshooting: Starvation can be difficult to troubleshoot

because it may not be immediately apparent which transaction is causing

the problem.

 Potential for deadlock: If multiple transactions are competing for the

same resources, starvation can lead to deadlock, where none of the

transactions can proceed, causing a complete system failure.

16. Lock Based Protocol

In a database management system (DBMS), lock-based concurrency control

(BCC) is used to control the access of multiple transactions to the same data

item. This protocol helps to maintain data consistency and integrity across

multiple users. In the protocol, transactions gain locks on data items to control

their access and prevent conflicts between concurrent transactions.

First things first, I hope you are familiar with some of the concepts relating to

Transaction.

 What is a Recoverable Schedule?

 What are Cascading Rollbacks and Cascadeless schedules?

 Determining if a schedule is Conflict Serializable.

Now, we all know the four properties a transaction must follow. Yes, you got

that right, I mean the ACID properties. Concurrency control techniques are used

to ensure that the Isolation (or non-interference) property of concurrently

executing transactions is maintained.

A trivial question I would like to pose in front of you, (I know you must know

this but still) why you think that we should have interleaving execution of

transactions if it may lead to problems such as Irrecoverable Schedule,

Inconsistency, and many more threats. Why not just let it be Serial schedules

and we may live peacefully, with no complications at all?

Yes, the performance affects the efficiency too much which is not acceptable.

Hence a Database may provide a mechanism that ensures that the schedules are

either conflict or view serializable and recoverable (also preferably

cascadeless). Testing for a schedule for Serializability after it has been executed

is too late! So, we need Concurrency Control Protocols that ensure

Serializability.

Concurrency Control Protocols

allow concurrent schedules but ensure that the schedules are conflict/view

serializable and are recoverable and maybe even cascadeless. These protocols

do not examine the precedence graph as it is being created, instead a protocol

imposes a discipline that avoids non-serializable schedules. Different

concurrency control protocols provide different advantages between the amount

of concurrency they allow and the amount of overhead that they impose.

Now, let’s get going: Different categories of protocols:

 Lock Based Protocol

 Basic 2-PL

 Conservative 2-PL

 Strict 2-PL

 Rigorous 2-PL

 Graph Based Protocol

 Time-Stamp Ordering Protocol

 Multiple Granularity Protocol

 Multi-version Protocol

For GATE we’ll be focusing on the First three protocols.

Lock Based Protocols

A lock is a variable associated with a data item that describes a status of data

item with respect to possible operation that can be applied to it. They

synchronize the access by concurrent transactions to the database items. It is

required in this protocol that all the data items must be accessed in a mutually

exclusive manner. Let me introduce you to two common locks which are used

and some terminology followed in this protocol.

 Shared Lock (S): also known as Read-only lock. As the name suggests it

can be shared between transactions because while holding this lock the

transaction does not have the permission to update data on the data item.

S-lock is requested using lock-S instruction.

 Exclusive Lock (X): Data item can be both read as well as written. This

is Exclusive and cannot be held simultaneously on the same data item. X-

lock is requested using lock-X instruction.

Lock Compatibility Matrix:

A transaction may be granted a lock on an item if the requested lock is

compatible with locks already held on the item by other transactions.

Any number of transactions can hold shared locks on an item, but if any

transaction holds an exclusive(X) on the item no other transaction may hold any

lock on the item.

If a lock cannot be granted, the requesting transaction is made to wait till all

incompatible locks held by other transactions have been released. Then the lock

is granted.

Upgrade / Downgrade locks

A transaction that holds a lock on an item Ais allowed under certain condition

to change the lock state from one state to another. Upgrade: A S(A) can be

upgraded to X(A) if Ti is the only transaction holding the S-lock on element A.

Downgrade: We may downgrade X(A) to S(A) when we feel that we no longer

want to write on data-item A. As we were holding X-lock on A, we need not

check any conditions.

So, by now we are introduced with the types of locks and how to apply them.

But wait, just by applying locks if our problems could have been avoided then

life would have been so simple! If you have done Process Synchronization under

OS you must be familiar with one consistent problem, starvation, and Deadlock!

We will be discussing them shortly, but just so you know we have to apply

Locks, but they must follow a set of protocols to avoid such undesirable

problems. Shortly we will use 2-Phase Locking (2-PL) which will use the

concept of Locks to avoid deadlock. So, applying simple locking, we may not

always produce Serializable results, it may lead to Deadlock Inconsistency.

Problem With Simple Locking

Consider the Partial Schedule:

 T1 T2

1 lock-X(B)

2 read(B)

3 B:=B-50

4 write(B)

5 lock-S(A)

6 read(A)

7 lock-S(B)

8 lock-X(A)

Deadlock

In deadlock consider the above execution phase. Now, T1 holds an Exclusive

lock over B, and T2 holds a Shared lock over A. Consider Statement

7, T2 requests for lock on B, while in Statement 8 T1 requests lock on A. This

as you may notice imposes a Deadlock as none can proceed with their

execution.

Starvation

It is also possible if concurrency control manager is badly designed. For

example: A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock on the same

item. This may be avoided if the concurrency control manager is properly

designed.

17. Two Phase Locking (2-PL)

 there are two types of Locks available Shared S(a) and Exclusive X(a).

Implementing this lock system without any restrictions gives us the Simple

Lock-based protocol (or Binary Locking), but it has its own disadvantages,

they do not guarantee Serializability. Schedules may follow the preceding rules

but a non-serializable schedule may result.

To guarantee serializability, we must follow some additional

protocols concerning the positioning of locking and unlocking operations in

every transaction. This is where the concept of Two-Phase Locking(2-

PL) comes into the picture, 2-PL ensures serializability. Now, let’s dig deep!

Two Phase Locking

A transaction is said to follow the Two-Phase Locking protocol if Locking and

Unlocking can be done in two phases.

 Growing Phase: New locks on data items may be acquired but none

can be released.

 Shrinking Phase: Existing locks may be released but no new locks

can be acquired.

Note:

If lock conversion is allowed, then upgrading of lock(from S(a) to X(a)) is

allowed in the Growing Phase, and downgrading of lock (from X(a) to S(a))

must be done in the shrinking phase.

