
Course Introduction and Overview

● Introduction to course structure and learning objectives

Understanding Backend Development

● Fundamentals of backend communications.
● Basics of communication protocols: HTTP
● Why Golang? Current trends in backend languages.

Setting Up Your Development Environment

● Git setup and introduction.
● Golang installation and terminal setup.
● Setting up GOPATH and understanding the workspace.
● Overview of Golang IDEs and their interfaces.

Go Language Basics

● Packages and code organization

● Imports & Exports in Go

● Structure of a Go application

● Variable types.

● Variables with Initializers

● Zero values and Short-hand declarations.

● Type Conversion

● Numeric Constants

● Understanding functions in Golang.

● Functions with multiple results

● Functions with named valued results



● Loops

● Defer

● Goto

● Scopes

Go Data Types and Structures

● Pointers

● Structs

● Arrays and Slices

● Maps

● Strings and Runes in Go

● String Literals

● Map Literals

Advanced Go Structures and Functions

● Structs: Methods and field access

● Higher-order functions

● Higher-order functions.

● Function closures

● Mutating maps



Error Handling and Best Practices

● Error handling in Go

● Panic and Recover

● Custom errors in Go

● Best Practices for error management

Methods and Interfaces

● Methods with Structs and Pointers

● Interfaces in Go: Implementation

● Type assertions and type switches

Introduction to Concurrency

● Concurrency vs Parallelism

● Golang’s approach to concurrency: Overview of Goroutines

and Channels

Working with Goroutines

● Creating and managing Goroutines

● Synchronizing Goroutines using WaitGroups

● Mutexes and their use in Go



Channels in Depth

● Types of Channels: Buffered

● Channel Synchronization

● Channel Directions

● Channel Select and Non Blocking channels

● Closing Channels

Practical Concurrency

● Building a worker pool using Goroutines and Channels

● Practical examples of concurrency in backend development

Introduction to RESTful Services

● Basics of REST API design

● HTTP methods and status codes

● Go’s net/http package: Building a simple REST API

Building REST APIs with Go (Without Framework)

● Project setup and standard file architecture

● Connecting to the DB - PostgreSǪL setup

● CRUD operations and connecting to a database using

Go’s database/sql package

● Implementing middleware for logging and security



Exploring Go Web Frameworks

● Overview of popular frameworks: Echo

● Rebuilding the CRUD API using the Fiber framework

● Middleware integration using Fiber

Testing

● Writing unit tests for Go APIs

● Benchmarking API performance

● Documenting APIs with Swagger

Backend Architecture Patterns

● Monolith vs Microservices Architecture

● Popular design patterns in backend systems

● Singleton Pattern: Explanation and implementation in Go

● Factory Pattern: Explanation and implementation in Go

● Observer Pattern: Explanation and implementation in Go

● Decorator Pattern: Explanation and implementation in Go

● Best practices for designing scalable backend systems

Security in Go

● Secure coding practices in Go

● JWT Tokens: Explanation and Implementation

● OAuth 2.0 Explained!

● OAuth 2.0 Simulated Implementation in Go

● Handling sensitive data



Working with Databases

● Using SQL databases with Go: GORM

● Working with NoSQL databases: Redis

● Optimizing database queries and connections

● Using SQL databases with Go: sqlx

● Working with NoSQL databases: MongoDB

Building Microservices with Go

● Service discovery

● API Gateways

● Distributed Tracing

Deployment and DevOps

● Containerizing Go applications with Docker

● CI/CD pipelines with Jenkins and GitHub Actions

● Deploying Go applications on cloud platforms

Performance Optimization

● Profiling Go applications

● Benchmarking and optimizing code



Introduction to GraphQL

● Differences between REST and GraphQL

● GraphQL basic concepts

● Building a GraphQL API with Go - Querying data

● Building a GraphQL API with Go - Mutating data

Final Capstone Project

● Design and develop a comprehensive backend system with Go

● Incorporate API development