Let’s see a transaction implementing 2-PL.

 T1 T2

1 lock-S(A)

2 lock-S(A)

3 lock-X(B)

4 ………. ……….

5 Unlock(A)

6 Lock-X(C)

7 Unlock(B)

8 Unlock(A)

9 Unlock(C)

10 ………. ……….

This is just a skeleton transaction that shows how unlocking and locking work

with 2-PL. Note for:

Transaction T1

 The growing Phase is from steps 1-3

 The shrinking Phase is from steps 5-7

 Lock Point at 3

Transaction T2

 The growing Phase is from steps 2-6

 The shrinking Phase is from steps 8-9

 Lock Point at 6

Lock Point

The Point at which the growing phase ends, i.e., when a transaction takes the

final lock, it needs to carry on its work. Now look at the schedule, you’ll surely

understand. I have said that 2-PL ensures serializability, but there are still some

drawbacks of 2-PL. Let us glance at the drawbacks.

 Cascading Rollback is possible under 2-PL.

 Deadlocks and Starvation are possible.

Categories of two-Phase Locking

Now that we are familiar with what is Two-Phase Locking (2-PL) and the basic

rules which should be followed which ensures serializability. Moreover, we

came across problems with 2-PL, Cascading Aborts, and Deadlocks. Now, we

turn towards the enhancements made on 2-PL which try to make the protocol

nearly error-free. Briefly, we allow some modifications to 2-PL to improve it.

There are three categories:

 Strict 2-PL

 Rigorous 2-PL

 Conservative 2-PL

Now recall the rules followed in Basic 2-PL, over that we make some extra

modifications. Let’s now see what are the modifications and what drawbacks

they solve.

Strict 2-PL –

This requires that in addition to the lock being 2-Phase all Exclusive(X)

locks held by the transaction be released until after the Transaction Commits.

Following Strict 2-PL ensures that our schedule is:

 Recoverable

 Cascadeless

Hence, it gives us freedom from Cascading Abort which was still there in Basic

2-PL and moreover guarantee Strict Schedules but still, Deadlocks are

possible!

Rigorous 2-PL –

This requires that in addition to the lock being 2-Phase all Exclusive(X) and

Shared(S) locks held by the transaction be released until after the Transaction

Commits. Following Rigorous 2-PL ensures that our schedule is:

 Recoverable

 Cascadeless

Hence, it gives us freedom from Cascading Abort which was still there in Basic

2-PL and moreover guarantee Strict Schedules but still, Deadlocks are

possible!

Note: The difference between Strict 2-PL and Rigorous 2-PL is that Rigorous is

more restrictive, it requires both Exclusive and Shared locks to be held until

after the Transaction commits and this is what makes the implementation of

Rigorous 2-PL easier.

Conservative 2-PL –

A.K.A Static 2-PL, this protocol requires the transaction to lock all the items it

accesses before the Transaction begins execution by predeclaring its read-set

and write-set. If any of the predeclared items needed cannot be locked, the

transaction does not lock any of the items, instead, it waits until all the items are

available for locking.

However, it is difficult to use in practice because of the need to predeclare the

read-set and the write-set which is not possible in many situations. In practice,

the most popular variation of 2-PL is Strict 2-PL.

Venn Diagram below shows the classification of schedules that are rigorous and

strict. The universe represents the schedules that can be serialized as 2-PL. Now

as the diagram suggests, and it can also be logically concluded, if a schedule is

Rigorous then it is Strict. We can also think in another way, say we put a

restriction on a schedule which makes it strict, adding another to the list of

restrictions make it Rigorous. Take a moment to again analyze the diagram and

you’ll definitely get it.

 Figure 38: Conservative

Image – Venn Diagram showing categories of languages under 2-PL

Now, let’s see the schedule below, tell me if this schedule can be locked using

2-PL, and if yes, show how and what class of 2-PL does your answer belongs

to.

 T1 T2

1 Read(A)

2 Read(A)

3 Read(B)

4 Write(B)

5 Commit

6 Read(B)

7 Write(B)

6 Commit

Yes, the schedule is conflict serializable, so we can try implementing 2-PL. So,

let’s try…

Solution:

 T1 T2

1 Lock-S(A)

2 Read(A)

3 Lock-S(A)

4 Read(A)

5 Lock-X(B)

6 Read(B)

7 Write(B)

8 Commit

9 Unlock(A)

10 Unlock(B)

11 Lock-X(B)

12 Read(B)

13 Write(B)

14 Commit

15 Unlock(A)

16 Unlock(B)

Now, this is one way I choose to implement the locks on A and B. You may try

a different sequence but remember to follow the 2-PL protocol. With that said,

observe that our locks are released after Commit operation so this satisfies Strict

2-PL protocol.

By now, I guess you must’ve got the idea of how to differentiate between types

of 2-PL. Remember the theory as problems come in the examination sometimes

just based on theoretical knowledge. Next, we’ll look at some examples of

Conservative 2-PL and how does it differ from the above two types of 2-PL.

What makes it Deadlock free and also so difficult to implement. Then we’ll

conclude the topic of 2-PL. Shortly we’ll move on to another type of Lock-based

Protocol- Graph-Based Protocols.

18. Timestamp Ordering Protocol

Concurrency Control can be implemented in different ways. One way to

implement it is by using Locks. Now, let us discuss Time Stamp Ordering

Protocol.

As earlier introduced, Timestamp is a unique identifier created by the DBMS

to identify a transaction. They are usually assigned in the order in which they

are submitted to the system. Refer to the timestamp of a transaction T as TS(T).

Timestamp Ordering Protocol –

The main idea for this protocol is to order the transactions based on their

Timestamps. A schedule in which the transactions participate is then

serializable and the only equivalent serial schedule permitted has the

transactions in the order of their Timestamp Values. Stating simply, the

schedule is equivalent to the particular Serial Order corresponding to

the order of the Transaction timestamps. An algorithm must ensure that, for

each item accessed by Conflicting Operations in the schedule, the order in

which the item is accessed does not violate the ordering. To ensure this, use

two Timestamp Values relating to each database item X.

 W_TS(X) is the largest timestamp of any transaction that

executed write(X) successfully.

 R_TS(X) is the largest timestamp of any transaction that

executed read(X) successfully.

Basic Timestamp Ordering –

Every transaction is issued a timestamp based on when it enters the system.

Suppose, if an old transaction Ti has timestamp TS(Ti), a new transaction Tj is

assigned timestamp TS(Tj) such that TS(Ti) < TS(Tj). The protocol manages

concurrent execution such that the timestamps determine the serializability

order. The timestamp ordering protocol ensures that any conflicting read and

write operations are executed in timestamp order. Whenever some

Transaction T tries to issue a R_item(X) or a W_item(X), the Basic TO

algorithm compares the timestamp of T with R_TS(X) & W_TS(X) to ensure

that the Timestamp order is not violated. This describes the Basic TO protocol

in the following two cases.

 Whenever a Transaction T issues a W_item(X) operation, check the

following conditions:

 If R_TS(X) > TS(T) and if W_TS(X) > TS(T), then abort and

rollback T and reject the operation. else,

 Execute W_item(X) operation of T and set W_TS(X) to

TS(T).

 Whenever a Transaction T issues a R_item(X) operation, check the

following conditions:

 If W_TS(X) > TS(T), then abort and reject T and reject the

operation, else

 If W_TS(X) <= TS(T), then execute the R_item(X) operation

of T and set R_TS(X) to the larger of TS(T) and current

R_TS(X).

Whenever the Basic TO algorithm detects two conflicting operations that occur

in an incorrect order, it rejects the latter of the two operations by aborting the

Transaction that issued it. Schedules produced by Basic TO are guaranteed to

be conflict serializable. Already discussed that using Timestamp can ensure that

our schedule will be deadlock free.

One drawback of the Basic TO protocol is that Cascading Rollback is still

possible. Suppose we have a Transaction T1 and T2 has used a value written by

T1. If T1 is aborted and resubmitted to the system then, T2 must also be aborted

and rolled back. So the problem of Cascading aborts still prevails.

Let’s gist the Advantages and Disadvantages of Basic TO protocol:

 Timestamp Ordering protocol ensures serializability since the

precedence graph will be of the form:

 Figure 39: Precedence Graph for TS ordering

 Timestamp protocol ensures freedom from deadlock as no transaction

ever waits.

 But the schedule may not be cascade free, and may not even be

recoverable.

Strict Timestamp Ordering –

A variation of Basic TO is called Strict TO ensures that the schedules are both

Strict and Conflict Serializable. In this variation, a Transaction T that issues a

R_item(X) or W_item(X) such that TS(T) > W_TS(X) has its read or write

operation delayed until the Transaction T‘ that wrote the values of X has

committed or aborted.

Advantages:

 High Concurrency: Timestamp-based concurrency control allows for a

high degree of concurrency by ensuring that transactions do not interfere

with each other.

 Efficient: The technique is efficient and scalable, as it does not require

locking and can handle a large number of transactions.

 No Deadlocks: Since there are no locks involved, there is no possibility

of deadlocks occurring.

 Improved Performance: By allowing transactions to execute

concurrently, the overall performance of the database system can be

improved.

Disadvantages:

 Limited Granularity: The granularity of timestamp-based concurrency

control is limited to the precision of the timestamp. This can lead to

situations where transactions are unnecessarily blocked, even if they do

not conflict with each other.

 Timestamp Ordering: In order to ensure that transactions are executed

in the correct order, the timestamps need to be carefully managed. If not

managed properly, it can lead to inconsistencies in the database.

 Timestamp Synchronization: Timestamp-based concurrency control

requires that all transactions have synchronized clocks. If the clocks are

not synchronized, it can lead to incorrect ordering of transactions.

 Timestamp Allocation: Allocating unique timestamps for each

transaction can be challenging, especially in distributed systems where

transactions may be initiated at different locations.

Timestamp and Deadlock Prevention schemes

Deadlock occurs when each transaction T in a schedule of two or

more transactions waiting for some item locked by some other transaction T‘ in

the set. Thus, both end up in a deadlock situation, waiting for the other to release

the lock on the item. Deadlocks are a common problem and we have introduced

the problem while solving the Concurrency Control by the introduction

of Locks. Deadlock avoidance is a major issue and some protocols were

suggested to avoid them, like Conservative 2-PL and Graph-

Based protocols but some drawbacks are still there.

Here, we will discuss a new concept of Transaction Timestamp TS(Ti). A

timestamp is a unique identifier created by the DBMS to identify a transaction.

They are usually assigned in the order in which they are submitted to the system,

so a timestamp may be thought of as the transaction start time.

There may be different ways of generating timestamps such as

 A simple counter that increments each time its value is assigned to a

transaction. They may be numbered 1, 2, 3…. Though we’ll have to

reset the counter from time to time to avoid overflow.

 Using the current date/time from the system clock. Just ensuring that

no two transactions are given the same value in the same clock tick,

we will always get a unique timestamp. This method is widely used.

Deadlock Prevention Schemes based on Timestamp:

As discussed, Timestamps are unique identifiers assigned to each transaction.

They are based on the order in which Transactions are started. Say if T1 starts

before T2 then TS(T1) will be less than (<) TS(T2).

There are two schemes to prevent deadlock called wound-wait and wait-die. Say

there are two transactions Ti and Tj, now say Ti tries to lock an item X but

item X is already locked by some Tj, now in such a conflicting situation the two

schemes which prevent deadlock. We’ll use this context shortly.

 Wait_Die: An older transaction is allowed to wait for a younger

transaction, whereas a younger transaction requesting an item held by

an older transaction is aborted and restarted.

From the context above, if TS(Ti) < TS(Tj), then (Ti older than Tj)

Ti is allowed to wait; otherwise abort Ti (Ti younger than Tj) and

restart it later with the same timestamp.

 Wound_Wait: It is just the opposite of the Wait_Die technique. Here,

a younger transaction is allowed to wait for an older one, whereas if

an older transaction requests an item held by the younger transaction,

we preempt the younger transaction by aborting it.

From the context above, if TS(Ti) < TS(Tj), then (Ti older than Tj)

Tj is aborted (i.e., Ti wounds Tj) and restarts it later with the same

Timestamp; otherwise (Ti younger than Tj) Ti is allowed to wait.

Thus, both schemes end up aborting the younger of the two transactions that

may be involved in a deadlock. It is done on the basis of the assumption that

aborting the younger transaction will waste less processing which is logical. In

such a case there cannot be a cycle since we are waiting linearly in both cases.

Another group of protocols prevents deadlock but does not require Timestamps.

They are discussed below:

 No-waiting Algorithm: This follows a simple approach, if a

Transaction is unable to obtain a lock, it is immediately aborted and

then restarted after a certain time delay without checking if a deadlock

will occur or not. Here, no Transaction ever waits so there is no

possibility for deadlock.

This method is somewhat not practical. It may cause the transaction to

abort and restart unnecessarily.

 Cautious Waiting: If Ti tries to lock an item X but is not able to do

because X is locked by some Tj. In such a conflict, if Tj is not waiting

for some other locked item, then Ti is allowed to wait,

otherwise, abort Ti.

Another approach, to deal with deadlock is deadlock detection, we can use Wait-

for-Graph. This uses a similar approach when we used to check for cycles while

checking for serializability.

Starvation: One problem that may occur when we use locking is starvation

which occurs when a transaction cannot proceed for an indefinite period of time

while other transactions in the system continue normally. This may occur if the

waiting scheme for locked items is unfair, giving priority to some transactions

over others. We may have some solutions for Starvation. One is using a first

come first serve queue; transactions are enabled to lock an item in the order in

which they originally requested the lock. This is a widely used mechanism to

reduce starvation. Our Concurrency Control Manager is responsible to schedule

the transactions, so it employs different methods to overcome them.

Timestamp-based concurrency control and deadlock prevention schemes are

two important techniques used in database management systems to ensure

transaction correctness and concurrency.

In addition, timestamp-based schemes use a validation procedure to check

whether a transaction has read data that has been modified by another

transaction after the first transaction has read it. If such a conflict is detected,

the transaction is rolled back to ensure consistency and correctness.

Deadlock prevention schemes are used to prevent situations where two or more

transactions are waiting for each other to release locks, resulting in a deadlock.

Deadlocks occur when two transactions hold exclusive locks on resources that

the other transaction needs to proceed. To prevent deadlocks, DBMSs use

several schemes, including:

Timeout-based schemes: Transactions are allowed to hold a lock for a limited

time. If a transaction exceeds its allotted time, it is rolled back, allowing other

transactions to proceed.

Wait-die schemes: If a transaction requests a lock held by another transaction,

the requesting transaction waits if its timestamp is older than the timestamp of

the transaction holding the lock. If the timestamp of the requesting transaction

is newer, it rolls back and is restarted with a new timestamp.

Wound-wait schemes: If a transaction requests a lock held by another

transaction, the requesting transaction is granted the lock if its timestamp is

newer than the timestamp of the transaction holding the lock. If the timestamp

of the requesting transaction is older, the transaction holding the lock is rolled

back and restarted with a new timestamp.

File Structures

19. File Organization in DBMS

A database consists of a huge amount of data. The data is grouped within a table

in RDBMS, and each table has related records. A user can see that the data is

stored in the form of tables, but this huge amount of data is stored in physical

memory in the form of files.

What is a File?

A file is named a collection of related information that is recorded on secondary

storage such as magnetic disks, magnetic tapes, and optical disks.

What is File Organization?

File Organization refers to the logical relationships among various records that

constitute the file, particularly with respect to the means of identification and

access to any specific record. In simple terms, Storing the files in a certain order

is called File Organization. File Structure refers to the format of the label and

data blocks and of any logical control record.

The Objective of File Organization

 It helps in the faster selection of records i.e. it makes the process faster.

 Different Operations like inserting, deleting, and updating different

records are faster and easier.

 It prevents us from inserting duplicate records via various operations.

 It helps in storing the records or the data very efficiently at a minimal

cost.

19.1. Types of File Organization

Types of File Organizations

Various methods have been introduced to Organize files. These methods have

advantages and disadvantages on the basis of access or selection. Thus it is all

upon the programmer to decide the best-suited file Organization method

according to his requirements.

Some types of File Organizations are:

 Sequential File Organization

 Heap File Organization

 Hash File Organization

 B+ Tree File Organization

 Clustered File Organization

 ISAM (Indexed Sequential Access Method)

We will be discussing each of the file Organizations in further sets of this article

along with the differences and advantages/ disadvantages of each file

Organization method.

1) Sequential File Organization

The easiest method for file Organization is the Sequential method. In this

method, the file is stored one after another in a sequential manner. There are two

ways to implement this method:

 Pile File Method

This method is quite simple, in which we store the records in a sequence i.e. one

after the other in the order in which they are inserted into the tables.

Insertion of the new record: Let the R1, R3, and so on up to R5 and R4 be four

records in the sequence. Here, records are nothing but a row in any table.

Suppose a new record R2 has to be inserted in the sequence, then it is simply

placed at the end of the file.

 Sorted File Method

In this method, As the name itself suggests whenever a new record has to be

inserted, it is always inserted in a sorted (ascending or descending) manner. The

sorting of records may be based on any primary key or any other key.

Insertion of the new record: Let us assume that there is a preexisting sorted

sequence of four records R1, R3, and so on up to R7 and R8. Suppose a new

record R2 must be inserted in the sequence, then it will be inserted at the end of

the file and then it will sort the sequence.

Advantages of Sequential File Organization

 Fast and efficient method for huge amounts of data.

 Simple design.

 Files can be easily stored in magnetic tapes i.e. cheaper storage

mechanism.

Disadvantages of Sequential File Organization

 Time wastage as we cannot jump on a particular record that is required,

but we have to move in a sequential manner which takes our time.

 The sorted file method is inefficient as it takes time and space for

sorting records.

2) Heap File Organization

Heap File Organization works with data blocks. In this method, records are

inserted at the end of the file, into the data blocks. No Sorting or Ordering is

required in this method. If a data block is full, the new record is stored in some

other block,

Here the other data block need not be the very next data block, but it can be any

block in the memory. It is the responsibility of DBMS to store and manage the

new records.

Insertion of the new record: Suppose we have four records in the heap R1, R5,

R6, R4, and R3, and suppose a new record R2 has to be inserted in the heap

then, since the last data block i.e data block 3 is full it will be inserted in any of

the data blocks selected by the DBMS, let’s say data block 1.

If we want to search, delete or update data in the heap file Organization we will

traverse the data from the beginning of the file till we get the requested record.

Thus if the database is very huge, searching, deleting, or updating the record

will take a lot of time.

Advantages of Heap File Organization

 Fetching and retrieving records is faster than sequential records but

only in the case of small databases.

 When there is a huge number of data that needs to be loaded into

the database at a time, then this method of file Organization is best

suited.

Disadvantages of Heap File Organization

 The problem of unused memory blocks.

 Inefficient for larger databases.

19.2. Hashing in DBMS

Hashing in DBMS is a technique to quickly locate a data record in a database

irrespective of the size of the database. For larger databases containing

thousands and millions of records, the indexing data structure technique

becomes very inefficient because searching a specific record through indexing

will consume more time. This doesn’t align with the goals of DBMS, especially

when performance and date retrieval time are minimized. So, to counter this

problem hashing technique is used. In this article, we will learn about various

hashing techniques.

What is Hashing?

The hashing technique utilizes an auxiliary hash table to store the data records

using a hash function. There are 2 key components in hashing:

 Hash Table: A hash table is an array or data structure, and its size is

determined by the total volume of data records present in the database.

Each memory location in a hash table is called a ‘bucket‘ or hash

indice and stores a data record’s exact location and can be accessed

through a hash function.

 Bucket: A bucket is a memory location (index) in the hash table that

stores the data record. These buckets generally store a disk block

which further stores multiple records. It is also known as the hash

index.

 Hash Function: A hash function is a mathematical equation or

algorithm that takes one data record’s primary key as input and

computes the hash index as output.

Hash Function

A hash function is a mathematical algorithm that computes the index or the

location where the current data record is to be stored in the hash table so that it

can be accessed efficiently later. This hash function is the most crucial

component that determines the speed of fetching data.

Working of Hash Function

The hash function generates a hash index through the primary key of the data

record.

Now, there are 2 possibilities:

1. The hash index generated isn’t already occupied by any other value. So, the

address of the data record will be stored here.

2. The hash index generated is already occupied by some other value. This is

called collision so to counter this, a collision resolution technique will be

applied.

3. Now whenever we query a specific record, the hash function will be applied

and returns the data record comparatively faster than indexing because we can

directly reach the exact location of the data record through the hash function

rather than searching through indices one by one.

Example:

 Figure 40: Hashing

Types of Hashing in DBMS

There are two primary hashing techniques in DBMS.

1) Static Hashing

In static hashing, the hash function always generates the same bucket’s address.

For example, if we have a data record for employee_id = 107, the hash function

is mod-5 which is – H(x) % 5, where x = id. Then the operation will take place

like this:

H(106) % 5 = 1.

This indicates that the data record should be placed or searched in the 1st

bucket (or 1st hash index) in the hash table.

Example:

 Figure 41: Static Hashing Technique

The primary key is used as the input to the hash function and the hash function

generates the output as the hash index (bucket’s address) which contains the

address of the actual data record on the disk block.

Static Hashing has the following Properties.

 Data Buckets: The number of buckets in memory remains constant.

The size of the hash table is decided initially and it may also implement

chaining that will allow handling some collision issues though, it’s

only a slight optimization and may not prove worthy if the database

size keeps fluctuating.

 Hash function: It uses the simplest hash function to map the data

records to its appropriate bucket. It is generally modulo-hash function

 Efficient for known data size: It’s very efficient in terms when we

know the data size and its distribution in the database.

 It is inefficient and inaccurate when the data size dynamically varies

because we have limited space and the hash function always generates

the same value for every specific input. When the data size fluctuates

very often it’s not at all useful because collision will keep happening

and it will result in problems like – bucket skew, insufficient buckets

etc.

To resolve this problem of bucket overflow, techniques such as – chaining and

open addressing are used. Here’s a brief info on both:

 Chaining

Chaining is a mechanism in which the hash table is implemented using an array

of type nodes, where each bucket is of node type and can contain a long chain

of linked lists to store the data records. So, even if a hash function generates the

same value for any data record it can still be stored in a bucket by adding a new

node.

However, this will give rise to the problem bucket skew that is, if the hash

function keeps generating the same value again and again then the hashing will

become inefficient as the remaining data buckets will stay unoccupied or store

minimal data.

 Open Addressing/Closed Hashing

This is also called closed hashing this aims to solve the problem of collision by

looking out for the next empty slot available which can store data. It uses

techniques like linear probing, quadratic probing, double hashing, etc.

2) Dynamic Hashing

Dynamic hashing is also known as extendible hashing, used to handle database

that frequently changes data sets. This method offers us a way to add and remove

data buckets on demand dynamically. This way as the number of data records

varies, the buckets will also grow and shrink in size periodically whenever a

change is made.

Properties of Dynamic Hashing

 The buckets will vary in size dynamically periodically as changes are

made offering more flexibility in making any change.

 Dynamic Hashing aids in improving overall performance by

minimizing or completely preventing collisions.

 It has the following major components: Data bucket, Flexible hash

function, and directories

 A flexible hash function means that it will generate more dynamic

values and will keep changing periodically asserting to the

requirements of the database.

 Directories are containers that store the pointer to buckets. If bucket

overflow or bucket skew-like problems happen to occur, then bucket

splitting is done to maintain efficient retrieval time of data records.

Each directory will have a directory id.

 Global Depth: It is defined as the number of bits in each directory id.

The more the number of records, the more bits are there.

Working of Dynamic Hashing

Example: If global depth: k = 2, the keys will be mapped accordingly to the

hash index. K bits starting from LSB will be taken to map a key to the buckets.

That leave

s us with the following 4 possibilities: 00, 11, 10, 01.

19.3. All about B-Tree

The limitations of traditional binary search trees can be frustrating. Meet the B-

Tree, the multi-talented data structure that can handle massive amounts of data

with ease. When it comes to storing and searching large amounts of data,

traditional binary search trees can become impractical due to their poor

performance and high memory usage. B-Trees, also known as B-Tree or

Balanced Tree, are a type of self-balancing tree that was specifically designed

to overcome these limitations.

Unlike traditional binary search trees, B-Trees are characterized by the large

number of keys that they can store in a single node, which is why they are also

known as “large key” trees. Each node in a B-Tree can contain multiple keys,

which allows the tree to have a larger branching factor and thus a shallower

height. This shallow height leads to less disk I/O, which results in faster search

and insertion operations. B-Trees are particularly well suited for storage systems

that have slow, bulky data access such as hard drives, flash memory, and CD-

ROMs.

B-Trees maintains balance by ensuring that each node has a minimum number

of keys, so the tree is always balanced. This balance guarantees that the time

complexity for operations such as insertion, deletion, and searching is always

O(log n), regardless of the initial shape of the tree.

Time Complexity of B-Tree:

Sr. No. Algorithm Time Complexity

1. Search O(log n)

2. Insert O(log n)

3. Delete O(log n)

Note: “n” is the total number of elements in the B-tree

Properties of B-Tree:

 All leaves are at the same level.

 B-Tree is defined by the term minimum degree ‘t‘. The value of ‘t‘

depends upon disk block size.

 Every node except the root must contain at least t-1 keys. The root may

contain a minimum of 1 key.

 All nodes (including root) may contain at most (2*t – 1) keys.

 Number of children of a node is equal to the number of keys in it

plus 1.

 All keys of a node are sorted in increasing order. The child between

two keys k1 and k2 contains all keys in the range from k1 and k2.

 B-Tree grows and shrinks from the root which is unlike Binary Search

Tree. Binary Search Trees grow downward and also shrink from

downward.

 Like other balanced Binary Search Trees, the time complexity to

search, insert, and delete is O(log n).

 Insertion of a Node in B-Tree happens only at Leaf Node.

Following is an example of a B-Tree of minimum order 5

Note: that in practical B-Trees, the value of the minimum order is much more

than 5.

 Figure 42: B-Tree

We can see in the above diagram that all the leaf nodes are at the same level and

all non-leafs have no empty sub-tree and have keys one less than the number of

their children.

Traversal in B-Tree:

Traversal is also similar to Inorder traversal of Binary Tree. We start from the

leftmost child, recursively print the leftmost child, then repeat the same process

for the remaining children and keys. In the end, recursively print the rightmost

child.

Search Operation in B-Tree:

Search is similar to the search in Binary Search Tree. Let the key to be searched

is k.

 Start from the root and recursively traverse down.

 For every visited non-leaf node,

 If the node has the key, we simply return the node.

 Otherwise, we recur down to the appropriate child (The child

which is just before the first greater key) of the node.

 If we reach a leaf node and don’t find k in the leaf node, then return

NULL.

Searching a B-Tree is similar to searching a binary tree. The algorithm is similar

and goes with recursion. At each level, the search is optimized as if the key

value is not present in the range of the parent then the key is present in another

branch. As these values limit the search they are also known as limiting values

or separation values. If we reach a leaf node and don’t find the desired key then

it will display NULL.

Applications of B-Trees:

 It is used in large databases to access data stored on the disk

 Searching for data in a data set can be achieved in significantly less

time using the B-Tree

 With the indexing feature, multilevel indexing can be achieved.

 Most of the servers also use the B-tree approach.

 B-Trees are used in CAD systems to organize and search geometric

data.

 B-Trees are also used in other areas such as natural language

processing, computer networks, and cryptography.

Advantages of B-Trees:

 B-Trees have a guaranteed time complexity of O(log n) for basic

operations like insertion, deletion, and searching, which makes them

suitable for large data sets and real-time applications.

 B-Trees are self-balancing.

 High-concurrency and high-throughput.

 Efficient storage utilization.

Disadvantages of B-Trees:

 B-Trees are based on disk-based data structures and can have a high

disk usage.

 Not the best for all cases.

 Slow in comparison to other data structures.

Insertion Operation in B-Tree

A new key is always inserted at the leaf node. Let the key to be inserted be k.

Like BST, we start from the root and traverse down till we reach a leaf node.

Once we reach a leaf node, we insert the key in that leaf node. Unlike BSTs, we

have a predefined range on the number of keys that a node can contain. So before

inserting a key to the node, we make sure that the node has extra space.

How to make sure that a node has space available for a key before the key is

inserted? We use an operation called splitChild() that is used to split a child of

a node. See the following diagram to understand split. In the following diagram,

child y of x is being split into two nodes y and z. Note that the splitChild

operation moves a key up and this is the reason B-Trees grow up, unlike BSTs

which grow down.

Insertion

1) Initialize x as root.

2) While x is not leaf, do following

..a) Find the child of x that is going to be traversed next. Let the child be y.

..b) If y is not full, change x to point to y.

..c) If y is full, split it and change x to point to one of the two parts of y. If k is

smaller than mid key in y, then set x as the first part of y. Else second part of

y. When we split y, we move a key from y to its parent x.

3) The loop in step 2 stops when x is leaf. x must have space for 1 extra key as

we have been splitting all nodes in advance. So simply insert k to x.

Note that the algorithm follows the Cormen book. It is actually a proactive

insertion algorithm where before going down to a node, we split it if it is full.

The advantage of splitting before is, we never traverse a node twice. If we don’t

split a node before going down to it and split it only if a new key is inserted

(reactive), we may end up traversing all nodes again from leaf to root. This

happens in cases when all nodes on the path from the root to leaf are full. So

when we come to the leaf node, we split it and move a key up. Moving a key up

will cause a split in parent node (because the parent was already full). This

cascading effect never happens in this proactive insertion algorithm. There is a

disadvantage of this proactive insertion though, we may do unnecessary splits.

Let us understand the algorithm with an example tree of minimum degree ‘t’

as 3 and a sequence of integers 10, 20, 30, 40, 50, 60, 70, 80 and 90 in an

initially empty B-Tree.

Initially root is NULL. Let us first insert 10.

Let us now insert 20, 30, 40 and 50. They all will be inserted in root because the

maximum number of keys a node can accommodate is 2*t – 1 which is 5.

Let us now insert 60. Since root node is full, it will first split into two, then 60

will be inserted into the appropriate child.

Let us now insert 70 and 80. These new keys will be inserted into the appropriate

leaf without any split.

Let us now insert 90. This insertion will cause a split. The middle key will go

up to the parent.

Delete Operation

B Trees is a type of data structure commonly known as a Balanced Tree that

stores multiple data items very easily. B Trees are one of the most useful data

structures that provide ordered access to the data in the database. In this article,

we will see the delete operation in the B-Tree. B-Trees are self-balancing trees.

Deletion Process in B-Trees

Deletion from a B-tree is more complicated than insertion because we can delete

a key from any node-not just a leaf—and when we delete a key from an internal

node, we will have to rearrange the node’s children.

As in insertion, we must make sure the deletion doesn’t violate the B-tree

properties. Just as we had to ensure that a node didn’t get too big due to

insertion, we must ensure that a node doesn’t get too small during deletion

(except that the root is allowed to have fewer than the minimum number t-1 of

keys). Just as a simple insertion algorithm might have to back up if a node on

the path to where the key was to be inserted was full, a simple approach to

deletion might have to back up if a node (other than the root) along the path to

where the key is to be deleted has the minimum number of keys.

The deletion procedure deletes the key k from the subtree rooted at x. This

procedure guarantees that whenever it calls itself recursively on a node x, the

number of keys in x is at least the minimum degree t. Note that this condition

requires one more key than the minimum required by the usual B-tree

conditions, so sometimes a key may have to be moved into a child node before

recursion descends to that child. This strengthened condition allows us to delete

a key from the tree in one downward pass without having to “back up” (with

one exception, which we’ll explain). You should interpret the following

specification for deletion from a B-tree with the understanding that if the root

node x ever becomes an internal node having no keys (this situation can occur

in cases 2c and 3b then we delete x, and x’s only child x.c1 becomes the new

root of the tree, decreasing the height of the tree by one and preserving the

property that the root of the tree contains at least one key (unless the tree is

empty).

Various Cases of Deletion

Case 1: If the key k is in node x and x is a leaf, delete the key k from x.

Case 2: If the key k is in node x and x is an internal node, do the following.

 If the child y that precedes k in node x has at least t keys, then find the

predecessor k0 of k in the sub-tree rooted at y. Recursively delete k0,

and replace k with k0 in x. (We can find k0 and delete it in a single

downward pass.)

 If y has fewer than t keys, then, symmetrically, examine the child z

that follows k in node x. If z has at least t keys, then find the successor

k0 of k in the subtree rooted at z. Recursively delete k0, and replace k

with k0 in x. (We can find k0 and delete it in a single downward pass.)

 Otherwise, if both y and z have only t-1 keys, merge k and all of z into

y, so that x loses both k and the pointer to z, and y now contains 2t-1

keys. Then free z and recursively delete k from y.

Case 3: If the key k is not present in internal node x, determine the root x.c(i)

of the appropriate subtree that must contain k, if k is in the tree at all. If x.c(i)

has only t-1 keys, execute steps 3a or 3b as necessary to guarantee that we

descend to a node containing at least t keys. Then finish by recursing on the

appropriate child of x.

 If x.c(i) has only t-1 keys but has an immediate sibling with at least t

keys, give x.c(i) an extra key by moving a key from x down into x.c(i),

moving a key from x.c(i) ’s immediate left or right sibling up into x,

and moving the appropriate child pointer from the sibling into x.c(i).

 If x.c(i) and both of x.c(i)’s immediate siblings have t-1 keys, merge

x.c(i) with one sibling, which involves moving a key from x down into

the new merged node to become the median key for that node.

Since most of the keys in a B-tree are in the leaves, deletion operations are most

often used to delete keys from leaves. The recursive delete procedure then acts

in one downward pass through the tree, without having to back up. When

deleting a key in an internal node, however, the procedure makes a downward

pass through the tree but may have to return to the node from which the key was

deleted to replace the key with its predecessor or successor (cases 2a and 2b).

19.4. All about B+ Tree

B + Tree is a variation of the B-tree data structure. In a B + tree, data pointers

are stored only at the leaf nodes of the tree. In a B+ tree structure of a leaf node

differs from the structure of internal nodes. The leaf nodes have an entry for

every value of the search field, along with a data pointer to the record (or to the

block that contains this record). The leaf nodes of the B+ tree is linked together

to provide ordered access to the search field to the records. Internal nodes of a

B+ tree is used to guide the search. Some search field values from the leaf nodes

are repeated in the internal nodes of the B+ tree.

Features of B+ Trees

 Balanced: B+ Trees are self-balancing, which means that as data is

added or removed from the tree, it automatically adjusts itself to

maintain a balanced structure. This ensures that the search time

remains relatively constant, regardless of the size of the tree.

 Multi-level: B+ Trees are multi-level data structures, with a root node

at the top and one or more levels of internal nodes below it. The leaf

nodes at the bottom level contain the actual data.

 Ordered: B+ Trees maintain the order of the keys in the tree, which

makes it easy to perform range queries and other operations that

require sorted data.

 Fan-out: B+ Trees have a high fan-out, which means that each node

can have many child nodes. This reduces the height of the tree and

increases the efficiency of searching and indexing operations.

 Cache-friendly: B+ Trees are designed to be cache-friendly, which

means that they can take advantage of the caching mechanisms in

modern computer architectures to improve performance.

 Disk-oriented: B+ Trees are often used for disk-based storage

systems because they are efficient at storing and retrieving data from

disk.

Why Use B+ Tree?

 B+ Trees are the best choice for storage systems with sluggish data

access because they minimize I/O operations while facilitating

efficient disc access.

 B+ Trees are a good choice for database systems and applications

needing quick data retrieval because of their balanced structure, which

guarantees predictable performance for a variety of activities and

facilitates effective range-based queries.

Difference Between B+ Tree and B Tree

Parameters B+ Tree B Tree

Structure

Separate leaf nodes for data

storage and internal nodes for

indexing

Nodes store both keys and

data values

Leaf Nodes

Leaf nodes form a linked list

for efficient range-based

queries

Leaf nodes do not form a

linked list

Order Higher order (more keys) Lower order (fewer keys)

Key Duplication
Typically allows key

duplication in leaf nodes

Usually does not allow

key duplication

Disk Access

Better disk access due to

sequential reads in a linked list

structure

More disk I/O due to non-

sequential reads in internal

nodes

Applications

Database systems, file systems,

where range queries are

common

In-memory data

structures, databases,

general-purpose use

Performance
Better performance for range

queries and bulk data retrieval

Balanced performance for

search, insert, and delete

operations

Memory Usage
Requires more memory for

internal nodes

Requires less memory as

keys and values are stored

in the same node

Implementation of B+ Tree

In order, to implement dynamic multilevel indexing, B-tree and B+ tree are

generally employed. The drawback of the B-tree used for indexing, however, is

that it stores the data pointer (a pointer to the disk file block containing the key

value), corresponding to a particular key value, along with that key value in the

node of a B-tree. This technique greatly reduces the number of entries that can

be packed into a node of a B-tree, thereby contributing to the increase in the

number of levels in the B-tree, hence increasing the search time of a record. B+

tree eliminates the above drawback by storing data pointers only at the leaf

nodes of the tree. Thus, the structure of the leaf nodes of a B+ tree is quite

different from the structure of the internal nodes of the B tree. It may be noted

here that, since data pointers are present only at the leaf nodes, the leaf nodes

must necessarily store all the key values along with their corresponding data

pointers to the disk file block, to access them.

Moreover, the leaf nodes are linked to providing ordered access to the records.

The leaf nodes, therefore, form the first level of the index, with the internal

nodes forming the other levels of a multilevel index. Some of the key values of

the leaf nodes also appear in the internal nodes, to simply act as a medium to

control the searching of a record.

Structure of B+ Tree

B+ Trees contain two types of nodes:

 Internal Nodes: Internal Nodes are the nodes that are present in at

least n/2 record pointers, but not in the root node,

 Leaf Nodes: Leaf Nodes are the nodes that have n pointers.

Advantages of B+Trees

 B+ tree with ‘l’ levels can store more entries in its internal nodes

compared to a B-tree having the same ‘l’ levels. This accentuates the

significant improvement made to the search time for any given key.

Having lesser levels and the presence of Pnext pointers imply that the

B+ trees is very quick and efficient in accessing records from disks.

 Data stored in a B+ tree can be accessed both sequentially and directly.

 It takes an equal number of disk accesses to fetch records.

 B+trees have redundant search keys, and storing search keys

repeatedly is not possible.

Disadvantages of B+ Trees

 The major drawback of B-tree is the difficulty of traversing the keys

sequentially. The B+ tree retains the rapid random access property of

the B-tree while also allowing rapid sequential access.

Application of B+ Trees

 Multilevel Indexing

 Faster operations on the tree (insertion, deletion, search)

 Database indexing

Insertion in B+ Tree

 During insertion following properties of B+ Tree must be followed:

 Each node except root can have a maximum of M children and at

least ceil(M/2) children.

 Each node can contain a maximum of M – 1 keys and a minimum

of ceil(M/2) – 1 keys.

 The root has at least two children and atleast one search key.

 While insertion overflow of the node occurs when it contains more

than M – 1 search key values.

Here M is the order of B+ tree.

Steps for insertion in B+ Tree

Step 1. Every element is inserted into a leaf node. So, go to the appropriate

leaf node.

Step 2. Insert the key into the leaf node in increasing order only if there is

no overflow. If there is an overflow go ahead with the following steps

mentioned below to deal with overflow while maintaining the B+ Tree

properties.

Properties for insertion B+ Tree

Case 1: Overflow in leaf node

 Split the leaf node into two nodes.

 First node contains ceil((m-1)/2) values.

 Second node contains the remaining values.

 Copy the smallest search key value from second node to the parent

node.(Right biased)

Below is the illustration of inserting 8 into B+ Tree of order of 5:

 Figure 43: Insertion in B+ Tree

Case 2: Overflow in non-leaf node

 Split the non-leaf node into two nodes.

 First node contains ceil(m/2)-1 values.

 Move the smallest among remaining to the parent.

 Second node contains the remaining keys.

Below is the illustration of inserting 15 into B+ Tree of order of 5:

 Figure 44: Insertion in B+ Tree

Difference between B Tree and B+ Tree

Basis of

Comparison B tree B+ tree

Pointers
All internal and leaf nodes have data

pointers

Only leaf nodes have data

pointers

Search
Since all keys are not available at leaf,

search often takes more time.

All keys are at leaf nodes,

hence search is faster and

more accurate.

Redundant

Keys

No duplicate of keys is maintained in

the tree.

Duplicate of keys are

maintained and all nodes are

present at the leaf.

Insertion
Insertion takes more time and it is not

predictable sometimes.

Insertion is easier and the

results are always the same.

Deletion
Deletion of the internal node is very

complex, and the tree has to undergo a

lot of transformations.

Deletion of any node is easy

because all nodes are found

at leaf.

Leaf Nodes
Leaf nodes are not stored as structural

linked list.

Leaf nodes are stored as

structural linked list.

Access
Sequential access to nodes is not

possible

Sequential access is possible

just like linked list

Height
For a particular number nodes height

is larger

Height is lesser than B tree

for the same number of

nodes

Application
B-Trees used in Databases, Search

engines

B+ Trees used in Multilevel

Indexing, Database indexing

Number of

Nodes

Number of nodes at any intermediary

level ‘l’ is 2l.

Each intermediary node can

have n/2 to n children.

